A deeper look at the carbon dioxide cycle, greenhouse gases,
and oceanic processes over the last 200 years

OCN 623 — Chemical Oceanography
17 April 2018

Reading: Libes, Chapter 25



Student Learning Outcomes (SLOs)

At the completion of today’s section, students should be able
to:

1. Know what affects CO, variability in the atmosphere

2. Describe how has global carbon cycle changed over the past
two centuries

3. Describe the long-term fate of anthropogenic Carbon
4. ldentify the role of the ocean in climate change

5. implications of climate change on society




How does CO, affect climate?

If mo hat aes m e tha ca eape s lnred
(IR) rays, the Earth gets warmer.

1. Sunlight 2. Earth’s surface radiates 4. When greenhouse gases—
penetrating the heat to the atmosphere, and and heat—build up, occean
atmosphere some escapes into space. surface temperatures rise
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CO, and other greenhouse gases absorb IR, so an increase in CO, causes an
Increase in temperature.

warms and the tem perature of the
Earth’'s surface. I e e e atmosphere increases.
atmosphere absorb some
of the heat and trap it near
Earth's surface.




Climate Change versus Glebal Warming
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\Webster:

“Climate: the average condition of the weather: at a
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So “climate” refers not to the weather today or this week or this
year, but rather to the range of weather (including hot and cold
years, wet and dry years) that is typical of each region.

*Climate change is a natural process that has happened for billons of years
Human activities are changing the rate of climate change
«Climate change includes many more effects than warming



Are glebal temperatures linked to atmoespheric CO, ?

\ostoklce Core CO; Concentration and Temperature Variation Record

Carbon dioxide and the temperature of our planet
w0 from 800,000 years ago until the present day

375 /

The year “0” corresponds to the year 2020 In 2014, CO, is about 400 ppm
Carbon dioxide concentrations are in units of parts per million

Temperature is the difference compared to the average temperature of the past 1000 yearsin units of degrees Celsius

Figure compiled from the following data sources

325 Ice core records from Antarctica: http://www.ncdc.noaa.gov/paleo/icecore/antarctica/domec/domec epica data.html

Current carbon dioxide measurements from NOAA: http://www.esrl.noaa.gov/gmd/ccgg/trends/

Current temperature from NASA: http://data.giss.nasa.gov/gistemp/graphs v3/
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IPCC: “Global mean surface temperature has increased more than 0.5°C since the

beginning of the 20th century, with this warming likely being the largest during any
century over the past 1,000 years for the Northern hemisphere.”




What Drives Climate Change?

400 T Atmospheric CO, at Mauna Loa Observatory
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Recent atmospheric carbon dioxide levels

Daily CO;, at Barrow, Mauna Loa, Samoa, South Pole
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Atmospheric CO, levels have risen from ~315
ppmv in 1958 to 404 ppmv in 2017 (~28%)



Rate ofi increase of atmospheric CO5 is not constant

Annual Mean Global Carbon Dioxide Growth Rates (NOAA/ESRL)
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Varies with: Economic activity and natural sinks/sources
(El Nino, droughts, fires, Volcanic activity)



Carbon Inventories of Reservoirs that Naturally Exchange Carbon
on lime Scales of: Decades to Centuries

Ocean C,.. =0.4%

(OceanC,.<1.5%
of upper 1000 m)

Ocean
38,155 PgC

Average stocks for 2000-2009

e Oceans contain “90% of carbon in this 4 component system

e anthropogenic component is difficult to detect in the ocean



IPCC global carbon cycle and the flows of carbon
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Preindustrial C cycle was from the Ocean to the Land
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Today we have reversed that flow
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Budget Changes Over Time

Averages for last decade (2006-2015)
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Source: CDIAC; NOAA-ESRL: Houghton et al 2012; Giglio et al 2013: Le Quéré et al 2016; Global Carbon Budget 2016



http://cdiac.ornl.gov/trends/emis/meth_reg.html
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http://onlinelibrary.wiley.com/doi/10.1002/jgrg.20042/abstract
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http://www.globalcarbonproject.org/carbonbudget/

Budget Changes Over Time

Averages for last decade (2006-2015)
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Budget Changes Over Time

Averages for last decade (2006-2015)
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Budget Changes Over Time

Averages for last decade (2006-2015)
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What are the long-term consequences of fossil fuel burning?
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97% of Climate Scientists Agree

ipCcC
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Warming of the climate systemis
unequivocal, and since the 1950s,
many of the observed changes are
unprecedented over decades to
millennia.

Human influence on the climate
system is clear. It is extremely likely
that human influence has been the
dominant cause of the observed
warming since the mid-20th
century.

259 authors selected from 39 countries
Reviewed by 1089 experts



Increasing Confidence With Each

Assessment
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What causes climate change?

