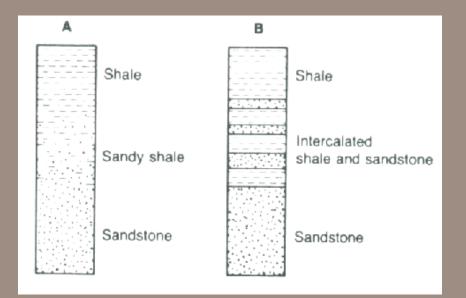


Outline

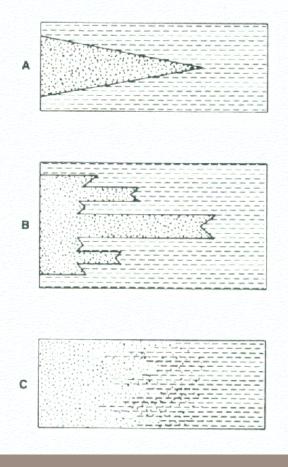
- Underlying principles, definition of terms
- Lithostratigraphy & sedimentary facies
- Ocean transgression-regression cycles
 & Phanerozoic global sea level curves
- Correlation & Biostratigraphy
 - Paleobiogeography
 - Biocorrelation
- Chronostratigraphy & Geologic Time Scales

Underlying Principles of Stratigraphy

- Original horizontality (Nicolaus Steno, 1669)
- Superposition (N. Steno, violated by impact ejecta)
- Original continuity (N. Steno)
- Faunal succession (William Smith, 1796)

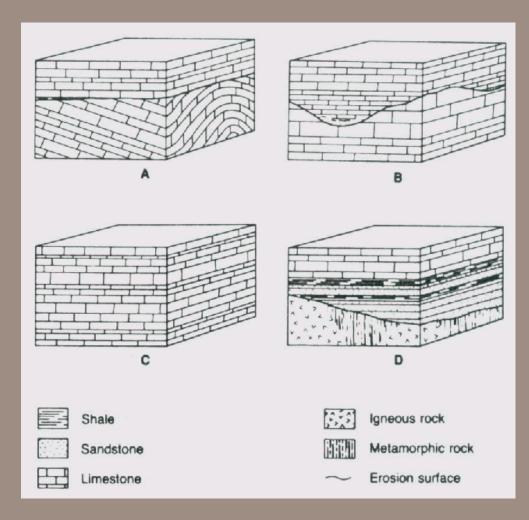

• Related fundamentals:

- Uniformitarian Concept (James Hutton, 1785)
- <u>Catastrophism</u> (Flood) Concept (Georges Cuvier, 1827)
- Evolution Concept (Charles Darwin, 1859)

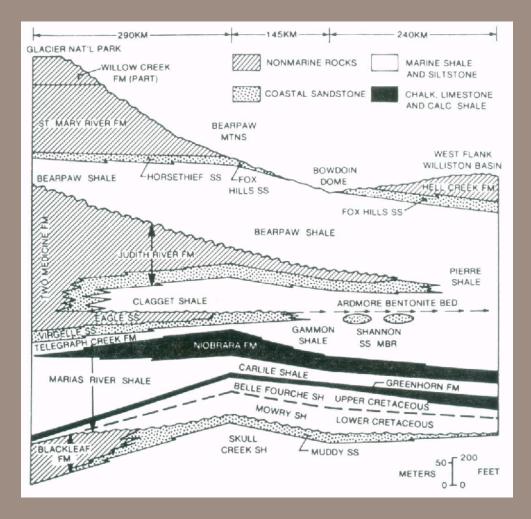

Stratigraphic Terms

Stratigraphic categories	Principal stratigraphic units	
Lithostratigraphic	Group formation member bed	
Biostratigraphic	Biozones: Assemblage-zones Range-zones Acme-zones Interval-zones Other kinds of biozones	Equivalent geochronologic units
Chronostratigraphic	Erathem System Series Stage Chronozone	Era Period Epoch Age Chron

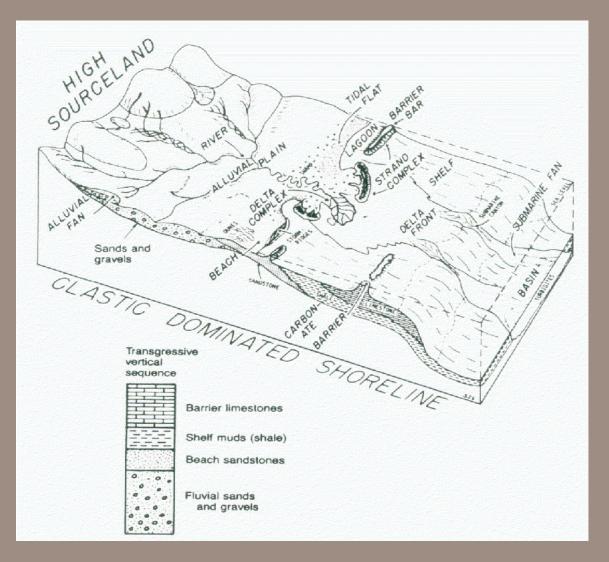
Definition of Beds, Contacts (a.k.a. Conformable Strata)



Vertical Contacts


Horizontal Contacts

Types of Unconformities


- a. Angular Unconformity
- b. Disconformity
- c. Paraconformity (obscure)
- d. Nonconformity

Sedimentary Facies

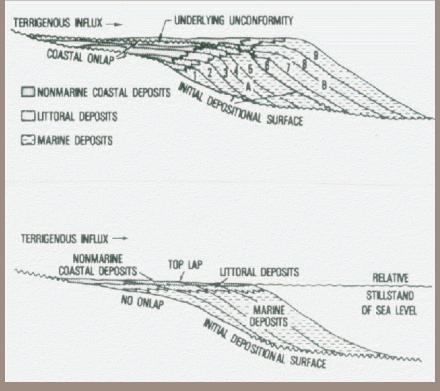
<u>Definition</u>: "One or any two or more different sorts of deposits which are partly or wholly equivalent in age which occur side-by-side or in somewhat close neighborhood" -- Moore (1949)

Sedimentary Facies (Cont.)

