

Paleoceanography I Tools, Time Series, Time Slices Geological Oceanography

Gary McMurtry

OCN 622

Paleo-reconstructions

Paleo-reconstructions From: CLIMAP, Science (1976)

Hot Spot Trails

Volcanic lineations in the Pacific

Plot of K-Ar age of shield-building volcanism vs. distance from Kilauea

Seamount Paleo-track

From: McMurtry et al. (1994)

Lithospheric Cooling & Subsidence

Parsons & Sclater (1977)

14

Working Backwards at Vertical Ocean Structure

Three time slices showing the influence of 3 vertically-stable water masses on a subsiding ridge, seamount.

ay, the oxygen minimum zone

Early Pliocene δ^{18} O versus water depth recorded in DSDP core sites.

Optimal & Critical Areas for Studying World Ocean History

Types of Sediments Available & Their Origins: Summary Charts

Clastic (detrital) Sediment Processes

Useful Summary Diagrams From W. W. Hay (1974)

Pelagic Sedimentation in the Oceans

Biogenic Silica & Carbonate: changing patterns in the Cenozoic

	Antarctic		Tropical Pacific		North Pacific		North Atlantic	
	carb	silica	carb	silica	carb	silica	carb	silica
Quaternary and Pliocene	L	н	M to L	M 10 H	L	н	н	L
Late Miocene	L	н	L	M to H	L	м	н	L
Middle Miocene	L	н	н	M to H	L	L to M	Н	L
Early Miocene	м	М	М	м	L	L	М	м
Late Oligocene	н	L	M to A	L	M	L	L	M
Early Oligocene	н	L	M 40	м	м	L	Ľ	м
Middle to Late Eocene	L	L	L	н	L	L	Ĺ	м
Early Eocene and Paleocene	?	7	L	L	?	L	L	* L

Source: T. C. Moore, Jr.

Plots of T. C. Moore's Chart

Temporal Changes of Sedimentation & the CCD: Relations to Sea Level

Ocean Sedimentation vs. Sea level (from T. A. Davies, 1981)

Variations in paleo-CCD for the Pacific, Indian & Atlantic Oceans for past 150 Ma (from van Andel, 1979)

High sea level => acidic oceans Low sea level => alkaline oceans

Plate Tectonics & Sedimentary Facies

Interfingering of layers due to variations in the CCD level

Berger et al. (1976)

Plate Tectonic Effects on the Equatorial Pacific

Left: Time Slices of Sediment Thickness Variations

Above: Time Slices of Sediment Thickness as Isopach Maps

Kennett (1982)

Carbonate vs. Two Paleo-temperature Curves for the Late Quaternary

High carbonate = alkaline ocean = cold, glacials

Low carbonate = acidic ocean = warm, interglacials (red)

Enter the Bugs: Morphologies of Tests Can Provide Relative Age & Climate Data

		Foraminifera	Radiolaria	Calcareous nannoplankton	Diatoms	
1.	Taxonomy	+ ª	_ c	+	-	
2.	General diversity	p 6	+	-	have	
3.	Diversity sufficiently high for polar Cenozoic pale- oceanographic studies	~	+	-	+	
4.	Diversity sufficiently high for subpolar Cenozoic pale- oceanographic studies	+	+	+	+	
5.	Biostratigraphy known	+	+	+	~	
6.	Biological controls known	~	-		+	
7.	Modern vertical and geo- graphic distribution known	+	-	+	~	
8.	Species and assemblage patterns match surface water masses	+	+	+	+	
9.	Morphologic variation related to environmental change	+	_	~	-	
10.	Tests resistant to dissolution	—	+	~	had.	
11.	Census data can provide data on original assemblages	-	+	~	~	
12.	Tests resistant to lateral displacement (winnowing)	+	~		-	
13.	Commonly found over wide areas in Cenozoic sediments	+	+	. 4	-	
14.	Relative simplicity of counting	+	+	+	+	
15.	Tests suitable for isotopic measurements	+	-	+	10	

Comparison of characteristics of major microfossil groups used in marine geology work

^a + = relatively high values, or well known

^b = moderately high values, or only partially known

c - = relatively low values, or poorly known

Kennett (1982)

Planktonic Forams as Paleo-climate Proxies

of California tracked by G. inflata

Kennett (1982)

Late Pleistocene paleoclimatic curve from species frequency

Late Neogene Temperature **Oscillations Revealed by Planktonic** Forams

MARGINAL EASTERN NORTH PACIFIC

From: J. Ingle (1977)

Late Quaternary, North Atlantic Paleoceanographic Oscillations

Based upon planktonic foraminiferal-coccolith assemblages specific to particular water masses.

From: Kellogg (1976)

Factor Analysis Time Series

Factor analysis is a relatively unbiased, quantitative statistical approach to interpreting large, multivariate data sets \Rightarrow fewer, more interpretable variables (usually 3 to 4 at most)

Result (in this case) is quantitative measure of paleo-climate variations through time.

Numbers next to species refer to their loadings on Factor 1.

Factor Analysis Time Series

Process of estimating paleo-temperature & paleo-salinity using microfossil assemblage data and factor analysis.

<u>Assumptions are made</u>: past is similar to the present; species evolution has negligible effect.

Kennett (1982)

Results: time-series of past summer & winter temperatures and salinity in a Caribbean core.

Underlying Causes of Pleistocene Climate Variations

HINT: Google "Milankovitch"