A deeper look at the effects of growing CO, and climate
change on the ocean
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Student Learning Outcomes (SLOs)

At the completion of today’s section, students should be able
to:

1. Know the basic definition of Revelle Factor and how it will
change with rising CO,

2. Describe the impact of rising CO, on calcifying organisms
3. List some of the concerns for OA on marine ecosystems

4. Understand how IPCC views risk for climate change and OA




Carbon Inventories of Reservoirs that Naturally Exchange Carbon
on lime Scales of: Decades to Centuries
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e Oceans contain “90% of carbon in this 4 component system

e anthropogenic component is difficult to detect in the ocean



Ocean Carbon Chemistry
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Ocean Carbon Chemistry

Review
COygas) 280 piatm 560 piatm
O umol Kg= IS pmol Kg:=

0)

1617 umol kg=| 1850 umol kg

-“?(‘}

268 uymol kg=| 176 umol ko=
1893 umol kg*| 2040 pmol kgt

CO, + COZ €32 HCO, 100% ApCO,=> 8% ATCO,
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Global Distribution of Surface Revelle Factor
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Egleston et al. (GBC, 2010) define six new buffer

factors, each ofiwhich can e explicitly: calculated:
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All Buffer Factors show a minimum where DIC=Alk
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Higher buffer factor means larger DIC

Increase for the same amount ofi CO; rise
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Higher buffer factor means larger DIC

Increase for the same amount of CO; rise
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Higher buffer factor means larger DIC

Increase for the same amount of CO; rise

Y DIC (pmol/kg)

Preindustrial

Modern

[ =
.2X CG,
60% drop in uptake
1 1 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7T & 9 10 11 12

ADIC for 10patm fCO, increase




Higher buffer factor means larger DIC

Increase for the same amount of CO; rise
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Ocean Acidification: Fundamental Chemistry
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CO, is an acid gas so the addition of 26 million tonnes of carbon
dioxide to the ocean every day is acidifying the seawater...we call
this process “ocean acidification”

Phenol Red is a pH sensitive Dye

Q: How would the color change if someone breathed into water with Phenol Red dye in it?

Q2: Would fresh water and seawater react the same way?



Proportion of the concentrations
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Rising Ocean CO, = Decreasing Oceanic pH

CO, Time Series in the North Pacific
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Ocean Acidification: Historical Perspective

* For the last 20 Million years the pH of the ocean has remained relatively stable
between approximately 8.1 and 8.2

* The uptake of anthropogenic CO, has lowered ocean pH by 0.1, representing a
28% increase in acidity over the last 200 years.

* The estimated drop in pH by the end of the century is not only larger than seen
over the last 20 million years, but is also at least 100 times faster than in the past.
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Ocean Acidification: Fundamental Chemistry

carbon 0N hydrogen bicarbonate
dioxide acid ion ion
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e More than 99% of the H* formed consume CO;% to form HCO;’
making it more difficult for organisms to form their shells.




Ocean Aciditication: Funaamental Chemistry.
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Corals show: a strong response to
high CO,/ low saturation state
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Multiple Stressors on the Great Barrier Reef
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The Great Barrier Reef has seen a 50% reduction in coral cover over
the last three decades iDCC
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Shellfish are a big business along the US West Coast

Commercial oyster Industry is $100M/yr in Pacmc NW (3000 Jobs)
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But starting in 2005 there was no natural recruitment of oysters in WA
state for a decade in part due to ocean aC|d|f|cat|on

Corrected version

Oysters in deep trouble: Is
Pacific Ocean's chemistry
Killing sea life?

By Craig Welch
Seattle Times environment repaorter

WILLAPA BAY, Pacific County &€”
The collapse began rather unspectacularly.

In 2005, when most of the millions of Pacific oysters in
this tree-lined estuary failed to reproduce, Washington's
shellfish growers largely shrugged it off.

STEVE RINGMAN / THE SEATTLE TIMES
Ovysters' failure to reproduce will lead workers like
MNorthern Oyster Co.'s Gildardo Mendoza to collect far
more of their product from a state "oyster preserve” in
Willapa Bay. Pacific oysters haven't successiully
reproduced in the wild since 2004.



conditions linked
1@ 1GW, ecrlitment

By turning off the
water flow when the
water showed low
pH values, the
hatcheries had their
best year since the
collapse saving the
industry ~$35M in
2010.

Figure courtesy of Alan Barton
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Distribution of Societally Important Calcium Carbonate Species

Change in pH (at 936 patm atmospheric CO,) Catch rate (tonnes km) Cold-water corals  Warm-water corals
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Concern for IMarine Organisms and Ecosystems
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How does IPCC evaluate how. things

might change in the future?

Data: CDIAC/GCP/IPCC/Fuss et al 2014 . .
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® ThelPCC has been associated with four generations of emission scenarios
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® Source: Peters et al. 2012a; CDIAC Data; Global Carbon Project 2013 IDCC
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PROJECT

In thelead up tothe IPCC’s Sixth Assessment Report new scenarios have been developed to
more systematically explore key uncertaintiesin future socioeconomic developments
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Five Shared Socioeconomic Pathways (SSPs) have been developed to explore challenges to adaptation and mitigation.
Shared Policy Assumptions (SPAs) are used to achieve target forcing levels (W/m2).

Source: Riahi et al. 2016; [IASA SSP Database; Global Carbon Budget 2016



http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=welcome
http://www.globalcarbonproject.org/carbonbudget/

Assessing Risk in AR5
Key. risks are those relevant to article 2, UNEFCCC

= dangerous anthropogenic Interference with the climate system™
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Risks involving the oceans, a global perspective.:...is there risk reduction by adaptation?

THE OCEAN
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Where do we go from here?
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