Radiative Forcing relative to 1750 (W m2)
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2016 was Warm

Global surface temperature in 2016
was the highestin the period of
Instrumental measurements. 2016 was
+1.26° C (~2.3° F)warmerthanin

the base period.
2016 Annual Mean Relative to 1880-1920

-6 -2 2 6
Temperature Anomaly (* C)

Source: Hansen et al.
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Global Energy Storage
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Global Energy Storage
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Loss of Sea Ice In the Arctic

2016 Arctic sea ice summer minimum

Sep 10
median extent
(1981-2010)
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North Pacific

Happening in a Few places
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n

T(°C)

—

N o N A

OHC (10%))

1910

-
w
ot
o

OHC (10%J)
on &

n

1960 201

Some People Think That Changes Are Only

Sea Ice (10°Km?)
A B o wm

Land Surface

T(°C)
= -

Global Averages

Land and Ocean Surface

Ocean Heat Content

-
i=1

o

) OHC (10%))

-
1910 1960 2010

1810

1960

== Observations

2010 Europe

n

T(°C)

L=
T(C)

o L+

T(°C)

1910 1960

0 North Atlantic " , ’ . ) 0
S ;| 1910 19e0 2010 _
22r . 5 Africa o0 1960
oot
' Saf Sl
L 8 -
1910 2010 o .—‘-4
o South America S e
South Pacific o10 1980 2010
i g'r South Atlantic g—risniOre
g - i -0 A g 4F g : L
B 2 — i
E _1 L L 1 ‘I:' St |
: 1910 1960 2010 @ O} -né i "'d
1910 2010 52t 52 B e )
AntarcHo 1910 1960 2010 191081880 R0
< . Southern Ocean
E2r Antarctica
- 2 S 4
ot PR Tof |
el 5 . Sol ek
ol ﬁ
&_4 i Il o-2 ", 1 1 1
1910 1960 E I —

2010

1910 1960 2010

Australia

-1
1910 1960 2010

B Models using only natural forcings
Models using both natural and anthropogenic forcings




Climate Change Impacts on Human Health

Civil conflict Storms and flooding  Disease transmission Heat Air pollutants Food supply

Malnutrition

liness, injury, and death



Climate
Driver

Health
Outcome

Impact

The Impacts of
Climate Change
Show Up In
Many Ways

The World Health
Organization estimates that
over the last two decades
climate change has been
responsible for an average of
150,000 deaths per year and
they expect that rate to double
over the next two decades!

Extreme
Heat

=29

=0

Outdoor
Air Quality

Q.

Flooding

Vector-Borne
Infection
(Lyme Disease)

4

Water-Related

Infection
(Vibrio vulnificus)

Food-Related
Infection
(Salmonelfa)

%

Mental Health
and Well-Being

More frequent,
severe, prolonged
heat events

Increasing
temperatures
and changing
precipitation

patterns

Rising sea level and
more frequent or
intense extreme

precipitation,
hurricanes, and
storm surge events

Changes in
temperature
extremes and
seasonal weather
patterns

Rising sea surface
temperature,
changes in precipi-
tation and runoff
affecting coastal
salinity

Increases in
temperature,
humidity, and
season length

Climate change
impacts, especially
extreme weather

Elevated
temperatures

Worsened air quality
(ozone, particulate
matter, and
higher pollen
counts)

Contaminated water,

debris, and disruptions

to essential
infrastructure

Earlier and
geographically
expanded tick activity

Recreational
water or shellfish
contaminated with

Vibrio vulnificus

Increased growth
of pathogens,
seasonal shifts in
incidence of
Salmonella
exposure

Level of exposure
to traumatic events,
like disasters

Heat-related death
and illness

Premature death,
acute and chronic
cardiovascular and
respiratory illnesses

Drowning, injuries,
mental health
consequences,
gastrointestinal and
other illness

Lyme disease

Vibrio vulnificus
induced diarrhea
& intestinal iliness,
wound and blood-
stream infections,
death

Salmonella
infection,
gastrointestinal
outbreaks

Distress, grief,
behavioral health
disorders, social

impacts, resilience

Rising temperatures will lead to an
increase in heat-related deaths
and illnesses.

Rising temperatures and wildfires
and decreasing precipitation will
lead to increases in ozone and
particulate matter, elevating the
risks of cardiovascular and
respiratory illnesses and death.

Increased coastal and inland
flooding exposes populations to a
range of negative health impacts
before, during, and after events.

Ticks will show earlier seasonal
activity and a generally northward
range expansion, increasing risk
of human exposure to Lyme
disease-causing bacteria.

Increases in water temperatures
will alter timing and location of
Vibrio vulnificus growth, increas-
ing exposure and risk of water-
bomne iliness.

Rising temperatures increase
Salmonella prevalence in food;
longer seasons and warming
winters increase risk of exposure
and infection

Changes in exposure to climate-
or weather-related disasters
cause or exacerbate stress and
mental health consequences,
with greater risk for certain
populations.
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