Food web structure is a key determinant on carbon fluxes:

1) Cell size and geometry influence sinking rate
2) Zooplankton repackage material and vertically migrate
3) Small cells support longer food webs = more carbon recycled to CO₂

Zooplankton repackage plankton into rapidly sinking fecal material

Sedimentation of diatom-rich salp fecal pellets > 1 mm long, 350 µm wide, 10 µg C per pellet—these things sink FAST...

Direct aggregation and pulsed export is also important

Flux of labile phyto detritus to the deep North Atlantic

Why do we care about biomass?

- Information on biologically stored energy
- Quantify the amount of carbon held in marine biota (carbon budgeting purposes)
- Identify how much “material” is available to at each step of the food chain.
The way biomass is distributed among trophic levels in the food web provides clues to the efficiency of energy transfer through the ecosystem.

Note: this is a static depiction—it does not provide information on how fast biomass turns over within each trophic level.

In a “typical” liter of seawater...

- Fish: None
- Zooplankton: 10
- Diatoms: 1,000
- Dinoflagellates: 10,000
- Nanoflagellates: 1,000,000
- Cyanobacteria: 100,000,000
- Prokaryotes: 1,000,000,000
- Viruses: 10,000,000,000

Why are pelagic organisms so small?

Consider a spherical cell:

- SA = 4πr²
- V = 4/3 πr³

The smaller the cell, the larger the SA:V.

Greater SA:V increases cell’s ability to absorb nutrients from dilute solution. This might allow smaller cells to outcompete larger cells for limiting nutrients.
“Typical” concentrations of inorganic nutrients in the open sea:
- Subtropical North Pacific:
 - Nitrate+nitrite 1-10 nM (0.001-0.01 μM)
 - Phosphate 10-40 nM (0.01-0.04 μM)
- “Typical” concentrations of inorganic nutrients in soils:
 - Nitrate+Nitrite 5-100 μM
 - Phosphate 5-30 μM

How do we measure plankton biomass?
- Count and measure individuals and calculate carbon
- Weigh (either dry or wet) cells and calculate biomass
- Estimate living carbon using some biomolecule proxy (DNA, ATP, chlorophyll)

Particulate carbon
- Technique: combust (oxidize) organic material and measure resulting CO₂.
- Need to concentrate cells: typically glass filters (usually ~0.7 μm pore size) or tangential flow (Fukuda et al. 1998)
- Measurements include living cells and detritus.

Zooplankton
- Small zooplankton are usually enumerated by microscopy and converted to cell carbon
- Larger zooplankton can be weighed for approximation of carbon.
Phytoplankton carbon

• Phytoplankton carbon determinations are most often derived from measurements of chlorophyll; this requires a conversion factor.
• Phytoplankton carbon can also be estimated based on cell size and abundances (microscopy and/or flow cytometry).

Light harvesting photosynthetic pigments

• Chlorophylls
• Carotenoids
• Biliproteins
• Recently discovered photoreceptor proteins (Proteorhodopsin and Bacteriorhodopsin) serve as proton pumps, but do not appear to harvest energy for oxygenic photosynthesis.

Chlorophylls

• Cyclic tetrapyrole with a magnesium atom chelated in the center of the ring

• All oxygen evolving photosynthetic plankton contain Chlorophyll a (peak absorption 465 and 665 nm)
• Chl a, b, and c all absorb strongly in the red (between 440-465 nm) and blue wavelengths (~645-665 nm). The presence of Chl b and c increases the absorption between 450-650 nm.
The exponential decay of light with depth:

\[I_z = I_0 e^{-kZ} \]

- \(I_z \) = light at depth \(Z \) (units of mol quanta m\(^{-2}\) s\(^{-1}\))
- \(I_0 \) = light at surface of ocean (incident irradiance; units of mol quanta m\(^{-2}\) s\(^{-1}\))
- \(k \) = attenuation coefficient (units of m\(^{-1}\))

Carotenoids and biliproteins extend the spectral region able to support plankton growth; thus light forms an important environmental control on phytoplankton evolution.

If we can determine phytoplankton biomass from chlorophyll, we can use various remote sampling technologies.

1) Physically forced dynamics (ENSO, Amazon plume, upwelling, etc.)
2) Seasonality
3) Event scale variability
7 years of ocean chlorophyll from satellites

Mean
Maximum
Minimum
High latitudes are highly variable, central gyres more stable

Biological variability in space and time

Spatially coherent interannual variability in selected ecosystems, but most ocean ecosystems appear highly variable in space and time

Major divisions and classes of photosynthetic plankton in the ocean

- Prokaryotes
 - Cyanobacteria

- Eukaryotes:
 - Chlorophyta (green algae): include the following classes:
 - Chlorophyceae
 - Phaeophyceae
 - Euglenophyceae
 - Chromophyta (brown algae): include the following classes:
 - Chrysophyceae
 - Pelagophyceae
 - Prymnesiophyceae
 - Bacillariophyceae (diatoms)
 - Dinophyceae (dinoflagellates)
 - Cryptophyceae (cryptophytes)
 - Phaeophyceae (phaeophytes)
 - Rhodophyta (red algae)- mostly macrophytes

Marine cyanobacteria

- Cyanobacteria: major groups of cyanobacteria in the oceans include: Prochlorococcus, Synechococcus, Trichodesmium, Crocosphaera, Richelia
 - Wide range of morphologies: unicellular, filamentous, colonial
 - Some species fix N_2
 - Highly abundant in the open sea – often dominate photosynthetic biomass and production

Many images from: http://www.sb-roscoff.fr/Phyto/gallery/main.php?g2_itemId=19
Chlorophyta (green algae)

- Chlorophytes
 - Contain Chl b
 - Uncommon in open ocean; mostly freshwater.
 - Very diverse (more than 7000 species described).
 - Can be single cells or colonies, coccoid or flagellated
 - Chlorella, Chlamydomonas, Dunaliella

- Prasinophytes
 - Contain Chl b
 - Predominately unicellular
 - Relatively common, but not abundant in ocean
 - Can be single cells or colonies, coccoid, biflagellated, or quadri-flagellated

Chromophyta (brown algae)

- Pelagophytes
 - Contain Chl c
 - Very common in open ocean.
 - Coccolid or monoflagellated

- Chrysophytes
 - Contain Chl c
 - Relatively rare in open ocean
 - Mostly bi-flagellated (flagella of unequal length)

- Cryptophytes
 - Contain Chl c
 - Contain carotenoid alloxanthin
 - Contain phycocerythrin or phycocyanin
 - Flagellated unicells

Chlorophyll concentrations can vary depending on physiological and environmental history of the cells.
In the ocean gyres, chlorophyll concentrations are low in the surface water, greater at depth (80-150 m). In contrast, most of the production (=synthesis of biomass) occurs in the well-lit upper ocean.