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ABSTRACT

The fortnightly and monthly tides are discussed in the light of recent sea level observations and numerical
modeling results. Within the tide gauge network of the low-latitude Pacific, the fortnightly tide is shown to
possess a large-scale phase lag of roughly 10-40 degrees. Although the nonequilibrium part of the fortnightly
tide is traditionally thought to be dominated by Rossby wave dynamics, it is shown, via global shallow-water
modeling studies, that this large-scale phase lag is explicable in terms of remotely forced gravity waves whose
origin is mainly in the Arctic Ocean. Although future observations outside the low-latitude region of the Pacific
may eventually reveal Rossby wave excitation, the fortnightly tidal signal in the tide gauge network at hand
appears to reveal at most only weak excitation of Rossby waves compared to the phase lag due to remotely
forced gravity waves. The observed monthly tide appears to be only slightly closer to equilibrium than the
fortnightly tide. The reason for this remains unclear since the monthly tide is less affected by the remotely forced

gravity waves than the fortnightly tide.

1. Introduction

The nature of the oceanic response to long-period
tidal forcing has been debated for over two centuries
(Laplace 1775; Darwin 1886; Hough 1897; Proudman
1913; Wunsch 1967). The traditional question has
been whether or not the long-period tides (LPT here-
inafter) are well approximated by their equilibrium
forms. The lack of believable observations left turn-
of-the-century studies in a purely theoretical state.
Wunsch (1967) analyzed observations from Pacific tide
gauge stations that showed that the fortnightly and
monthly tides are indeed much closer to equilibrium
than the diurnal or semidiurnal tides. Since Wunsch
modeled the small deviations of these tides from equi-
librium in terms of quasigeostrophic dynamics, it has
generally been accepted that Rossby wave dynamics
explain the dominant part of the nonequilibrium LPT
response.

In this paper, we present a different view of the
ocean’s response to fortnightly tidal forcing. After tak-
ing a careful look at new observations (see Figs. 1, 2
and appendix A) and previous numerical modeling
results, we arrive at the conclusion that quasigeo-
strophic dynamics fail to explain the O(1) feature of
the observed deviation of the fortnightly tide from
equilibrium, roughly a 10-40 degree phase lag in the
low-latitude (+30°) Pacific. Our global-scale shallow-
water modeling results show that the dynamic portion
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(i.e., the deviation from equilibrium) of the fortnightly
tide observed in the low-latitude Pacific Ocean is not
due to Rossby wave dynamics but rather to gravity
wave excitation, which can be associated with the Arctic
Ocean. This is because the LPT potential projects
strongly onto the Arctic Ocean, forcing water out of,
or pulling water into, the basin resulting in a gravity
wave that propagates into the Pacific Ocean to satisfy
global mass conservation. It takes roughly two days for
the gravity wave to propagate to the Pacific, with the
resultant response in the low-latitude Pacific explaining
much of the observed 10-40 degree phase lag.

We emphasize that Rossby/topographic wave ex-
citation is likely to dominate the nonequilibrium re-
sponse in other regions of the World Ocean, for ex-
ample, over the East Pacific Rise. But the island tide
gauge network at hand does not adequately sample
these regions. To set the stage for the numerical mod-
eling results, which ultimately explain the quandary of
why quasigeostrophic dynamics fail to account for the
observed MTf tide over the present tide gauge network,
we give an introduction in the next section of the work
since Wunsch’s (1967) seminal study. In section 3, we
introduce the finite-element time-stepping model of the
tides, which we use to obtain solutions in a closed Pa-
cific basin, a near-global ocean, and a global ocean. In
section 4, we discuss our results for the fortnightly tide
and attempt to relate them to the monthly tide and to
the general low-frequency response of the ocean.

2. Historical perspective

Several theoretical models of the LPT have appeared
since Wunsch (1967) first suggested that the dynamic
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FIG. 1. Admittance (a) amplitude and (b) phase versus latitude for the fortnightly (Mf) tide as estimated from tide gauge records from
islands in the low-latitude Pacific Ocean (appendix A). The 90% confidence intervals bracket the spectral estimates. The model values,
indicated by x’s, are from the global model discussed in the text with 14-day forcing period and r = 4 X 1073/ H (the high-friction case of

Tables 1, 3 and Figs. 8d, 10).

part of the LPT could be understood as a superposition
of barotropic Rossby waves excited by the LPT-gen-
erating forces in a closed basin. Two distinct interpre-
tations have arisen from these studies: a theoretical
small-scale, O( 1000 km) wavelength Rossby wavelike
response versus a computed basin-scale response which
has not been explained. We elaborate on these two
views in the following paragraphs.

Wunsch (1967) derived a quasigeostrophic equation
for the fortnightly tide and discussed solutions in terms
of resonant Rossby modes. Dominant wavelengths in
the frequency band of interest were O(1000 km) for
his flat-bottom model. The model response exhibited
spatial fluctuations and amplitude variations similar
to those apparently seen in his data from island tide
gauge records in the low-latitude Pacific Ocean (com-
pare Wunsch’s Figs. 4-7 with our Figs. 1, 2). We note,
as did he, that his solutions, expressed as admittance
(n/n., where 1., called the equilibrium tide, is the
gravitational forcing expressed as an equivalent sea
level displacement), were necessarily displaced by
constant values to permit favorable comparison with
the observations. Measured admittance phases were
generally all positive, while model values had several
zero crossings. Measured admittance amplitudes were
almost everywhere less than one, while model values
were both above and below one, unless friction was
introduced. For the frictional case, Wunsch plotted one

longitudinal section of model admittance amplitude
values that were all less than one. However, that result
depends on what latitude is chosen for the section; other
latitudes could have admittance values that are uni-
formly greater than one.

Kagan et al. (1976) integrated Laplace’s tidal equa-
tions (LTE hereinafter) in a global ocean, with topog-
raphy, for the fortnightly constituent. They found an
‘“acceptable range” of agreement with Wunsch’s ob-
servations and described the results, to first approxi-
mation, as a superposition of “global-scale oscilla-
tions.” They concluded that their model response did
“not favor” Wunsch’s theory of a “superposition of
comparatively short Rossby waves.” We note that their
model employed bottom, as well as Laplacian, friction
parameterizations; decay time for the scale-indepen-
dent, depth-dependent bottom friction was O(50 days).
Their grid resolution (5 deg), however, barely resolves
the O(1000 km) waves which Wunsch expected to be
important. .

Agnew and Farrell (1978) recomputed the fort-
nightly and monthly admittance functions for
Wunsch’s observations using a static “self-consistent”
equilibrium tide (see appendix A). Their computation
of the static tide accounted for the yielding of the solid
earth (which reduces the equilibrium tide by about
30%), the effects of ocean loading and ocean self-at-
traction (which increases the previous result by about
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FIG. 2. Admittance (a) amplitude and (b) phase versus latitude
for the monthly (Mm) tide, otherwise as in Fig. 1. (¢) Admittance
phase versus longitude for Mm for stations within 15° of the equator.
The model values, indicated by x’s, are from the global model dis-
cussed in the text with 28-day forcing period and r = 4 X 1073/ H,
the high-friction case of Table 3.

25%), and the distribution of the continents (which
introduces slight longitudinal dependence and generally
reduces the previous result by up to 15% ). The observed
admittance amplitudes did not change appreciably, al-
though they tended to become closer to one. Admit-
tance phase is not affected by any of the self-consistency
effects.

Luther (1980) obtained island tide gauge data from
additional stations and with longer records (where
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overlap occurs) than could Wunsch (1967). He esti-
mated admittance relative to Agnew and Farrell’s
(1978) self-consistent forcing function, so no arbitrary
constant offsets are necessary for comparison with the-
ory. Luther found that there was no significant indi-
cation of the O(1000 km) wavelength Rossby wave
variations in the admittance, but identified a large-scale
deviation of the fortnightly tide from equilibrium as a
function of latitude and a slight east-west slope to the
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admittance amplitude and phase. The monthly tide
variations were much less stable (and were bracketed
with larger error bars) than those for the fortnightly
tide. The only definitive statement possible was that
the size of the variability of the Mm admittance (both
amplitude and phase) was comparable to (and perhaps
greater than) that of the fortnightly tide.

