Dissolved Gases other than Carbon Dioxide in Seawater

OCN 623 – Chemical Oceanography

Reading: Libes, Chapter 6 – pp. 147-158

Outline

- 1. Basic concepts
 - Gas laws
 - Gas solubility and air-sea equilibrium
- 2. Dissolved oxygen variability in the ocean
- 3. "Unusual" gases in the ocean
 - Hydrogen sulfide
 - Methane hydrates

ln	Gas Solubility - Empirical Data $\ln C_{G} = A_{1} + A_{2}(100/T) + A_{3}\ln(T/100) + A_{4}(T/100) + S(B_{1} + B_{2}(T/100) + B_{3}(T/100)^{2})$													
		w	here: T = /	Absolute te	emperature	(°K)								
			S =	Salinity										
Gas	iolubility of gases in sea water with the constants for equation (8.11) to yield c ₀ ⁻¹ in µmol kg ⁻¹ (values in parentheses yield cm ³ l ⁻¹) relation to air at 760 mm Hg total pressure at 100% relative humidity. Source of Gas experimental A, A, A, A, B, B, B,													
	data						-							
N ₂	Douglas (1964, 1965) Murray <i>et al.</i> (1969)	- 173·2221 (- 172·4965)	254-6078 (248-4262)	146-3611 (143-0738)	-22·0933 (-21·7120)	-0-054052 (-0-049781)	0-027266 (0-025018)	-0-0038430 (-0-0034861)						
0,	Carpenter (1966) Murray and Riley (1969)	- 173-9894 (-173-4292)	255-5907 (249-6339)	146·4813 (143·3483)	- 22·2040 (- 21·8492)	-0.037362 - (-0.033096)	0·016504 (0·014259)	-0-0020564 (-0-0017000)						
Ar	Douglas (1964, 1965) Weiss (1971a)	- 174·3732 (- 173·5146)	251-8139 (245-4510)	145-2337 (141-8222)	- 22·2046 (- 21·8020)	-0-038729 (-0-034474)	0-017171 (0-014934)	-0.0021281 (0.0017729)						
Ne	Weiss (1971b)	-166·8040 (-160·2630)	225·1946 (211·0969)	140-8863 (132-1657)	-22.6290 (-21.3165)	-0-127113 (-0-122883)	0-079277	-0-0129095 (-0-0125568)						
He	Weiss (1971b)	- 163·4207 (-152·9405)	216-3442 (196-8840)	139·2032 (126·8015)	- 22·6202 (- 20·6767)	-0-44781 (-0-040543)	0-023541 (0-021315)	-0.0034266 (0.0030732)						

Table	6.2 NAEC	s of Gases	in Seawat	er at a Sali	nity of 35.0).				
T(°C)	0	5	10	15	20	25	30			
		Saturatio	n Water V	apor Press	sure $\left(\frac{P_{H_20}}{P_T}\right)$	×100)				
	0.6%	0.8%	1.2%	1.6%	2.3%	3.1%	4.1%			
	Concentrations in mmol/m ³									
N ₂	635.7	565.6	508.3	460.7	420.4	385.7	355.1			
02	355.6	313.2	278.7	250.0	225.9	205.1	186.9			
CO2	23.37	19.26	16.09	13.6	11.61	10.00	8.66			
Ar	17.01	14.98	13.33	11.96	10.81	9.81	8.93			
			Concentra	ations in μ	.mol/m ³					
N₂O	14.84	12.16	10.09	8.46	7.16	6.10	5.23			
Ne	8.45	8.03	7.66	7.33	7.04	6.79	6.56			
Kr	4.31	3.68	3.18	2.78	2.44	2.16	1.93			
CH₄	3.44	3.00	2.64	2.35	2.12	1.92	1.76			
He	1.81	1.76	1.73	1.68	1.67	1.62	1.62			

8) % Saturation
$$_{G_{SW}} = \frac{P_{G(seawater)}}{P_{G(atmosphere)}} \cdot 100 \% = \frac{C_G}{NAEC} \cdot 100 \%$$

Examples:
100% Saturation: Gas and liquid phases in equilibrium
 $(P_{G(seawater)} = P_{G(atmosphere)})$
<100% Saturation: Gas transfer into solution (undersaturated)
 $(P_{G(seawater)} < P_{G(atmosphere)})$
>100% Saturation: Gas transfer out of solution (supersaturated)
 $(P_{G(seawater)} > P_{G(atmosphere)})$

- Energy source: Blake Plateau (off SE U.S.) alone contains enough methane to meet US natural gas needs for 100 years
- Methane is a potent greenhouse gas
- Climatic change or tectonic events may lead to catastrophic methane release via positive feedback:

 $_{\nearrow}$ Increased global temp causes hydrate decomposition $_{\square}$

Release of methane to atm increases global warming

