Spectroscopy

Biogeochemical Methods
OCN 633

Rebecca Briggs
Definitions of Spectrometry

Defined by the method used to prepare the sample

1. Optical spectrometry
 • Elements are converted to gaseous atoms or elementary ions via atomization

2. Mass spectrometry
 • Sample is also atomized by also converted to positive ions and separated based on mass-to-charge ratio

3. X-ray spectrometry
 • Atomization not required, analysis based on chemical reaction of sample
Definitions of Spectrometry

Measurement is conducted using ultraviolet/visible absorption, emission, or fluorescence

1. Optical spectrometry
 • Elements are converted to gaseous atoms or elementary ions via atomization

2. Mass spectrometry
 • Sample is also atomized by also converted to positive ions and separated based on mass-to-charge ratio

3. X-ray spectrometry
 • Atomization not required, analysis based on chemical reaction of sample

1. Optical spectrometry
 • AA
 • ICP OES
 • FT-IR

2. Mass spectrometry
 • ICP MS
 • GC MS
 • LC MS

3. X-ray spectrometry
 • Spectrophotometer
 • Colorimeter
 • Fluorometer
Definitions of Spectrometry

Defined by the measurement/detector

Measurement is conducted using ultraviolet/visible absorption, emission, or fluorescence

Spectrometric Methods of Analysis

Absorption Spectrometry
Emission Spectrometry
Definitions of Spectrometry

Definition by measurement/detector:

Measurement is conducted using ultraviolet/visible absorption, emission, or fluorescence

Spectrometric Methods of Analysis

Absorption Spectrometry

Emission Spectrometry
Definitions of Spectrometry

Absorption Spectrometry
1. Molecular UV Absorption Spectrometry
2. Molecular Visible Absorption Spectrometry
3. Infrared Spectrometry
4. Nuclear Magnetic Resonance (NMR)
5. Atomic Absorption Spectrometry

Emission Spectrometry
1. Fluorimetry
2. Emission Spectrography (Arc/Spark Emission Spectrometry)
3. Atomic Emission Spectrometry (Flame photometry)
4. Atomic Fluorescence Spectrometry
5. X-ray Fluorescence Spectrometry
6. Radiochemical Methods of Analysis
Definitions of Spectrometry

Many optical instruments share similar design

1. (1) stable radiation source
2. (2) transparent sample holder
3. (3) wavelength selector
4. (4) radiation detector
5. (5) signal processor and readout
Electromagnetic radiation is a type of energy that is transmitted through space as a transverse wave at enormous velocity.

It takes numerous forms known as electromagnetic spectrum. The electromagnetic spectrum include gamma ray, X-ray, ultraviolet (UV), visible, infrared (IR), microwave and radio-wave radiation.

1- Wave Properties
The wave is described either in terms of its wavelength (λ), the distance between successive maxima or minima of a wave (nm), or in terms of the frequency (ν), the number of oscillation of the field per second.

The velocity of light, c, is given by the equation:
$$C = \nu \lambda$$
Wavelengths used in spectroscopy:

- Ultra-violet: 175 – 380 nm
- Visible light: 380 – 900 nm
- Infrared: 900 – 3300 nm
Spectrophotometric analysis

- Spectrophotometric techniques are used to measure the concentration of solutes in solution by measuring the amount of light that is absorbed by the solution in a cuvette placed in the spectrophotometer.

- The spectrophotometer can measure the amount of light or electromagnetic radiation (of certain frequency) transmitted or absorbed by the solution.
Absorbance Scanning

- Shows bands of light absorption by pure compounds
- Use to identify peaks for quantitation
Colorimetric Analyses

- Analyte (chemical species to be measured) + reagent → colored product
- Measure color intensity (absorbance) of colored product to determine the analyte’s concentration
Absorbance (A) ≡ log I₀ / I

(i.e., the smaller “I” is, the larger the absorbance)

Beer’s Law: A = a · b · c

a = absorptivity (cm⁻¹ M⁻¹)
b = pathlength (cm)
c = concentration (M)
Beer’s Law

• Concentration difference result in proportional absorbance change
Linear standard curve indicates conformity with Beer’s Law

- Prepare standards of known concentration
- Measure absorbance at λ_{max}
- Plot A vs. concentration
- Obtain slope
- Use slope (and intercept) to determine the concentration of the analyte in the unknown
Quantitative methods:

Specificity: the ability of a method to distinguish the analyte from others in the sample. Check resolution.

Linearity: How well a calibration curve follows a straight line. Square of correlation coefficient.

Accuracy: nearness to truth, check with different methods and spiking.

Precision: reproducibility, standard deviation.

Range: concentration interval over which linearity, accuracy and precision are all good.

Detection Limits: defined by signal detection limit: 3s (standard deviation), minimum concentration: 3s/m, m is the slope of the linear curve.
Definitions of Spectrometry

Many optical instruments share similar design

1. (1) stable radiation source
2. (2) transparent sample holder
3. (3) wavelength selector
4. (4) radiation detector
5. (5) signal processor and readout
Radiation source

Single – beam, double-beam in space, double-beam in time and multichannel detectors

Deuterium or hydrogen arc lamp
Low pressure gas discharge light source, used when a full spectrum source of illumination in the UV region is needed (160-375nm)

Tungsten filament lamp
Used for the visible region (350-2500nm). Voltage to lamp must be stable for energy output to be stable, thus constant voltage transformer is needed.
Sample holders: Cuvettes

Standard 1-cm path

Cylindrical

Micro cells

5-mm path 1-mm path 20-mm path

Flow

Thermal
Wavelength Selectors

Monochromator
- Prism monochromator
- Grating monochromator
- Echelle grating
- Concave grating
- Holographic grating

Filter
- Interference filters
- Interference wedges
- Absorption filters

![Monochromator Diagram](image1)

![Filter Diagram](image2)

![Absorption Filters](image3)
Radiation detector

Photomultiplier
A vacuum phototube that is sensitive to detector of light in the UV, vis, and IR ranges. Multiplies the current produced by light in multiple dynode stages, enabling individual photons to be detected when the incident flux of light is low.

Linear Photodiode array
Multichannel photon detector, comprised of small silicon photodiodes, capable of measuring all elements of a beam of dispersed radiation.

Charge-coupled devices
Similar to a diode array detector but consist of photo capacitors instead of diodes.
Conventional UV-Vis Spectrophotometer

- Uses prism or grating to select one wavelength at a time
- A wavelength scan requires one to several minutes
Diode Array UV-Vis Spectrophotometer

- Diode array photo-sensor eliminates need for moveable wavelength-dispersive grating or prism
- Much more rugged – fewer moving parts
- Nearly instantaneous wavelength scans
- Not good very very detailed (high resolution) wavelength scans
Dipping Colorimeter

- Uses filter instead of prism/grating for wavelength selection
- Relatively low sensitivity
- High ease-of-use – just dip it in
- Relatively cheap
- Ok for estuarine nutrient analyses