Schwiderski (1982) integrated LTE in a global do-
main for both the fortnightly and monthly tides. His
model response was also of basin scale, supporting the
results of Kagan et al. (1976). However, his “empiri-
cal-dynamical” integration scheme both incorporated
many observations of doubtful statistical significance
and is difficult to interpret dynamically because of the
constraints imposed on the solutions by the observa-
tions.

Carton (1983) gave a physical argument, based on
low-frequency approximations to the shallow-water
equations, for observing a westward-intensified re-
sponse (time-dependent Stommel circulation) that
approached equilibrium towards the eastern boundary.
His near-global numerical solution of LTE for both
fortnightly and monthly forcing (similar to the response
to be discussed in Fig. 6) was suggested to substantiate
his theoretical prediction. Small-scale fluctuations,
consistent with the anticipated weak Rossby wave fluc-
tuations, occurred in the midlatitudes of his near-global
(the Arctic was excluded) shallow-water model. Yet
there were several regions, particularly the Pacific basin,
in which the numerical model deviated from his theory.
For example, the topography of the South Pacific basin
appeared to produce substantial spatial variability near
the eastern boundary. Furthermore, his near-global so-
lution exhibited the large-scale Pacific-wide deviation
of the tide from equilibrium to which we are now
drawing attention. The model monthly tide was closer
to equilibrium as predicted from his highly viscous
theory, but this result conflicted with Luther’s (1980)
interpretation of the observations, as discussed previ-
ously, which suggested as strong a deviation from equi-
librium as the fortnightly tide.

Dickman ( 1989) developed a spectral model of the
long-period tides based on a spherical harmonic ex-
pansion. Considering realistic bathymetry and basin
shape, and with bottom friction damping time of 77
days and lateral friction coefficient of 1.5 X 107
cm?s™!, Dickman found that the coefficient of the
spherical harmonic corresponding to the structure of
the equilibrium tide (/ = 2, n = 0) was smaller than
the input forcing. This suggests that the large-scale
component of the Mf tide approaches equilibrium
“from below,” which agrees with the low-latitude ob-
servations of ~0.8 admittance amplitude; high lati-
tudes of the North Pacific, however, were found to ap-
proach equilibrium “from above” in the previously
discussed numerical solutions. Since the detailed spatial
structure of his solutions was not shown, it is difficult
to compare his results with actual oceanic response.
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Cartwright and Ray (1990) computed zonal averages
of the fortnightly tide admittance as observed from
Geosat altimetry observations. These were later rees-
timated by Ray and Cartwright (1992) and are repro-
duced here in Fig. 3. The low-latitude component of
their results indicates admittance amplitude less than
unity and phase lags of order 8 degrees, consistent with
Luther’s observations. The admittance poleward of
about 40 degrees tends to greater (less) than unity in
the Northern (Southern ) Hemisphere. In their original
1990 analysis, the imaginary component of the zonally
averaged admittance exhibited O( 1000 km) wavelength
variations in the meridional direction (suggesting a
Rossby-like wave response); in the reanalysis by Ray
and Cartwright (reproduced in Fig. 3), however, the
imaginary component has a very smooth response
(without these variations). Ray and Cartwright (1992)
also show analogous estimates for the monthly tide
that show, in line with Luther’s (1980) observations,
similarly sized deviations from equilibrium although
the error bars are much larger for Mm.

In the earlier stages of this work, Miller ( 1986; chap-
ter 3) reexamined Luther’s observations, which had
been extended to longer record lengths and supple-
mented with more stations (Figs. 1, 2 and appendix
A), in light of Carton’s (1983) numerical results. Miller
described a large-scale, low-latitude signal that appears
in the fortnightly response of Carton’s model and in
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FI1G. 3. Real and imaginary parts of the zonally averaged admittance
of the satellite-observed fortnightly altimetric tide (thin lines), the
analogous tide from the numerical model of Schwiderski (medium
line), and the purely real classical equilibrium tide modified to include
only loading (thick line), taken from Ray and Cartwright (1992).
Vertical lines are 2-o error bars. The altimetric tide is the sum of the
ocean tide and the induced load tide radial displacement.
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the observations. As seen in Fig. 1, the large-scale Mf
response in the low-latitude (£30°) Pacific has admit-
tance amplitude values of ~0.8 (generally less than
1.0) and admittance phase values of 10-40 degrees
(nearly always positive). An analogous low-latitude
pattern in monthly admittance amplitude ~0.9 and
phase values of 5-15 degrees appears in the numerical
models, though it is not as evident in the observations
(Fig. 2). After discussing many aspects of quasigeo-
strophic response to low-frequency forcing, Miller
claimed that quasigeostrophic dynamics cannot ac-
count for the uniformly positive phase lags seen in Fig.
1 because Rossby wave excitation in the weakly
damped case (Wunsch’s conceptual model) implies
meridional zero crossings in the phase of the response,
while strongly damped quasigeostrophic dynamics
(Carton’s conceptual model) yields admittance am-
plitudes much too close to unity and very small phase
lags, both of which conflict with Fig. 1. If Rossby wave
excitation is occurring, it rides upon a large-scale non-
quasigeostrophic component of the response. Miller
(1986, 1992) attempted to explain this large-scale re-
sponse by accounting for a divergent velocity field due
to nearly equilibrium gravity wave dynamics in a closed
Pacific basin, but the result only affected the quasigeo-
strophic portion of the total response.

In summary, Figs. 1 and 2 stand in contrast to the
limited set of Mf and Mm observations described by
Wunsch (1967) as containing short-scale variations
associated with Rossby wave activity. Our new long-
period tidal observations instead substantiate the large-
scale, low-latitude responses, which occur in the pub-
lished numerical models of the fortnightly tide. Rather
than exhibiting Rossby wave-scale variations, Fig. 1
shows that the Mf admittance amplitude and phase
bear an interesting bow-shaped structure, nearly sym-
metric about the equator. Figure 2 shows that, although
the Mm admittance amplitude is closer to unity than
is that of the Mf, the Mm admittance phases are nearly
as large as those for Mf and are typically larger than
the numerical models predict.

The most obvious questions that arise from this his-
torical perspective are then: What is the mechanism
that generates the large-scale, low-latitude response in
the Pacific fortnightly tide? Does the Mm tide deviate
as much from equilibrium as does the Mf, and if so,
why? In the next section, we show that the answer to
the first question is contained in the Arctic Ocean.
Some speculation on the second question is given in
the discussion section.

3. Shallow-water models of the fortnightly tide

To divest ourselves from any quasigeostrophic re-
strictions, we now examine some linear shallow-water
models of the long-period tides. We solve LTE (Lamb
1932, chapter 8; Miles 1974; Hendershott 1981),
namely,
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in standard notation, on the sphere for various basin
geometries, topographies, and frictional parameteriza-
tions. The boundary condition of no flow through the
boundary is upheld for all boundaries in each geometry
considered.

We use a finite-element model (appendix B and Fig.
4a), with LPT forcing (Fig. 4b) and linear bottom drag
(r = ¢/H", where ¢ is a constant, H is the depth, and
nis an integer). Our basic, or normal, choice for friction
is r = 1073/ H, which corresponds to the bottom drag
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FIG. 4. (a) The finite-element resolution for the global model. The
average area of a finite-element triangle is equal to the area of a 3.1°
equatorial square. The islands of Antarctica, New Zealand, and Ha-
waii are included in the global and the near-global geometry. Hawaii
is not included in the closed-Pacific case. The topography is taken
from the Rand/SIO 1° observations. (b) The equilibrium tidal forcing
function used in the global model. The amplitude at the Pacific equa-
tor is 1.28 cm. The nodal lines of the P,y spherical harmonic are
indicated by the clustering of phase near 35N and 35S. The mean is
removed for all cases. The dots indicate the approximate locations
of the island tide gauge stations discussed in the text and Figs. 1
and 2.
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law used by Kagan et al. (1976). For a 4000-m constant
depth ocean, this frictional choice implies an expo-
nential damping time scale of 46 days. Many other
numerical experiments were run with different values
of € and n, though only a few are discussed here. The
equilibrium tide, to which we reference solutions, al-
ways includes the proper mass conservation constant
for that particular solution’s geometry.

