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Paleo-reconstructions

CLIMAP Project: Reconstruction
of Earth’s Climate at Last Glacial
Maximum (18 ka BP)
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Hot Spot Tralils

Volcanic lineations in the Pacific

Plot of K-Ar age of shield-building
volcanism vs. distance from Kilauea

From: Kennett (1982)




Seamount Paleo-track

From: McMurtry et al. (1994)




Lithospheric Cooling &
Subsidence

2000

Parsons & Sclater (1977)




Working Backwards at Vertical
Ocean Structure

Three time slices showing the influence
of 3 vertically-stable water masses on a
subsiding ridge, seamount.

Early Pliocene 680 versus

water depth recorded in DSDP
core sites.




Optimal & Critical Areas for Studying
World Ocean History

Guyots and other aseismi

clevated features

Offshore margin monitors
Subsiding offshore platform

Intersections of aseismic

ridges with continental margins

n flank

[Om passage
Eastern boundary currents
Western boundary currents

Antarctic deep currents

From: Kennett (1982)
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Types of Sediments Available & Their
Origins: Summary Charts

R Useful Summary Diagrams
Pzt L1 From W. W. Hay (1974)
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Pelagic Sedimentation in the Oceans




Biogenic Silica & Carbonate:
changing patterns in the Cenozoic
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Source: T. C. Moore, Jr.




Plots of T. C. Moore’s Chart

North Pacific

® Carbonate (%)
O Silica (%

23 Ma - Miocene




Temporal Changes of Sedimentation &
the CCD: Relations to Sea Level

Variations in paleo-CCD for the Pacific,

Indian & Atlantic Oceans for past 150 Ma
(from van Andel, 1979)

Ocean Sedimentation vs. Sea level High sea level => acidic oceans
(e Beiss, 19e) Low sea level => alkaline oceans




Plate Tectonics & Sedimentary
Facies

lron-rich basal Carbonate
sediments 2 ‘
(hydrothermal deposits)

Peilagic clay

*Mid-ocean *

+ *ridge+ ¢
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Interfingering of layers due to Berger et al. (1976)
variations in the CCD level




late Tectonic Effects on the
Equatorial Pacific

Left: Time Slices of Sediment Thickness
Variations
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Above: Time Slices of Sediment Thickness
as Isopach Maps
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Carbonate vs. Two Paleo-temperature
Curves for the Late Quaternary

V12-122 P6304-9
ERICSON
&
WOLLIN, 1968

RCI11-209

High carbonate = alkaline ocean
= cold, glacials

Low carbonate = acidic ocean
= warm, interglacials (red)

Hays et al. (1969




Enter the Bugs: Morphologies of Tests Can
Provide Relative Age & Climate Data

oceanographic studies
Diversity sufficiently high

for subpolar Cenozoic pale

oceanographic studies

Biostratigraphy known $ . Comparison Of CharaCteriStiCS
yical controls known ; Of major mleOfOSSI' groups

) tical and geo . .
sraphic distribution known ; : used in marine geology work
Species and assemblage
patterns match surface
water masses
Morphologic variation related
to environmental change
Tests resistant to dis
s data can pr
on original assembla
Tests resistant to lateral
placement (winnowing)

Commonly found over wide

s in Cenozoic sediments

Relative simplicity of counting

for isotopic

Kennett (1982)

ow values, or poorly known




Planktonic Forams as Paleo-climate

CENTERVILLE
BEACH DOMINANT

ColLING B Kennett (1982)
SECTION  PLANKTONIC SPECIES : HUDOLESTUR |
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Major warm event in middle-Pliocene Late Iitocene aleclimatic
of California tracked by G. inflata

curve from species frequency




Late Neogene Temperature
Oscillations Revealed by Planktonic
Forams

MARGINAL EASTERN NORTH PACIFIC
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From: J. Ingle (1977)




Late Quaternary, North Atlantic
Paleoceanographic Oscillations
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Based upon planktonic foraminiferal-coccolith From: Kellogg (1976)
assemblages specific to particular water masses.




Factor Analysis Time Series

DSDP 208

Firt factor : Factor analysis is a relatively unbiased,

0.2 04 0.6

‘<> ’ R quantitative statistical approach to
; interpreting large, multivariate data sets

= fewer, more interpretable variables
(usually 3 to 4 at most)

Quaternary

Pliocene

Result (in this case) is quantitative
measure of paleo-climate variations
through time.

Late Miocene

o | == | | | |
First factor (39% of variance)

ol eSS tal N umbers next to species refer to

(Cool) G. !um/ua/ ‘1 (3 . .
i il their loadings on Factor 1.
(Warm)




Factor Analysis Time Series

Oceanographic Microfossil data Microfossil data
data (surface) (core)
{e.g., summer and winter
temperatures and

siin] F s
T ‘ T Kennett (1982)

Factor

analysis Parafactor

'(su.rfa(:.e computation
distribution

maps)

t

Parameter
estimation
(time-series)

Process of estimating paleo-temperature
& paleo-salinity using microfossil assemblage

data and factor analysis.

Assumptions are made: past is similar to the

present; species evolution has negligible effect. . o

Temperature (°C)

Results: time-series of past summer & winter
temperatures and salinity in a Caribbean core.




Underlying Causes of Pleistocene
Climate Variations

ICE-GROWTH ORBITAL CONFIGURATION
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HINT: Google “Milankovitch”