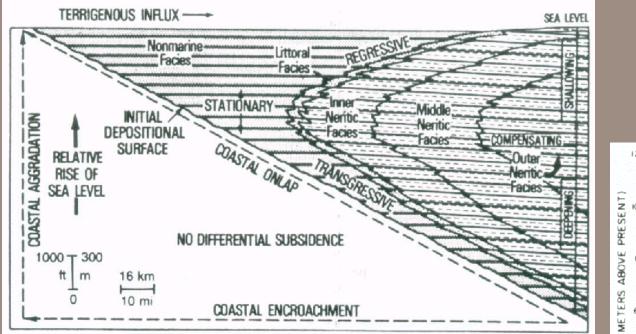
Walther's Law:

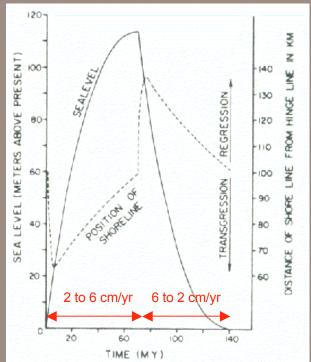
"Those facies and faciesareas can be superimposed primarily which can be observed beside each other at the present time" -- Walther (1884)

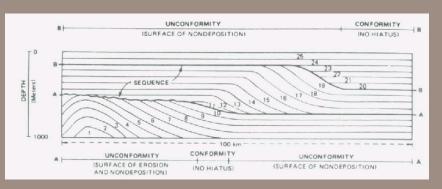
Application of Facies Concept to Reconstruct Ancient Environment


REGRESSIVE MARINE MODEL									
Grain	Grain size Sorting Lithology Structures and Geometry								
Tidal flat	Fine- medium	Poor-fair	Silt-clay Sand	Laminated, ripple cross-beds scour & fill, mudcracks raindrop-scuffed ripples	\bigcirc				
Lagoon- bay	Fine O	Poor	Silt-clay (sand?)	Bored & churned plant remains					
Dune	Fine- medium	Very good	Sand	Festoon & planar cross-bedding					
Littoral	Coarse			Swash & rill marks parallel to wavy bedding	\bigcirc				
Wave zone	0		-	Parallel bedding ripples	\bigcirc				
Shoreface	o			Graded bedding current structures thin bedded	$\langle \rangle$				
Below wave zone	Very fine o	Poor	Clay-silt	Bored & churned laminated (?)	\bigcirc				

Example of sediments deposited during a regression (drawback) of the sea


Transgression-Regression of the Sea Recorded in Coastal Sediments


Transgression, regression & stationary shorelines--effects on coastal sediments & added complexity of variable river flux. <u>Coastal Onlap & Top Lap</u>: rapid sea level fall & standstill examples.


Coastal "Sediment Wedge" from a Single T/R Cycle

Proposed long-term mechanism: Spreading Rate Changes => Sea level Fluctuations (Pitman, 1968)

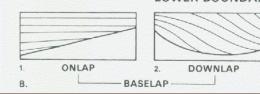
Depositional Sequences

Get Oil?

Illustration of concept, with beds numbered

Large-scale coastal sediment sections defined by seismic stratigraphy

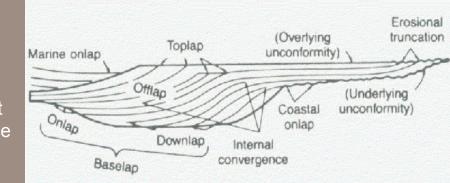
UPPER BOUNDARY



	777	
	//	1
-	///	
~	///	
	TODIAD	
2	TOPLAP	

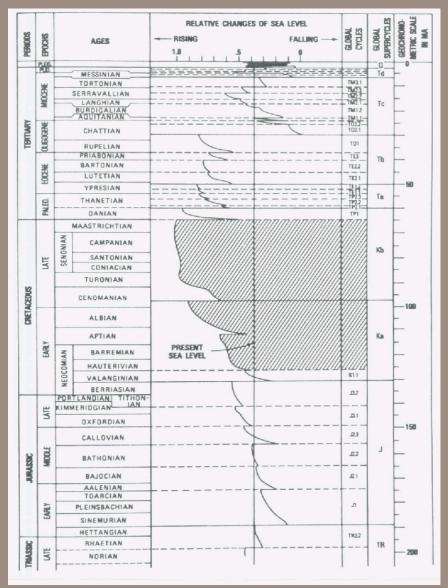
2.2	CONCORDANCE
2	
2	
14	

Α.


LOWER BOUNDARY

CONCORDANCE

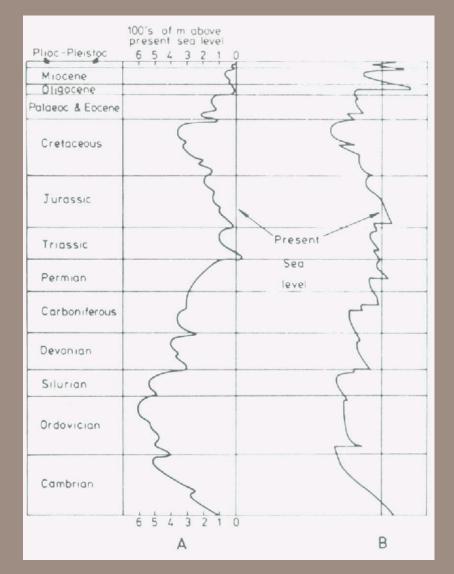
3.