We first consider a closed Pacific basin to determine
the extent to which the local response to the tidal po-
tential in the Pacific by itself can explain the large-scale
deviation of the fortnightly tide from equilibrium. Fig-
ure 5 shows the phase of the observable tide, the ad-
mittance amplitude, and the dynamic tide (y — 7,.) for
14-day forcing and r = 1073/ H. One can see from the
admittance amplitude (Fig. 5b) that the low-latitude
Pacific is very close to equilibrium in this case. The
phase lag in the low latitudes, though tending to have
large spatial scale and a slight slope across the basin
(Luther 1980), is only a few degrees (Table 1; Fig. 5a).
As can be seen from the dynamic tide (Fig. 5¢,d), al-
though there is substantial Rossby wave excitation in
the vicinity of the East Pacific Rise and to a lesser extent
near the forcing nodal line of the North Pacific, there
is little excitation of Rossby waves in the low latitudes.
Though not so evident in this figure, the region between
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Fiji and the East Pacific Rise (170-120W), which is
relatively flat, is a locale that, for lower friction cases
with higher resolution, supports the clearest signal of
Rossby wave-like excitation in the Pacific.

Although we present only one case for the closed
Pacific geometry, we emphasize that we have run many
different versions of this case (differing frictional am-
plitudes and forms, different basin shapes, topogra-
phies, and resolutions), but we failed to find a param-
eter that clearly controls the size of the phase lag in the
low-latitude Pacific Ocean.

Since Carton’s (1983) near-global shallow-water
model did show a stronger phase lag and admittance
amplitudes further from unity than our closed-Pacific
cases (see Table 1), we attempted to reproduce Carton’s
results with a near-global model (Fig. 6), which omits
only the Arctic Ocean. As can be seen in Table 1 and
to some extent in Fig. 6a, the phase lag in the low-
latitude Pacific of the near-global ocean is increased
over the closed Pacific case and more closely resembles
Carton’s results. The differences in admittance ampli-
tude between Fig. 6b and Carton’s results (his Fig. 8a)
probably stem from Carton’s using Agnew and Farrell’s
(1978) self-consistent tide as forcing, which conserves
mass for the global ocean, but not necessarily for the
near-global ocean model of Carton. Indeed, a small
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FIG. 5. Closed Pacific Ocean case with r = 10~/ H (normal friction). (a) Phase of the model Mf tide (contour interval: 30°). Zero phase
is indicated by the dotted line and 30° phase is indicated by the long dashed line. (b) Admittance amplitude of the model Mf tide (CI: 0.1,
contours scaled by 10). (¢) Phase of the model Mf dynamic tide (CI: 30°), otherwise as in (a). (d) Amplitude of the model Mf dynamic

tide (CI: 10, contours scaled by 63.6 cm).
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TABLE 1. Phase (deg) of Mf tide at selected locations.

Closed High-friction
Carton (1983) Pacific Near-global Global global
Location Observed near-global basin (no Arctic) (with Arctic) (with Arctic)
Midway 86 74 -22 11 32 65
Nawiliwili 41 26 8 19 29 34
Mokuoloe 30 25 8 19 29 34
Honolulu 39 25 8 19 29 34
Kahului 46 26 8 17 25 29
Hilo 41 30 8 17 25 29
Wake 36 28 13 19 26 22
Johnston 32 12 4 8 18 23
Guam 14 3 -3 3 7 10
Eniwetok 14 8 7 11 16 15
Kwajalein 16 12 7 11 16 13
Truk 15 7 -2 4 8 11
Majuro 21 14 2 7 12 13
Fanning 14 10 3 8 12 14
Christmas 11 10 3 7 12 14
Canton 18 11 3 8 13 13
Rabaul 4 6 -3 3 7 9
Anewa Bay 1 8 0 5 10 9
Apia 7 7 6 9 16 17
Pago Pago 19 8 6 9 16 17
Papeete 45 21 10 19 24 25
Noumea 38 12 5 14 19 16
Rikitea 54 23 23 34 45 39
Easter 63 40 0 10 25 32

The closed-Pacific, near-global, and global models have r = 1 X 107%/H frictional parameterization. The high-friction global model has

r=4X 107%H.

constant added to our (mass-conserving ) equilibrium
tide causes Fig. 6b to bear admittance amplitude struc-
ture very similar to Carton’s Fig. 8a. Further differences
between our results and Carton’s probably arise from
differences in resolution, the Laplacian frictional pa-
rameterization used by Carton, or the number of tidal
cycles integrated.

Since the admittance phase does not change by add-
ing a constant to the equilibrium tide, a dynamic effect
must cause the large-scale phase lag in the low-latitude
Pacific. We therefore hypothesized that gravity waves
excited in remote basins must travel to the Pacific (to
satisfy mass conservation in the near-global ocean) with
finite phase speeds, resulting in the observed phase lags
in the Pacific. In particular, the strong projection of
the Mf tidal potential onto the Arctic might provide
the key to controlling the size of the phase lag in the
Pacific. We therefore included the Arctic in a global
model of the Mf tide and indeed found (Fig. 7; Table
1) an even stronger low-latitude Pacific phase lag than
for the near-global geometry, in line with our hypoth-
esis. Figure 8 shows a close-up view of the Mf phase
lag in the low-latitude Pacific showing that as the ge-
ometry increases from Pacific-basin scale to global scale
the phase lag increases as well. (The effect of friction
on the phase lag is discussed below.)

To further clarify the remotely forced response in
the Pacific, we ran several more cases in which we set

the tidal forcing function to zero everywhere except
north of the nodal line in the North Atlantic and Arctic
Oceans, that is, a tidal forcing mechanism localized in
the Arctic. We ran this case both with a flat bottom
and with oceanic topography for similar friction pa-
rameters as in the global model (the dynamic tide for
one case is shown in Fig. 9). The observable tide in
the Pacific lags the equilibrium by about 60 degrees
(2.3 days). The amplitude of the dynamic tide in these
cases is typically at least as large as, and often larger
than, the dynamic tide from the closed Pacific cases
(Table 2; Figs. 5c.d; 6¢,d; 7c,d; 9a,b), and the phase
of the dynamic tide was likewise comparable to results
with the total equilibrium tide as forcing. This result
supports our claim that waves traveling out of the Arctic
Ocean contribute significantly to the observable Mf tide
in the low-latitude Pacific.

It remained to be determined if gravity waves or
Rossby waves were being excited by the Arctic forcing.
Intuitively, one expects that Rossby waves would be
less important since the time scale of energy propa-
gation would probably be much longer than for the
gravity waves, but it is difficult to estimate the propa-
gation time scale when considering the anisotropic
group velocity of Rossby waves and the added com-
plication of the irregular topography of the oceans.

We therefore ran two test cases, one with gravity
reduced by a factor of 2, and one with the rotation rate
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FIG. 6. Near-global case with r = 1073/ H (normal friction). (a) As in Fig. 5a.
(b) As in Fig. 5b. (c) As in Fig. 5c. (d) As in Fig. 5d but CI: 20.
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FIG. 7. Global case with r = 1073/ H (normal friction). (a) As in Fig. 5a. (b) As in Fig. 5b.
(c) As in Fig. 5c. (d) As in Fig. 5d but CI: 20.
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sulting in a larger phase lag if this mechanism is im-
portant. In other words, an inspection of the barotropic
vorticity equation clearly shows that the wave fre-
quency scales with the rotation rate and 3, regardless
of the choice of topography. For the reduced rotation
case, however, instead of an increase in lag, we found
that the phase lag in the Pacific decreased 40%-50%.
This again suggests that gravity waves, influenced by
rotation, explain the phase delay, since rotation can
slow gravity waves both by directly affecting the dis-
persion relation and/or by forcing the gravity wave to
follow circuitous coastally or equatorially trapped
routes in the form of Kelvin-like waves. Thus, the phase
lag in the Pacific is clearly due to gravity wave effects.

What route does the gravity wave take to reach the
Pacific from the Arctic? Clearly, the wave must prop-
agate south through the Atlantic Ocean and then either
through the Drake Passage or through the Indian Ocean
(or through both) to the equatorial Pacific (Fig. 9b).
We anticipate that the gravity wave will follow coast-
lines and equatorial zones from Arctic to Pacific in the
same sense as Kelvin waves, since rotation causes grav-
ity waves at long periods to be biased towards boundary
or equatorial trapping in the form of Kelvin-like waves.
By inspecting the phase distribution for the global case
with normal friction and global LPT forcing (in maps
with better detail than Fig.-7), we find that the low-
latitude Atlantic Ocean leads the equilibrium by about
5 degrees, the low-latitude Indian Ocean lags by about

TABLE 2. Amplitude (cm)/phase (deg) of model Mf dynamic tide
at selected locations.

FIG. 8. Expanded views of the low-latitude (+30°) Pacific Ocean
phase lag of model fortnightly tides, with contour intervals of 5 deg.
(a) Analogous to Fig. 5b (closed Pacific with normal friction). (b)
Analogous to Fig. 6b (near-global with normal friction). (c) Anal-
ogous to Fig. 7b (global with normal friction). (d) Analogous to Fig.
10b (global with high friction).

reduced by a factor of 2, both with Arctic forcing only.
For the first case, one would expect that if gravity (e.g.,
Kelvin) waves were responsible for the Pacific response,
the phase lag of the observable tide would be increased.
This is indeed the case, with phase lags corresponding
to roughly V2 times the normal case, in accord with
the dispersion relation for gravity (e.g., Kelvin ) waves.
For the second case, the slower rotation reduces the
amplitude of both the B effect and of the vorticity
perturbation produced by topographically induced
stretching of planetary vorticity, both of which would
reduce the speed of groups of short Rossby waves, re-

Closed Near- Global
Pacific global Global Arctic
Location basin (no Arctic) (with Arctic) forcing only

Midway .15/191 .23/176 .25/155 13/137
Nawiliwili .10/133 .22/138 .33/128 13/115
Mokuoloe  .10/133 .22/138 .33/128 13/115
Honolulu .10/133 .22/138 .33/128 13/115
Kahului .10/133 .23/136 .34/126 13/116
Hilo .10/128 .23/136 .34/126 13/116
Wake 217141 .32/144 44/143 .14/135
Johnston .10/152 .17/150 .30/137 117124
Guam 117207 .18/167 .22/150 .09/124
Eniwetok .18/150 .27/147 .37/143 .12/136
Kwajalein .15/130 .25/137 .37/134 .14/133
Truk .08/211 .14/154 .22/138 .10/114
Majuro .05/137 .17/136 27/126 12/117
Fanning .06/111 17/121 .28/121 .13/124
Christmas .06/103 177121 .28/119 13/122
Canton .06/114 .19/127 .30/122 .12/120
Rabaul .07/244 .10/154 177130 .09/107
Anewa Bay .05/181 15/139 .24/128 117120
Apia .12/140 24/147 .35/138 .14/126
Pago Pago .12/140 24/147 .35/138 .14/126
Papeete .12/86 .26/99 357112 12/120
Noumea .05/73 .16/85 .24/98 .10/133
Rikitea .22/85 .32/110 .50/113 157123
Easter .00/68 .06/102 .18/123 .15/123

Each model has r = 1 X 1073/H frictional parameterization.
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FIG. 9. Arctic-forced case. Same topography, geometry, and friction
as for global case in Fig, 7 but tidal potential is set to zero everywhere
but north of the nodal line in the North Atlantic. (a) As in Fig. Sc.
(b) As in Fig. 5d but CI: 5.

5 degrees while the low-latitude Pacific Ocean lags by
about 15 degrees. This result, combined with the longer
distance from the Arctic to the Pacific through the In-
dian Ocean suggests that the Indian Ocean route is
followed; a 30 000-km (270°) route with 3000-m ef-
fective ocean depth (170 m s ™! gravity wave group ve-
locity) implies roughly a 2.0-day Pacific Mf phase lag,
consistent with the observed 2.3-day lag. However, if
the gravity, or Kelvin-like, wave response is signifi-
cantly affected by shallower waters, it will then travel
much more slowly and may take a more direct route
to the tropical Pacific.

We lastly address what effect the strength of friction
has on the admittance phase lag and admittance am-
plitude in the Pacific. We ran the global geometry case
for one-half, two times, four times, and eight times the
dissipation strength in the normal friction case of Fig.
7. For a 4000-m constant depth ocean, these choices
for friction imply exponential damping time scales of
92, 23, 12, and 6 days, respectively. We indeed found
a dependence of the admittance phase and amplitude
on the strength of friction. As the strength of friction
was increased for the fortnightly tide, we found some-
what larger phase lags and lower admittance amplitudes
occurred in the low-latitude Pacific (Tables 1, 3; Fig.
10), up to the point of the eight-times normal friction
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case where the admittance started to edge back towards
equilibrium. This result suggests that friction slows the
group velocity of the barotropic gravity waves ema-
nating from the Arctic (e.g., Mofjeld 1980; Davey et
al. 1983). For the fortnightly tide, as friction is reduced,
we found that, although much larger planetary-topo-
graphic wave activity occurred in many parts of the
basin, in the low-latitude Pacific the response surpris-
ingly tended to move closer to equilibrium. For the
monthly tide, a similar test of the strength of friction
was less conclusive (Table 3). Admittance amplitude
tended towards equilibrium for larger friction, while
admittance phase tended to increase slightly with fric-
tion. Higher resolution will be required to properly ac-
count for the behavior of the monthly tide.

4. Discussion

We have shown that a dominant part of the low-
latitude response of the Pacific Ocean to the fortnightly
tidal forcing is due to a gravity wave excitation mech-
anism whose principal source is in the Arctic Ocean.
The time scale of propagation from the Arctic to the
Pacific is about 2.3 days. The sum of the local dynamic
response (e.g., Figs. 5¢,d) and the remotely driven dy-
namic response (e.g., Figs. 9a,b) yields a ~10-40 de-

TABLE 3. Admittance amplitude/phase (deg) of model Mf and Mm
tides at selected locations.

Mf Mm
normal high normal high

Location friction friction friction friction
Midway .50/32 71765 .78/22 .89/31
Nawiliwili .80/29 .74/34 .92/19 .90/20
Mokuoloe .80/29 .74/34 .92/19 .90/20
Honolulu .80/29 .74/34 .92/19 .90/20
Kahului .82/25 .76/29 .93/16 91/17
Hilo .82/25 .76/29 93/16 91/17
Wake .68/26 .68/22 .84/14 .90/15
Johnston .78/18 .78/23 .92/17 91/15
Guam .83/7 .81/10 .85/11 .89/11
Eniwetok 75/16 76/15 .86/10 91/11
Kwajalein 81/16 .80/13 .88/10 .92/10
Truk .87/8 .85/11 .88/7 .92/8
Majuro .89/12 .84/13 9177 .93/9
Fanning 91/12 .86/14 91/8 93/9
Christmas 91/12 .86/14 .92/8 .94/9
Canton .90/13 .85/13 .92/7 .93/8
Rabaul 92/7 .90/9 93/5 .95/6
Anewa Bay .90/10 .87/9 .94/6 94/7
Apia .79/16 77717 92/11 .92/11
Pago Pago .79/16 T7/17 92/11 92/11
Papeete .93/24 81725 91/11 .92/15
Noumea 1.01/19 .95/16 1.10/12 1.04/7
Rikitea .99/45 .81/39 .85/13 .88/19
Easter .84/25 .93/32 .89/12 .93/18

Each model has global geometry. Normal friction has r = 1
X 107%/H. High friction has r = 4 X 107%/H.
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gree phase lag of the observable tide with respect to the
equilibrium tide. Thus, we have explained a puzzling
aspect (the phase lag) of the discrepancy between
quasigeostrophic theories of the fortnightly tide and
Pacific observations. The main effects that control the
phase lag in the Pacific are the extent to which the tidal
potential projects onto remote basins (in particular,
the Arctic Ocean is strongly forced by the tidal poten-
tial) and the resulting dynamic effect of the conserva-
tion of mass requirement for the global equilibrium
tide (i.e., gravity wave excitation ). On the global scale,
friction can surprisingly push the Mf tide further from
equilibrium by slowing the circumglobal propagation
of these gravity waves.