Relations of strata to upper (a) and lower (b) boundaries

Terminology of unconformable boundaries that define sequence

From: Boggs (1987)

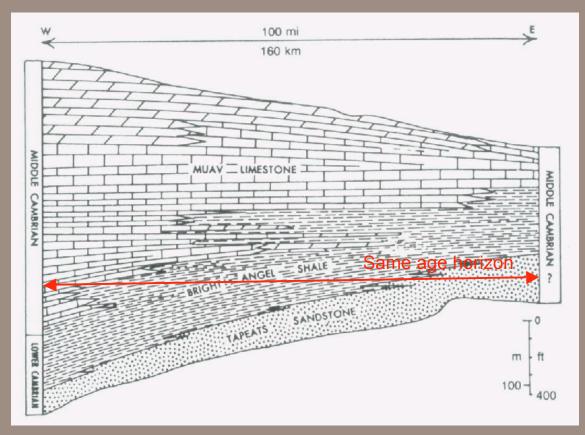
Vail Sea level Curve based upon Seismic Stratigraphy



The interplay of sea level, subsidence & sediment supply determines the sediment layer configurations, <u>and vice versa</u>.

Thank you Chevron Research!

P. Vail et al. (1977)


Comparison of Vail et al. and Hallam Sea level Curves

A. Hallam (1984)B. Vail et al. (1977)

Note Hallam's curve is much smoother than Vail et al. curve, which does not account for regressive sea erosion => unconformities.

Lithostratigraphic Correlation

Changes in age of the Cambrian Tapeats Sandstone across the Grand Canyon, AZ (from: Boggs, 1987)

Definitions:

- 1. Lithocorrelation = similar lithology
- 2. Biocorrelation =

similar fossil content

3. Chronocorrelation = same age

Lithostratigraphic Correlation, cont.

_	Formal	Pi		
Correlation		Arbitrary	Syste	ematic
leri		Monothetic	Polythetic	
ວິ	Indirect	Visual comparisons	Numeric equivalence	Statistical equivalence
,	Watching		Comparisons o Istratigraphic u	

Summary of Methods: Formal is best, but not always achievable!

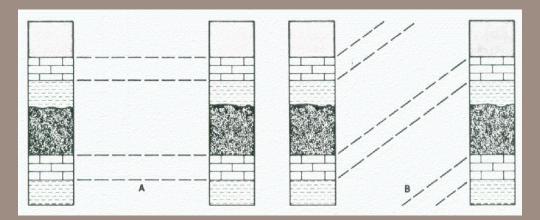
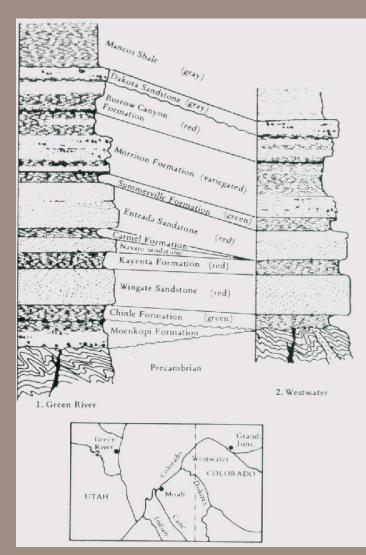
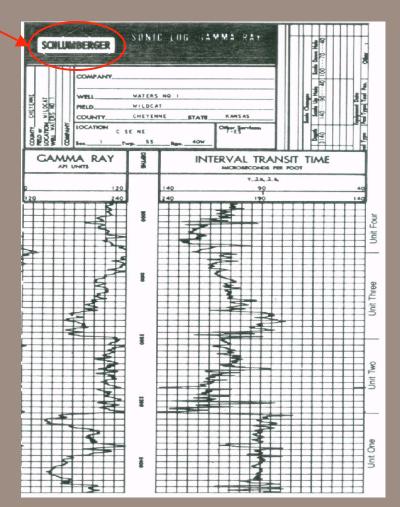



Illustration of difference between matching (a) versus correlation (b) of similar-appearing strata

Lithostratigraphic Correlation, cont.



Example of strata correlation among distinctive rock "outcrop" units

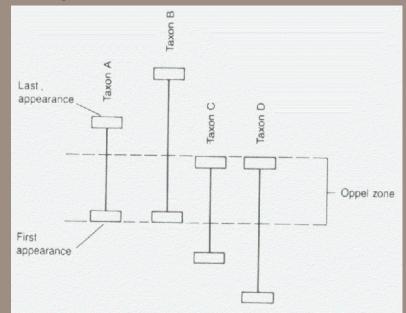
Colorado Plateau, W. USA

Lithostratigraphic Correlation (cont.)

Hot stock tip!

Example of <u>subsurface</u> strata correlation based on well logs

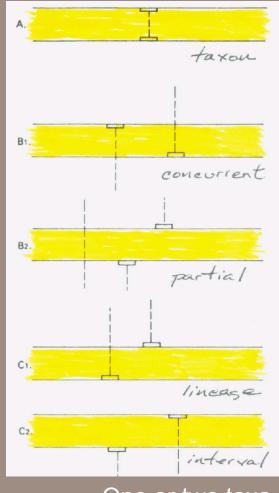
<u>Gamma ray</u> = radioisotope beam attenuation by H_2O => porosity data


<u>Interval Transit Time</u> = sound attenuation => rock properties, e.g., density

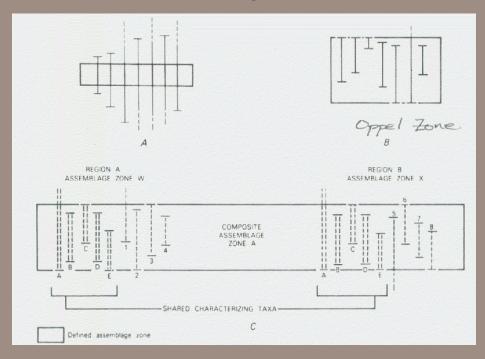
Biostratigraphy

Biostratigrap units		Lithostratigraph	ic units
ZONE		MEMBER	FORMATION
Ophile1a	2	Oneota Dolomite	PRAIRIE DU CHIEN FORMATION
- opinioro	Ħ		JORDAN SANDSTONE
Saukia		Lodi Siltstone Block Earth Dolomite	ST. LAWRENCE FORMATION
Prosaukia	{	Reno Sondatone	FRIMANIA
Plychaspią		Tomoh Sandstone	FRANCONIA
Conasp/s		Birkmose Sandstone	
Elvinio		Woodhill Sandstone	
Aphelospis		Galesville Sandstone	
Crepicepholus		Eau Claire Sandstone	DRESBACH
Cedaria		Mt. Simon Sandstone	
	win	30 m 100 ft	ST. CLOUD GRANITE

Bio- and Litho-stratigraphic units are not necessarily the same!

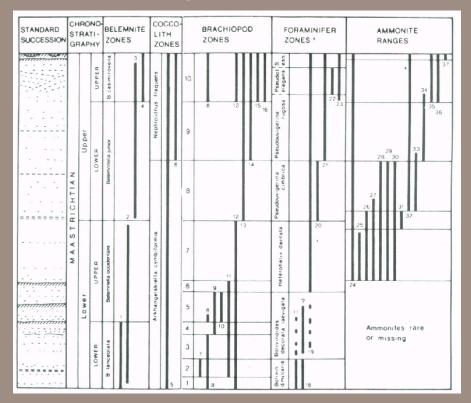

Stage & Zone Concepts*

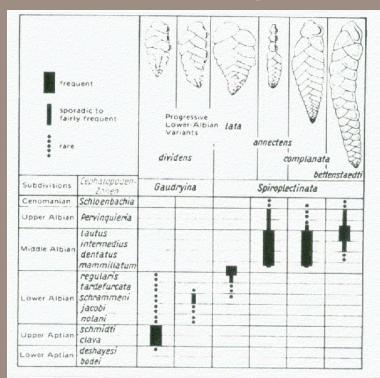
*based upon principle of faunal succession.


Biostratigraphy (cont.)

Types of Interval or Range Zones

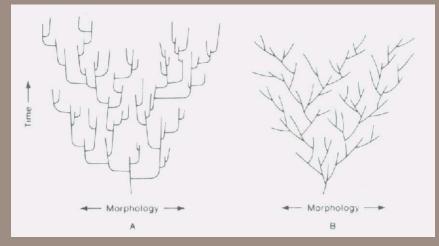
One or two taxa


Assemblage Zones


More is better...

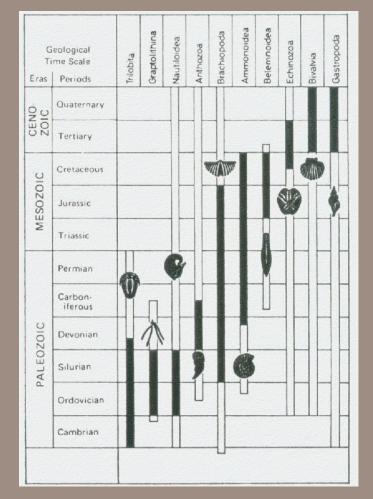
Biostratigraphy (cont.)

Subdivision example based upon <u>Concurrent</u> range zones


Subdivision example based upon <u>Abundance</u> zones (range & frequency)

From: Boggs (1987)

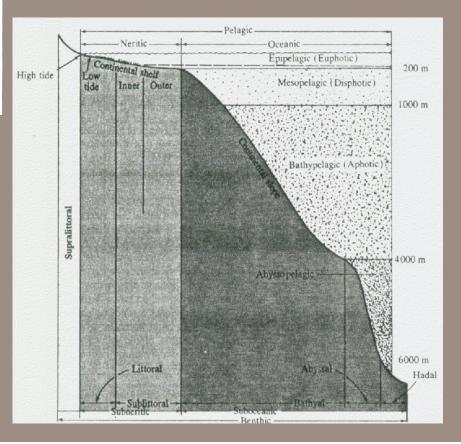
Biostratigraphy (cont.)


Evolution Theory as Basis for Biostratigraphic Zonation

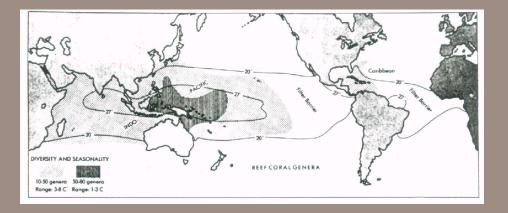
Punctuated (a) vs. Gradual (b) Models

Species variations are one-directional & irreversible!

Important Macrofossil Groups


Ideal Index Fossil = abundant, widespread, short range

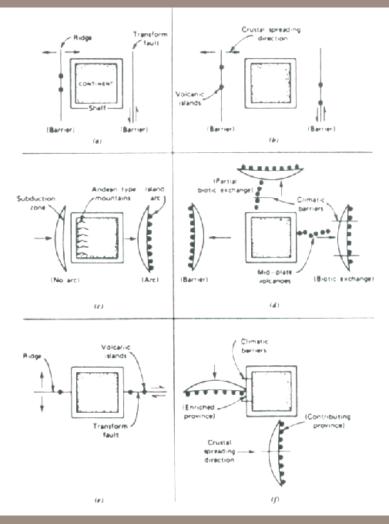
Biogeography


Classification	Description	Example
Planktonic	Organisms that live suspended in the upper water column, and which have only a very weak or limited ability to di- rect their own movements	
Phytoplankton	Have the ability to carry on photosynthesis; primary food producers, or autotrophs	Diatoms, dinoflagellates, coccolithophoridae
Zooplankton	Do not carry on photosynthesis and thus cannot produce their own food (heterotrophs); feed on phytoplankton	Foraminifers, radiolari- ans, graptolites
Meroplankton	Spend only their juvenile stage as plankton; later become free-swimming or bottom-dwelling organisms	Larva of most benthonic organisms such as molluses
Pseudoplankton	Organisms distributed by waves and currents as a result of attachment to floating seaweed, driftwood, etc.	Mussels, barnacles, etc.
Benthonic	Bottom-dwelling organisms that live either on or below the ocean floor	
Sessile benthos	Benthos that attach themselves to the substrate (epifauna)	Crinoids, oysters, brach- iopods
Vagrant benthos	Benthos that either creep or swim over the bottom (epi- fauna) or	Starfish, echinoids, crabs
	burrow into the bottom (infauna)	Clams, worms
Nektonic	Organisms able to swim freely and thus move about largely independently of waves and currents	Mobile cephalopods. fish, sharks

Present Habitats of Marine Organisms => Paleoceanographic Interpretations = Bonus Information!