It therefore has become clear why the admittance
amplitude is less than unity in the low-latitude Pacific,
since the vector sum of the equilibrium tide (zero
phase, unit amplitude) and the dynamic tide due to
nearly equilibrium gravity waves (120 deg phase with
0.1 amplitude) implies admittance amplitude some-
what less than one and admittance phase of O(10 deg).
However, it is also clear that the admittance amplitude
1s sensitive to the precise calculation of the mass con-
servation constant of the equilibrium tide, and this
sensitivity can probably explain much of the remaining
discrepancy between models and observations (Figs.
1, 2, 7, 10). The disturbing feature of the admittance
amplitude’s dependency on the self-consistency of the

FIG. 10. Global case with r = 4 X 1073/ H (high friction).
(a) Asin Fig. 5a. (b) As in Fig. 5b.
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equilibrium tide is that it can give the impression of a
substantial deviation from equilibrium in the basin of
interest, when actually it could be indicating simply
mass conservation with no dynamics. For example,
consider two connected basins of equal area, for one
of which the equilibrium tide has zero mean and for
the other of which the equilibrium tide has a large mean
value. If we study the first basin in isolation and find
a dynamic tide, the dynamic response is meaningful.
If we consider the two basins together, however, the
local dynamic response in the first basin will be tainted,
and perhaps swamped, by the constant for mass con-
servation (even without considering gravity wave
propagation). Of course, the velocity field for the first
basin is virtually the same in either approach, but to
speak of a dynamic tide in the latter case is inaccurate
and confuses the issue of “equilibrium.”

Although we suggest that low-latitude Pacific sea
level observations of the fortnightly tide are significantly
influenced by gravity wave processes, we are not
claiming that quasigeostrophic response is unimportant
for the fortnightly tide (examine the middle and high
latitudes in Figs. 5d, 6d, and 7d). But to properly as-
certain the importance of Rossby wave dynamics, the
dynamic effect of water sloshing back and forth between
the basins must first be identified and removed before
the local planetary—topographic resonances can be
identified.

A final point of comparison with observations lies
in the satellite observations of Cartwright and Ray
(1990) and Ray and Cartwright (1992) from which
they computed the zonally averaged response of the
fortnightly and monthly altimetric tides. An interesting
feature of their satellite-observed Mf response, which
is reproduced here in Fig. 3, is that it lines up more
closely to their theoretically determined classical equi-
librium tide (shown in Fig. 3) than to their self-con-
sistent equilibrium tide (not shown). We have com-
puted the analogous Mf response for our various model
runs, one of which is shown in Fig. 11. The large-scale
structure of our model Mf tide is similar to the satellite-
observed Mf structure (as is Schwiderski’s model result
in Fig. 3), particularly in the latitudinal asymmetry
with respect to our mass-conserving equilibrium tide.
Although the low-latitude structure is not very sensitive
to changes in the strength of friction, for cases with
weaker friction the global model predicts a maximum,
near 75°N, in the real part of the admittance, similar
to that seen in Fig. 3, and the imaginary part tends to
become more strongly negative in the Arctic. For
stronger friction, the real part of the admittance north
of about 50°N drops below the equilibrium. Analogous
plots for our model monthly tide (not shown ) are rather
similar to Fig. 11, although they tend to be closer to
equilibrium. In contrast, the satellite-observed monthly
tide (see Ray and Cartwright 1992) exhibits deviations
from equilibrium that are as large as those for Mf,
though the error bars prohibit conclusive statements.
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FiG. 11. As in Fig. 3 but for the normal friction global model Mf
tide of Fig. 7, following the plotting conventions of Cartwright and
Ray (1990) and Ray and Cartwright (1992). The real part of the Mf
model tide (thin solid line ) bears a fairly similar relation to the model
self-consistent equilibrium tide (thick solid line ) as does the satellite-
observed structure. The imaginary part of the Mf model tide (thin
dashed line) also has large-scale structure comparable to the satellite
observations.

It is interesting to note that although Rossby wavelike
structures do appear in our model solution, they are
extinguished in Fig. 11 by the zonal integral, even for
cases with much weaker friction. Thus one should not
expect zonal mean satellite observations of sea level to
exhibit evidence for Rossby wave excitation. For a feel
of how strongly Rossby waves are excited, the globally
averaged rotational kinetic energy averaged over a tidal
cycle increased by 68% for a weak friction case, with
constant 7 = (100 days) ™!, over the standard case (ir-
rotational kinetic energy is insignificant); the ratio of
kinetic to potential energies was 7.7 in the weak friction
case, compared to 5 for the standard case.

Returning to the question of why the monthly tide
appears to be nearly as far from equilibrium as the
fortnightly, we speculate the following. The phase lag
for the monthly tide due to the Arctic-forced response
in the Pacific is less than that of the fortnightly, simply
because of the disparate frequencies. So, if neither tide
was resonant locally in the low-latitude Pacific, the
monthly tide would be closer to equilibrium than the
fortnightly as theory would suggest. This partially ex-
plains the monthly tide’s admittance amplitude and
phase structure (Fig. 2). However, although we have
seen that there is scant excitation of Rossby waves in
the low-latitude Pacific for moderate friction values
and 14-day forcing, it may be fortuitous that at 28-day
periods planetary-topographic waves are more preva-
lent. Thus, although the fortnightly tide appears to be
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strongly influenced by the effect of the Arctic, the
monthly tide may be more influenced by local Rossby-
like oscillations. We note that, although we have run
and examined several cases with 28-day period forcing
(Fig. 2 shows some results extracted from a run with
high friction), our numerical model probably does not
have sufficient resolution to properly model these
monthly period waves, so we leave the resolution of
this problem to future modeling efforts.

Of what consequence are these results to other low-
frequency problems in dynamical oceanography?
Clearly, if global-scale atmospheric pressure has suffi-
ciently large imbalances from basin to basin [see Ponte
et al. (1991), and Davis and Bogden (1989), for evi-
dence that this may indeed be the case], there will be
a similar gravity wave adjustment which can lead to
remotely forced responses from basin to basin. If one
then measures, say, bottom pressure or sea level vari-
ations (with 1-20-day periods) in one basin and at-
tempts to model the response as being driven solely by
local or basin-scale forcing by wind or atmospheric
pressure, then there will likely be discrepancies between
the observations and the locally modeled response due
to waves excited by the global imbalances of atmo-
spheric pressure. It is doubtful that the remotely driven
response in sea level can have sufficiently small scales
(horizontal gradients) to be associated with significant
current fields but this effect should be examined further.
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APPENDIX A
Tide Estimation

Tide gauge records from the Pacific were obtained
primarily from the National Ocean Service and the
TOGA Sea Level Center at the University of Hawaii.
While data have been obtained for continental coastal
stations, this first analysis concentrates on only the
tropical island stations that have lower background
“noise” levels than the coastal stations, and therefore
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have provided the greatest reliability in the tidal esti-
mates. North of the equator, the island stations range
from 144°E to 155°W, while south of the equator they
range from 152°E to 109°W (Table Al).

All records were originally at least hourly samples
rounded to the nearest 0.1 foot, with some records
rounded to the nearest 0.1 cm. Errors due to this “least
count” roundoff and errors due to instrumental fre-
quency response characteristics and drift are quite neg-
ligible at the fortnightly and monthly periods of interest.

The data were subjectively scanned for obvious
“bad” points and gaps. Single “bad” points and gaps
up to 48 h were filled by linear interpolation of neigh-
boring values. Larger gaps were not filled, but rather
just flagged and subsequently avoided. Errors in the
time axis of each record were sought by examination
of the phase of the complex-demodulated M, tide.
Phase jumps were not uncommonly found to be due
to incorrect times following a change in a station’s time
zone relative to GMT, that is, an hour was incorrectly
added or dropped from a record.
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Surface air pressure data was obtained from the Na-
tional Climate Data Center, where overlap with existing
sea level data occurred. The air pressure was examined
and edited in a manner similar to the sea level data.
Sea level was then “adjusted” for the isostatic effect of
air pressure fluctuations by adding P.;;/pg to the sea
level data, where the mean sea surface density p at each
station was approximated from Levitus (1982). A list
is given in Table Al of the “adjusted” and “unad-
justed” sea level data used to estimate the fortnightly
and monthly tides. To obtain tide estimates the data
were fast Fourier transformed (FFT), with no data ta-
pering prior to transformation. Further details of the
estimation procedure are provided later.

A sea level fluctuation that has an amplitude and
phase corresponding exactly to that predicted from the
amplitude and phase of the moon’s and/or sun’s grav-
itational forcing is called an equilibrium tide 7.. The
form of the equilibrium tide in the ocean for the long-
period fluctuations of gravity (excluding oceanic self-
attraction and deflection of the surface of the solid

TABLE Al. Sea level stations.