(Uniformitarian application)

Biogeography (cont.)


Barriers to Dispersal

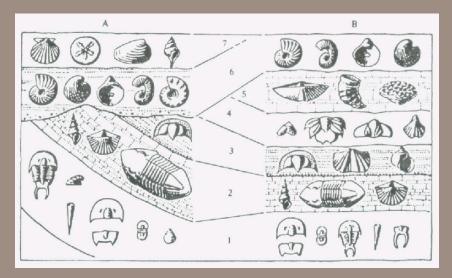
Example of temperature (latitude) and filter barriers on modern corals

Summary of Plate Tectonic Events & Changes in Faunal Distribution Patterns

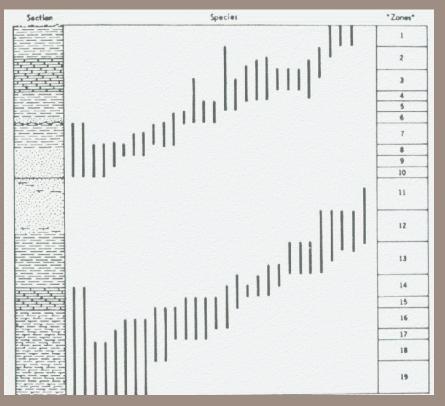
Plate tectonic event	Convergence	Divergence
Closure of Proto-Atlantic (Ordovician, Silurian)	Trilobites, graptolites, corals, brachiopods, conodonts, anas- pids, and thelodonts of the two continents flanking the Proto-At- lantic	
Closure of Urals Seaway	Post-Permian continental verte- brates of Eurasia	
Opening of Atlantic (Cretaceous, Tertiary)		Cretaceous bivalves and benthic foraminifers of Caribbean and Mediterranean; Upper Cretaceous ammonites of USA and W. Eu- rope–N. Africa; post-Lower Eocene mammals of North Amer- ica and Europe; Tertiary mam- mals of Africa and South Amer- ica
Opening of Indian Ocean (Cretaceous)		Bivalves of East African and Indian shelves
Closure of Tethys (late Cretaceous) (mid-Ter- tiary)	Ammonites of Eurasia and Africa– Arabia; mammals of Eurasia and Africa	Molluscs, foraminifers, etc., of In- dian Ocean and Mediterranean- Atlantic

Biogeography (cont.)

Plate Tectonic Barrier & Dispersal Models (Valentine, 1971)

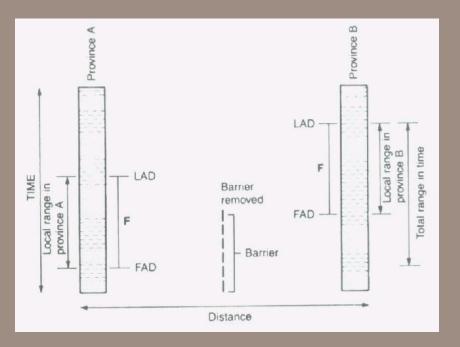

Includes migrating arcs, volcanic island chains, seamounts...

Geometry of relation	Character of margin	Distance	Biogeographic implications for continental shelf	Fig 17.8
Parallel	Ridge or transform	Near	Barrier but with depauperate pro- vincial outliers on isolated is- lands	а
		Far	Barrier	b
	Subduction zone	Near	Barrier if truly marginal with no island arc: source of rich biota and dispersal route if arc pres- ent	C
		Far	No effect unless intervening region bridged by midplate volcanoes, then source of rich biota and dispersal route if no climatic barriers intervene	d
High angle	Ridge or transform	Near	Little effect, with depauperate provincial outliers on isolated islands	e
		Far	Not a case	
	Subduction zone	Near	N-S shelf, E-W arc: arc system a source of rich biota for local province. E-W shelf, N-S arc: proximal province of arc system a source of rich biota for entire shelf	f
		Far	Not a case	


J. W. Valentine (1971)

Let's add terrains...

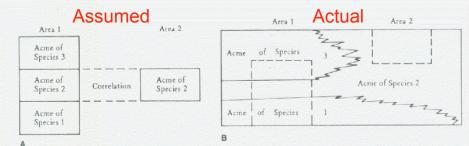
Biocorrelation



Simple visual correlation of macrofossils

Multiple fossil taxa requiring statistical correlation techniques

Biocorrelation (cont.)

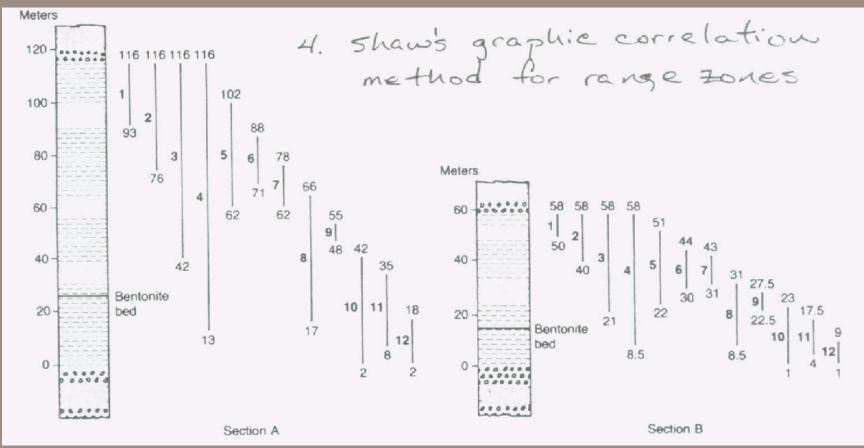

Pitfalls to avoid in correlation

Left: Biogeographic migration

Bottom: Acme (abundance) zone pitfalls

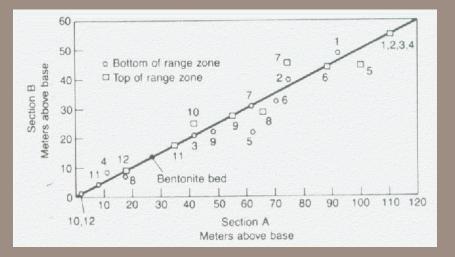
FADs and LADs:

FAD = First Appearance Datum LAD = Last Appearance Datum

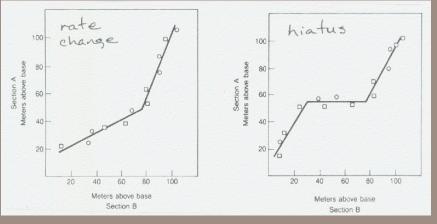


Also: abundance => favorable environment

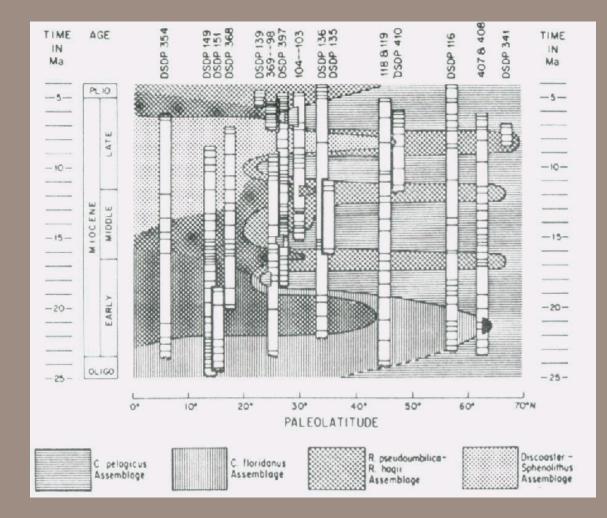
- => suddenly unfavorable
- => mechanical concentration


Biocorrelation (cont.)

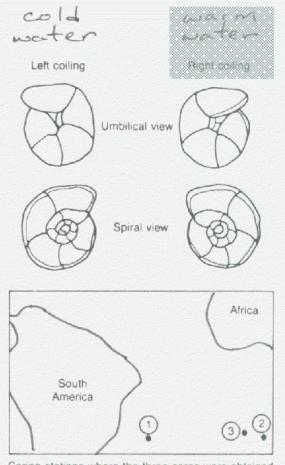
Shaw's graphic correlation => relative sedimentation rates



Note: numbers at FADs and LADs are heights in sections in meters above base


Biocorrelation (cont.)

Relative sedimentation between Sections A & B (previous slide) are linear, A > B Shaw's method sensitive to rate changes & hiatuses in sedimentation


Paleoclimate Data

Example of major fluctuations in climate in Miocene of North Atlantic Basin as revealed by acme zones

Paleoclimate Data (cont.)

Coring stations where the three cores were obtained

Biogeographical acme zone correlation based upon coiling ratios of foraminifers in three South Atlantic Basin sediment cores (original data of Ericson & Woolin, 1968)

Chronostratigraphy & Geologic Time Scale

The Geologic Systems and their Type Localities

System name	Type locality	Named or proposed by	Date proposed	Remarks
Cambrian Ordovician	Western Wales Western Wales	Adam Sedgwick Charles Lapworth	1835 1879	Defined mainly on lithology Set up as an intermediate unit between the Cam- brian and Silurian to re- solve boundary dispute; boundary defined by fos- sils
Silurian	Western Wales	Roderick I. Murchison	1835	Defined by lithology and fossils
Devonian	Devonshire, southern En- gland	Roderick I. Murchison and Adam Sedgwick	1840	Boundaries based mainly on fossils
Carboniferous	Central England	William Conybeare and William Phillips	1822	Named for lithologically distinctive coal-bearing strata, but recognizable by distinctive fossils
Mississippian	Mississippi Val- ley, U.S.A.	Alexander Winchell	1870	The Mississippian and Pennsylvanian are subdi-
Pennsylvanian	Pennsylvania, U.S.A.	Henry S. Williams	1891	visions of the Carbonifer- ous; not used outside the United States
Permian	Province of Perm, Russia	Roderick I. Murchison	1841	Identified by distinctive fos- sils
Triassic	Southern Ger- many	Fredrick von Alberti	1843	Defined lithologically on the basis of a distinctive threefold division of strata; also defined by fossils
Jurassic	Jura Mountains, northern Switz- erland	Alexander von Humboldt	1795	Defined originally on the basis of lithology
Cretaceous	Paris Basin	Omalius d'Halloy	1882	Defined initially on the ba- sis of strata composed of distinctive chalk beds
Tertiary	Italy	Giovanni Arduino	1760	Originally defined by lithol- ogy; redefined with type section in France on the basis of distinctive fossils
Quaternary	France	Jules Desnoyers	1829	Defined by lithology, in- cluding some unconsoli- dated sediment

From: Boggs (1987)