Total number Sea level years

of years
Station Latitude Longitude of data Unadjusted Adjusted
Midway 28°13N 177°22’W 19 0 1950-1958
1960-1971
Nawiliwili 21°57'N 159°22'W 18 0 19541972
Mokuoloe 21°26'N 157°47W 13 0 19571969
Honolulu 21°18'N 157°52'W 65 1905-1920 1950~-1972
1922-1940
1942-1950
Kahului 20°54'N 156°28'W 19 1951-1960 19651975
Hilo 19°44'N 155°4'W 25 0 19491974
Wake 19°17'N 166°38'E 16 0 19521964
1969-1973
Johnston 16°44'N 169°32'W 19 1953-1961 1967-1978
Guam 13°27'N 144°39'E 22 0 1949-1971
Eniwetok 11°2I'N 162°21'E 16 0 1953-1969
Kwajalein 8°44'N 167°44'E 24 0 1953-1964
1965-1978
Truk 7°27'N 151°52’'E 20 1952-1954 1960-1974
1956-1958
Majuro 7° 10N 171°5'E 4 0 1968-1972
Fanning 3°54'N 159°24'W 9 1973-1981 0
Christmas 2°0'N 157°30'W 16 19561972 0
1978-1979
1980-1981
Canton 2°49'S 171°40'W 22 1949-1967 0
1977-1980
Rabaul 4°12'S 152°11'E 4 1966-1968 0
1975-1976
Anewa Bay 6°13'S 155°38'E 4 1969-1973 0
Apia 13°50'S 171°45'W 13 1954-1962 0
1967-1971
Pago Pago 14°17'S 170°41'W 21 1952-1964 1966-1975
Papeete 17°32'S 149°34'W 6 1969-1974 0
Noumea 22°18'S 166°26'E 13 1967-1979 0
Rikitea 23°8'S 134°57W 3 1970-1972 0
Easter 27°9'S 109°27'W 5 1957-1958 0
1970-1971

1974-1975
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earth) is given to a very good approximation by [e.g.,
Godin 1972, Eq. (0.28)]

[0.5A4,(1 — 3 sin?0) cos(wit + @ x)

1.11803 By sinf(3 — 5 sin2§’")

X sin(wiel + aox)], (A.1)

where the subscript k& refers to a particular tidal con-
stituent, 6 (') is the latitude (colatitude) of the observer
on the earth, o, is phase relative to a common start
time, the periods 27/ w, and coefficients A4, and By are
listed in Table A2 for the largest tides with periods near
1 and 2 cycles per lunar month, and G is proportional
to a constant times the radius of the earth at the ob-
server such that G =~ 26.8 cm X g.

The actual measured form of the sea level response
to the tidal potential I' is represented in a form that
includes a multiplicative constant and phase shift not
present in (A.1), such that

N = i (0, @) cos(wil + o + i), (A2)

where ¢ is longitude, H, and « are the amplitude and
phase of the true tide at frequency wy, and v, H; and
(ax + ui) are the amplitude and phase obtained from
the Fourier transform at w,. The terms v, and pu, arise
from the practical constraint that with short (a few
years) record lengths it is impossible to resolve tides,
by Fourier analysis, which differ in frequency by only
1 cycle per 18.6 years, for instance, such as Mf and its
neighbor at Doodson number 075565 in Table A2.
These neighboring tidal constituents beat against each
other producing years with larger fortnightly tides than

TABLE A2. Long-period tide coefficients.

Doodson Period, 27/w;i A* B* Darwin
number (solar days) (X107%) (X107%) symbol
063 645 31.961 —113

063 655 31.812 1579

063 665 31.664 —103

065 445 27.667 —542

065 455 27.555 8254 Mm
065 465 27.443 —536

065 555 27.322 466

065 655 27.093 —441

065 665 26.985 —180

067 455 23.942 —115

073 555 14,765 1369 MSE
075 355 13.777 676

075 555 13.661 15 647 Mf
075 565 13.633 6483

075 575 13.606 606

* Taken from Cartwright and Edden (1973) and Cartwright and
Tayler (1971). A blank implies zero.
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others. For example, the fortnightly tide is twice as
strong in 1987 as it is in 1978. Practical measurement
of the tide is subsequently more difficult in 1978 if the
noise level is high. The frequency splitting of the tides
that gives rise to the 18.6-year beat is due to the regres-
sion of the lunar nodes (e.g., Godin 1972), hence, the
name “lunar nodal factors” for v, and u,. In practice,
we estimated v, for Mf and Mm semiannually (follow-
ing Schureman 1958), then averaged for the whole time
period of a given data record that was input to the
FFT. Hence, if longer (say, 8 year) records are FFT’ed,
the averaged nodal factor will reflect the fact that the
FFT is beginning to resolve neighboring constituents.
The observed amplitudes of the Mf and Mm tides in
Tables A3 and A4, respectively, have been corrected
with averaged lunar nodal amplitude factors. (Note
that the stations in Tables A3 and A4 have been ordered
from north to south for ease of comparison with Figs.
1 and 2.)

The nodal amplitude factor »;, calculated as just de-
scribed, incorporateés the beating of Doodson numbers
075565 and 075575 with Mf, and Doodson numbers
065445 and 065465 with Mm. For very short records
(under two years) fewer of the constituents in Table
A2 are resolved from Mf or Mm, suggesting that the
nodal factor correction really should incorporate more
constituents, a fact that is fully discussed in Godin
(1972). Only infrequently are fewer than four years of
data analyzed at a time here, so that the additional
complication of incorporating other constituents into
the nodal factor correction was not considered neces-
sary. The phase nodal factor g, is not estimated at all,
since the observed phase is given below only in terms
of its relation to the equilibrium tide phase, in which
case the phase nodal factor cancels out, as will be
shown.

A simple measure of the nonequilibrium nature of
the tides is obtained from the “‘driving point admit-
tance” (Wunsch 1967). If the observed and equilib-
rium tides are represented as complex exponentials
such that

e = vicHi(6, ¢ )etrtostnd, (A.3a)
and
Nek = ViHe (6, d)e’ ¥ eek™ — (A.3b)
then the admittance at w, is defined as
Yi(6, ) = | Yi(6, ¢)|e™¥*
= e He piler—aen) (A.4)
Nek Hex