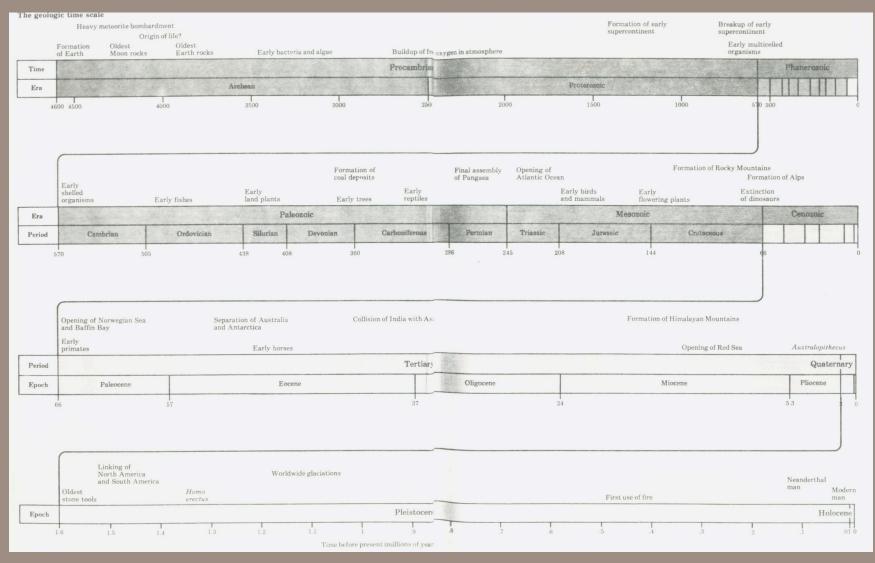
The Cenozoic Era

GLC	GLOBAL CHRONOSTRATIGRAPHIC UNITS										
ERATHEM	\$75	TEMS		SERI	ES / STAGES	SERIES / STAGES	(Ma)				
	QUATE	RNARY		TOCENE		NORTH AMERICAN PLEIBTOCENE GLACIAL STAGES ONLY WHEN APPLICABLE AND NECESSARY	1.7 10 2.8	ŀ			
		PLIOCENE		CENE	PIACENZIAN	WHEN APPLICABLE AND NECESSARY	-4.8	- 6			
		ш			MESSINIAN		-6.3	F			
S		z	ш	UPPER	TORTONIAN			-10			
		ш D	Z U	MIDDLE	SERRAVALLIAN		-10.8	-			
-	>	0	O	-	LANGHIAN	-	-15.4	-18			
			0				-12	-			
	æ	ш	_	LOWER	BURDIGALIAN			- 20			
0		z	ž		AQUITANIAN		- 73				
	A					-	-26	- 28			
N			CENE	UPPER	CHATTIAN	PACIFIC AREA STAGES		- 30			
N	-		0			OR	- 33	-			
			LIG	LOWER	RUPELIAN			-			
0	F	ш	0			MAMMALIAN STAGES ONLY		- 36			
·		z		UPPER	PRIABONIAN	WHEN APPLICABLE	- 38	-			
	œ	ш	ш				- 41	- 40			
z	-	U	z		BARTONIAN	AND NECESSARY					
-		0	ш	MIDDLE			- 48	- 45			
	ш	ш	C		LUTETIAN						
ш		_	0				- 50	- 50			
ш	⊢	<	ш	LOWER	YPRESIAN			-			
			ш			-	- 56	- 6.5			
S		٩	CEN	UPPER	THANETIAN			-60			
			ALEO	LOWER	DANIAN		- 62	- 86			

The Mesozoic Era

GLO	BAL CHF	RONOSTRA	TIGRAPHIC UNITS	NORTH AMERICAN CHRONOSTRATIGRAPHIC UNITS		ERICAL				
ERATHEM	SYSTEMS	SERIES / STAGES		SERIES / STAGES	(Ma)					
					67	F 85				
			MAASTRICHTIAN		- 72	- 70				
			CAMPANIAN			ŀ				
	S	UPPER	SANTONIAN	1	- 80	- 80				
	2	UPPER	CONIACIAN	1	- 85	- 90				
	0		TURONIAN		- 90	- *0				
	Ш		CENOMANIAN	SAME	- 100	- 100				
O	D A		ALBIAN	AS		-				
	Ĥ		APTIAN	GLOBAL	- 108	- 110				
622360	CRETACEOUS	LOWER	BARREMIAN		- 125	- 120				
	O		HAUTERIVIAN	1	- 130	- 130				
0			VALANGINIAN	1	-135	130				
			BERRIASIAN		140	140				
			TITHONIAN		- 145	-				
N	JURASSIC	0	0	0	0	UPPER	KIMMERIDGIAN		- 155	- 150
				OXFORDIAN]	160	- 180			
			CALLOVIAN	SAME	185	-				
0		IRAS		BATHONIAN	AS	- 170	- 170			
			A N	MIDDLE	BAJOCIAN	GLOBAL	- 175			
				AALENIAN		- 180	- 180			
S I	2		TOARCIAN	4	- 185					
	,	LOWER	PLIENSBACHIAN	4	190	- 190				
			SINEMURIAN	-	- 195	ł				
ш			HETTANGIAN		200	- 200				
	0		RHAETIAN			- 210				
Σ	0	UPPER	NORIAN	SAME	215	1				
	AS		CARNIAN	AS	- 120	- 220				
	TRIASSIC	MIDDLE	LADINIAN	GLOBAL	- 230	- 230				
			ANISIAN]	246					
		LOWER	SCYTHIAN		250	250-				