where | Y. (8, ¢)| and Y are the admittance amplitude
and phase, respectively. Note that this admittance def-
inition differs from that of Cartwright and Ray (1990)
and Ray and Cartwright (1992), who allow their ad-
mittance to carry the latitude dependence of the tide.
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TABLE A3. Fortnightly tide, Mf.
Equilibrium tide, Admittance, Dynamic tide,
n.=T/g N/Mse N = N
Total number Observed Amp. Self-consistent Phase Amp. Phase
Station of years amp. (cm) (cm) Self-consistent amp. (cm) Amp. (deg) (cm) (deg)
name of data inl 17 correction | e {n/nsel <fee — <9 17— el <(n — )
Midway 19 39 +.15 .66 1 47 .85+ .33 86 + 22 .59 £.15 138 = 15
Nawiliwili 18 60+ .11 1.22 .76 92 .66 + .12 41 + 10 61 x.11 140 £ 10
Mokuoloe 13 S55+.15 1.28 .76 97 .56 £ .16 3016 5T +.15 151 £ 15
Honolulu 65 .58 £ .05 1.26 .76 95 .61 + .05 39+ 5 .62 +.05 144+ 4
Kahului 19 .65 +.08 1.28 .76 97 67 .06 46 = 7 70 +.08 138+ 6
Hilo 25 .67 +.07 1.36 77 1.04 .64 + .06 41+ 6 .69 .07 141+ 5
Wake 16 63 +.14 1.48 15 1.12 .56 + .13 3613 1 .14 149 = 11
Johnston 19 94+ .23 1.61 77 1.24 .81+ .18 32+14 67 .23 132+ 20
Guam 22 90 +.09 1.71 76 1.29 .70 + .07 14+ 6 47 = .09 153+ 11
Eniwetok 16 96 + .09 1.83 77 1.42 .68 + .07 14+ 5 .54 +.09 154 + 10
Kwajalein 24 1.01 £ .05 1.89 78 1.47 .69 + .04 16+ 3 57 +£.05 15t 5
Truk 20 1.12 + .06 1.99 .76 1.51 75+ .04 15+ 3 51 +£.06 146 + 7
Majuro 4 1.16 + .14 1.99 .18 1.56 74 = .09 21+ 7 63 x.14 139+13
Fanning 9 1.15 £ .21 2.00 78 1.57 74+ .14 14+11 S3x.21 148 + 24
Christmas 16 1.29 +.10 2.05 78 1.61 .80 + .06 11+ 4 43 +.10 145 + 14
Canton 22 1.36 £ .13 2.04 .79 1.61 84 + .08 18+ 5 48 + .13 127+ 15
Rabaul 4 1.19 + .18 2.12 .76 1.60 74+ .11 4+ 9 42 + .18 169 + 27
Anewa Bay 4 1.01 + .34 1.98 .76 1.51 .67 +.23 1+19 .50 + .34 178 + 43
Apia* 13 97+ .21 1.74 77 1.33 73 +.16 T+12 38 +.21 162 + 34
Pago Pago 21 92 +.10 1.77 77 1.36 .68 £.07 19+ 6 57 +.10 148 = 10
Papeete 6 3 +.22 1.52 77 1.17 62+ .19 45 + 17 83+ .22 142 £ 15
Noumea 13 62 + .34 1.18 12 .85 74 + .40 38 + 31 52+ .34 133 + 40
Rikitea 3 .86 + .32 1.12 74 .83 103+ .39 54 +£21 77 +£.32 115+ 25
Easter 5 .64 .50 .82 .76 .62 1.03 = .80 63 +43 .66 + .50 120 + 49
* Estimates for Apia are suspect due to anomalously large nonlinear tide at MSf.
TABLE A4. Monthly tide, Mm.
Equilibrium tide, Admittance, Dynamic tide,
n.=T/g 1/ Mse N Nse
Total number Observed Amp. Self-consistent Phase Phase
Station of years amp. (cm) {cm) Self-consistent amp. (cm) Amp. (deg) Amp. (cm) (deg)
name of data Il |7 correction [ el [n/7sel <Mge — <7 [ = el <(n — ns)
Midway 19 18 + .28 .37 71 .26 71+ 1,07 91 + 180 32+ .28 145+ 60
- .18 - .71
Nawiliwili 18 37+ .21 .65 .76 49 A5+ 42 49 + 31 37+ .21 132+ 34
Mokuoloe 13 43 + 21 .66 .76 .50 87+ .42 29+ 27 24+ 21 120+ 60
Honolulu 65 .43 + .08 .67 .76 Sl 85+ .16 16+ 11 A5+ .08 128+ 33
Kahului 19 45+ .16 .69 .76 .53 85+ .31 24+ 20 22+ .16 123+ 48
Hilo 25 62 +.16 .74 77 57 .10+ .28 21+ 14 22+ .16 86+ 44
Wake 16 .50 + .24 .13 5 .55 90+ .44 5+ 27 A5+ 24 119 + 180
- .15
Johnston 19 30+ .26 82 77 .63 47+ 42 50+ 49 S50+ .26 153+ 32
Guam 22 .60 + .19 91 76 .69 87+ .28 -9+ 18 A3+ .19 45 + 180
- .13
Eniwetok 16 .69 + .18 98 Nk .76 91+ .24 17+ 15 23+ .18 116 £ 53
Kwajalein 24 .62+ .10 1.02 .18 .79 19+ .12 19+ 9 29+ .10 135+ 19
Truk 20 64 + .12 1.03 .76 .78 83+ .16 -1+ 11 d4+ 12 5+ 65
Christmas 16 72+ .26 1.11 .78 .87 83+ .30 32+ 21 46 = .26 124 + 35
Canton 22 84 £ .22 1.09 .79 .86 98+ .25 26+ 15 38+ .22 105+ 35
Apia* 13 1.74 + .28 93 17 1 243+ .40 16 9 1.07+ .28 27+ 15
Pago Pago 21 55=x.16 .88 17 .67 8l + .24 18+ 17 23x .16 132+ 46
Noumea 13 47 + 48 .63 72 45 1.03 + 1.05 175+ 55 92+ 1.05 177 + 180
- .47 -1.03 - 92

* Estimates for Apia are suspect (and are not ploited) due 1o anomalously large nonlinear tide at MSf.
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For calculation of the admittance the equilibrium
tide is numerically generated, for the same time period
and sampling interval as the observed sea level record,
from the orbital motions of the earth and moon fol-
lowing the treatment by Munk and Cartwright (1966,
appendix A) with updated astronomical constants
taken from Harrison (1971). The calculated equilib-
rium tide time series is analyzed in the same manner
as the sea level record, so the resultant Fourier coeffi-
cient tide estimates are subject to the same nodal factor
corrections as for measured sea level, as indicated by
the notation in (A.3b). The admittance (A.4) is then
clearly independent of the nodal factor corrections.
Also, to lowest order, spurious effects of the transfor-
mation process cancel. The magnitude of the equilib-
rium tide |7.| estimated in this manner at each station
is shown in Tables A3 and A4.

For the admittance to truly represent how much the
real ocean tides deviate from the static, equilibrium
limit (where |Y;| = 1 and ¢» = 0), the equilibrium
tide just discussed, and the admittance in (A.4) must
be adjusted for the static effects of ocean self-attraction
and yielding of the earth due to the external potential
and change in ocean load, with the real geographical
distribution of the ocean taken into account (Agnew
and Farrell 1978). The ocean self-attraction and load-
ing factors, etc., were all computed by Agnew and Far-
rell (1978) assuming the sea level response to the im-
posed potential is static (mass is conserved). Very
roughly, the yielding of the earth due to the external
potential reduces the equilibrium tide by about 30%,
ocean loading and self-attraction on a completely wa-
ter-covered earth would increase the tide by about 25%,
and consideration of the true distribution of the water
mass generally reduces the equilibrium tide by 0%-—
15% in a spatially dependent manner [thus the longi-
tude dependence explicit in (A.3b)]. Numerical values
of the static tide computed by Agnew and Farrell, based
on the structure of the long-period tidal forcing rep-
resented by the first term in the brackets in (A.1), were
generously provided by Agnew (1978, personal com-
munication ). These static tide estimates were used to
generate amplitude reduction factors ( called “self-con-
sistent correction” in Tables A3 and A4) that were
applied to the equilibrium tide amplitude |#.| to obtain
the self-consistent equilibrium tide amplitude |75.| and
subsequently the admittance amplitude from (A.4).
The phase of 7, equals the phase of 7., so that the
admittance phase ¥, is unaffected by the self-consistent
correction. A positive admittance phase in Tables A3
and A4 and Figs. 1 and 2, indicates that sea level lags
behind the equilibrium tide.

The most critical problem in estimating the ampli-
tudes of the long-period tides is contamination by
“noise,” or rather, the background continuum level of
energy around the tidal frequencies. The continuum
level is generally related to atmospheric forcing away
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from strong boundary current regions (especially, due
to sea level’s static response to surface air pressure fluc-
tuations), is a strong function of frequency, rising with
increasing period, and is a strong function of position,
in accordance with geographical changes in the at-
mospheric forcing and oceanic response. The tides are
deterministic signals so the stochastic noise contami-
nating the Fourier transform tide estimates can be re-
duced by increasing the record length (e.g., Wunsch
1967). In practice, very long, continuous records are
rare, especially in the Pacific. Four- and eight-year rec-
ord lengths were found to be adequate for reducing the
noise level, while providing excellent alignment char-
acteristics.

Alignment of the tidal line on a Fourier harmonic
is almost as important as noise in estimating H, and
the admittance. If the frequency of a tidal line falls
between the harmonics of the Fourier transform, that
tide’s energy is divided among the neighboring Fourier
harmonics, reducing the estimated amplitude of the
tide (from the nearest harmonic). Since the equilib-
rium tide time series is analyzed in a manner equivalent
to the sea level data, to lowest order the effect of the
transform misalignment is canceled out in the com-
putation of the admittance, with one important caveat.
If the tidal line is already weak, the misalignment in-
creases the effect of noise and the accuracy of the re-
sultant admittance estimate is substantially reduced.
Alignment error, unlike noise error, is not a function
of record length. The analyses completed here always
aligned the tide under consideration so that the ex-
pected error from misalignment is less than 2%. The
record lengths of 1462 solar days and 2923 solar days
deserve special mention not only for their alignment
of Mf and Mm, but for their excellent alignment of
almost all of the major diurnal and semidiurnal tidal
constituents. For those tide pairs separated by only 1
cycle per 18.6 years (such as Mf and Doodson number
075565 in Table A2), the larger component was
aligned, although an argument can be made for locating
the Fourier harmonic between the two tides.