The Paleozoic Era


GLO	BAL CHF	ONOSTRA	TIGRAPHIC	CHRO		NUMERICAL TIME SCALE			
ERATHEN	SYSTEMS	SE	RIES / STAG	ES	SI	(Ma)			
			TATA	VRIAN		260 -	- 256		
	z	UPPER	and the second se	INIAN		286	- 260		
	PERMIAN		KUNG						
	2		ARTIN		270	- 270			
	W I		SAKM		1 2/18	- 280			
			ASSE		- 285				
0		UPPER	STEPHANIAN	GZHELIAN	N IN		VIRGILIAN	280	- 290
<u> </u>	5	OFFER	STEPHANIAN	KASIMOVIAN	STE		MISSOURIAN	1	- 300
	0 I		WESTPHALIAN	MOSCOVIAN	SYL-SY		DESMONESIAN ATOKAN	310	- 310
	CARBONIFEROUS	MIDDLE	"NAMURIAN"	BASHKIRIAN	PENNSYLVANIAN SUB-SYSTEM		MORROWAN	215	- 320
	6			SERPUKHOVIAN	2 3		CHESTERIAN	330	- 330
	<u>B</u>				TEA			340	- 340
0	CAF	LOWER	VISE	MISSISSIPPIAN SUB-SYSTEM		MERAMECIAN	-	- 360	
-			TOURN	AISIAN	SUB		OSAGEAN	- 355	- 380
					-	K		365	
Ν	DEVONIAN	UPPER	FAME		CHAUTA	UQUAN	CONEWANGOAN	380	- 370
	6	MOOLE	FRAS		CAN	CHEMUNGIAN FINGERLAKESIAN	385	100	
		MIDDLE	EFE	ER	IAN	ESOPUSIAN	390	390	
		LOWER	SIEGE	ULSTE	RIAN	DEERPARKIAN	398	400	
0	z		GEDIN			CAY	HELDERBERGIAN	405	
0	SILURIAN	UPPER	LUDLO	DVIAN			LOCK PORTIAN CLIFT CHAAN	414	4 10
	I III	LOWER	LLANDO	NIAGA		CLINTONIAN	- 420	420	
	· · · · · · · · · · · · · · · · · · ·		CEARDO	EDIAN		ALEXA	NDRIAN	426	
ш		10050	ASHGI	CINCININATIAN		RICHMONDIAN	-	- 430	
	Z	UPPER						-	
	ORDOVICIAN		CARAD	OCIAN			EDENIAN	455	- 450
	2		-		BHERM KIRKFI ROCKLA	ILDIAN }	BLACKRIVERIAN	460	- 480
-	ğ	MIDDLE	LLAND	ELIAN	CHAMPL				- 470
	Ю	MILULC	LLANVI	LLANVIRNIAN			WHITEROCKIAN	476	- 480
	-		ARENI				486	- 490	
A		LOWER	TREMAD	DOCIAN		CAN	ADIAN	500	600
		UPPER					FRANCONIAN		- 510
۵.	-, -		-				DRESBACHIAN	615	- 820
	CAMBRIAN	MIDDLE							- 530
	AME		-					5.40	640
	Ö	LOWER							- 650

Geologic Time Table with Absolute & Polarity Ages

CENOZOIC				MESOZOIC				PALEOZOIC						PRECAMBRIAN						
AGE MAGNETIC POLARITY PERI	OD E	РОСН	AGE	PICKS (Ma)	AGE MAGHETH POLARITH (Ma)		EPOCH	AGE	PICKS (Mis)		AGE (Me)	PERIOD	ЕРОСН	AGE	PICKS (Ma)		AGE (Ma)	EON	ERA	BDY. AGES (Ma)
5	TY PLE		CALABRIAN PIACENZIAN ZANCLEAN MESSINIAN	- 0.01 - 1.6 - 3.4 - 5.3		4		MAASTRICHTIAN	- 66.4	- 4	280 -	RMIAN	LATE	TATARIAN KAZANIAN UFIMIAN KUNGURIAN ARTINSKIAN SAKMARIAN	- 245 - 253 - 254 - 263 - 264	- 20 - 20 - 24 - 22 - 12	750 -		LATE	\$70
10-10 ° cs	ENE	L W	TORTONIAN	- 6.5	90 -	SNO	LATE		84.0 87.5 88.5 91		280 -	PE	LATE	ASSELIAN GZELIAN KASIMOVIAN MOSCOVIAN	- 286 - 296	- 12	1000 -	C		900
15 50 50	OGE	MIOCEN	SERRAVALLIAN	- 15.1	100 -	S	EARLY	ALBIAN		* 2.5	320 -			BASHKIRIAN	- 315	- 20	1250 -	ZOI	MIDDLE	
	NE		BURDIGALIAN	- 16.6		ETA				-4			EARLY	SERPUKHOVIAN	- 223		1500 -	ERO		1600
	_		AQUITANIAN	- 21.8 - 23.7	120-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	CR	OMIAN	BARREMIAN	- 124		360 -	0		TOURNAISIAN	- 362	- 10	1750 -	01		
		L	CHATTIAN		140		NEOCOL	VALANGINIAN	-138		380	ONIAN	MIDOLE	FRASNIAN GIVETIAN EIFELIAN	- 374 - 380 - 387	12 18 18 28	2000-	PR	EARLY	
		OLIGOCENE	RUPELIAN	- 30.0	150		LATE	TITHONIAN KIMMERIDGIAN	- 152	-112	400-	DEV	EARLY	EMSIAN SIEGENIAN GEDINNIAN	- 394 - 401 - 406	-122	2250			
				- 36.6	160	U		OXFORDIAN CALLOVIAN	-163	15	420	SILURIAN	LATE	PRIDOLIAN LUDLOVIAN WENLOCKIAN LLANDOVERIAN	- 414 - 421 - 428	12 12 8	2500			2500
40 - 17 cur	ENE	-	BARTONIAN	- 40.0	170 - 1 Salowy	SSI	MIDOLE	BATHONIAN	+160	34	640 -	z	LATE	ASHGILLIAN	- 438 - 448	12 12		-	LATE	
45 - 29 29	EOG	EOCENE		43.6	UR/	CC		AALENIAN	- 183 - 187 - 193 - 198 - 204	34 34 28 32 18	460 -	ORDOVICIA	MIDDLE	LLANDEILAN	400	16 16	2750	HEAN	MIDDLE	
	PAL		LUTETIAN			ſ		PLIENSBACHIAN					EARLY	ARENIGIAN TREMADOCIAN		16				3000
55 22 CB 73 CB M		E	YPRESIAN	52.0	210	<u>u</u>		NORIAN	- 208	18	500 -	z	LATE	TREMPEALEAUAN	- 505		3250	RC		3400
	-	ENE		57.8	220	ASSI	LATE	CARNIAN	- 225	- 8	540	MBRIAN	MOOLE	DRESBACHIAN	- 523	- 34	3600	A	EARLY	
		aleocen " ' '	Damamen B	63.6	230 -	TRIA	MIDDLE	LADINIAN	- 230	-10	540	CAN	EARLY				3750			- 3800?
66 - 28 CH		A E	DANIAN	- 66.4		-	EARLY	SCYTHIAN	- 245	20			1		\$70			1		

From: Palmer (1983)

Expanded Geologic Time Scale

From: Press & Siever (1984)