Confidence intervals are essential to the interpreta-
tion of the estimates of tidal amplitude, phase, and
admittance. Assuming the noise has approximately a
normal probability distribution and has constant vari-
ance in a small frequency band containing the tidal
line under consideration, then the probability distri-
butions for |n:|, | Y|, and ¥, and so on, are readily
determined following the analysis of Munk and Cart-
wright (1966, appendix B) modified by us to include
the uncertainty in the estimate of the noise variance
around the tidal line. The noise variance was taken to
be an average of the variance at 6 to 12 Fourier har-
monics surrounding the constituent under considera-
tion but outside the frequency band where the forcing
was significant (see Table A2). Tables A3 and A4 and
Figs. 1 and 2 display the 90% confidence intervals es-
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timated as described here. Finally, the tide amplitudes
{nk|, and consequently the admittance amplitudes
| Y|, have been corrected for a small bias due to the
noise variance (Wunsch 1967).

For any given station, data was often available from
several different decades, but usually the data had sig-
nificant gaps. Consequently, tide estimates were made
using pieces of data (typically, with lengths of 1462 or
2923 days) that then were combined with appropriate
scalar or vector averaging (weighted by the number of
years of data per estimate ) to achieve the final estimates
shown in Tables A3 and A4 and Figs. 1 and 2. It was
found that at least 3 (10) years of data were needed to
obtain amplitude estimates of Mf (Mm) that had any
meaningful statistical significance, hence the smaller
number of stations listed in Table A4 than Table A3.
The dynamic tide n — 7, and its confidence limits
shown in Tables A3 and A4 are straightforward der-
vations from the estimates and confidence limits pre-
viously discussed.

It is well known that hydrodynamical nonlinearities
may produce large tidal fluctuations at the sum and
difference frequencies of two or more of the strong
diurnal and semidiurnal tides. Since several of the dif-
ference frequencies exactly equal the frequencies of the
long-period tides studied here, it is necessary to inves-
tigate the possibility that the observed long-period tides
are actually due to nonlinear tides. The strongest non-
linear long-period tide is theoretically the tide due to
the interaction of the strongest daily tides, usually the
semidiurnal M, and S,, which have a difference fre-
quency exactly equal to the weak linear long-period
tide with Doodson number 073555 (MSf in Table A2).
Each linear tide in Table A2 corresponds to the differ-
ence frequency of at least one pair of daily tides that
are weaker than M, and S, so if the observed MSf tide
is not strongly different from its equilibrium value we
may conclude that the rest of the nonlinear long-period
tides are small. The MSf tide has been sought at all the
stations listed in Table A1. Only at Apia was an anom-
alously large (up to 30 times equilibrium) MSf tide
observed. Consequently, the large Mm tide from Apia
listed in Table A4 is considered the result of nonlinear
contamination and is not plotted; the Mf tide from
Apia appears normal but is suspect.

APPENDIX B

Finite-Element Linear Shallow-Water
Time-Stepping Model

Following the finite-clement formulation and nu-
merical manipulation designed by Platzman (1978)
for the linearized shallow-water equations, we con-
structed an explicit time-stepping version of (3.1) that
is flexible in choice of geometry, topography, and res-
olution on the sphere. After rewriting (3.1) in terms
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of a velocity potential ¢ and streamfunction ¢ and ex-
panding in a linear finite-element basis, (3.1) becomes
In matrix notation

BX,=(A—D)X +a, (A.1)

where X is the vector of expansion coefficients for the
finite-element expansion of (7, ¥, ¢). The matrices B
and A correspond, respectively, to symmetric and skew-
symmetric operator matrices derivable from (3.1),
while the vector a is the residual term associated with
the incompleteness of any finite-element basis. The
dissipation matrix B has been coded to include the
effect of only linear bottom drag, the coefficient of
which may be proportional to any power of the ocean
depth.

The time-stepping procedure is as follows: First the
factorization of B = CCT is computed (one time only).
Then we define Y = C'X, so that

CY,=(A-D)X +a. (A2)

After specifying an initial condition Y, = CTX,, Y, is
obtained by forward substitution. The new Y is com-
puted by leapfrog and the new X is then computed by
backward substitution.

We first tested the time-stepping code with neither
damping nor forcing. These tests revealed that an ar-
bitrary initial condition conserved the total energy to
within approximately 1%, depending on the size of the
time step. Second, if the code was initialized with a
normal-mode solution, computed following Platzman
(1978), the evolving solution conserved energy (to
within 1%), oscillated at nearly the computed free pe-
riod, and maintained its spatial integrity.

We next tested the code with no forcing but with
constant bottom friction coefficient r. From the shal-
low-water energy equation, we expect that total energy
will decrease according to the (mode dependent) for-
mula

%(E. + Ey) = —2rE,, (A.3)
where
E = ff > gndxdy, (A4)
basin
E, = ” %h"(uz +v¥)dxdy.  (AS)

basin

For a single normal mode over one wave period, we
can rewrite (A.3) as
9 E 2r(1 VE
Y- _ - a)E,
ot
where E, = aE, E, = (1 — a)E,and E = E, + E,.
The values for F, and E; are easily computed from the

(A.6)
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normal-mode solutions. Gravity normal modes, being
nearly equipartitioned in energy, have a, ~ 0.45, while
planetary-topographic modes, with nearly all their en-
ergy in the rotational velocity field, have a, ~ 0.05.
For several cases of a normal mode as initial condition
with constant damping, we found (A.4) to be accurate
to within 1%.

When leapfrog time stepping was used in tests with
both tidal forcing and dissipation, the well-known 2-
ox waves (e.g., Gray and Lynch 1977; Kinnmark and
Gray 1985) became evident and eventually they dom-
inated the solution, particularly near certain points of
the boundaries. The source for the excitation of the 2-
ox waves became readily evident by solving a one-di-
mensional finite-element shallow-water problem. We
found that, although the physical mode is damped at
the normal rate, the computational mode is forced,
rather than damped, by the linear bottom drag. The
rate of excitation of the computational mode by bottom
drag increases with decreasing length scale (and, hence,
increasing frequency for gravity waves). The question
of why the 2-6x waves near the boundaries were excited
the most strongly was answered by referring to the sig-
nificant paper of Platzman (1981). Platzman showed

that inhomogeneous triangulation can lead to an ab-’

normal branch of the dispersion curve for two-dimen-
sional waves. Since the boundaries of our domain are
necessarily inhomogeneously triangulated, Platzman’s
results suggest that, for the finite-element formulation
here, high-frequency abnormal waves can exist in the
regions of the boundary where inhomogeneous trian-
gulation occurs. Since the nodes of the boundary are
often displaced to conform to observed boundaries,
the distance between boundary nodes is smaller in some
places than in others. Hence, the reason that the
boundary locations correspond to strongest excitation
of the 2-6x waves is because the computational mode
associated with the abnormal wave there is preferen-
tially excited for the smallest spatial scales, namely, the
grid scale. Since the 2-6x noise was computational (due
to centered differencing), we easily suppressed it by
using Euler backward time stepping. We then found
that a weak (amplitude 0.02) Robert—Asselin time filter
(Asselin 1972) effectively extinguished the computa-
tional modes, and was nearly as cost efficient and en-
ergy conserving as the leapfrog time step. The abnormal
waves are relatively small scale, boundary trapped, and
high frequency and thus will not offend our low-fre-
quency solutions.

The code was then further tested by including short-
period forcing with period very close to a known (i.e.,
computed) gravitational mode. The gravity-mode
structure clearly appeared in the response. Next we
compared weakly damped time-stepping results with
solutions obtained from modal syntheses (following
Platzman 1984) and found the solutions to be very
similar. Lastly, we examined strongly damped time-
stepping results with the solutions obtained from modal
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reconstructions with strong damping. As expected, the
results were significantly different due to the expansion
in terms of inviscid or perturbatively viscid modes.

All solutions discussed in the text were forced by an
equilibrium tide with the basin mean removed. The
subjective criteria for convergence of solutions from
cycle to cycle were visual similarity of solutions and
the basinwide energy diagnostics. To encourage more
rapid convergence of the weakly damped solutions, we
incrementally decreased the damping coefficient from
strong values at the commencement of the run to the
desired value for the final few cycles.
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