COLOR PLATE 2 Climatological (1978–1986) seasonal sea surface chlorophyll field obtained with Coastal Zone Color Scanner sensor for boreal fall (September–November). Color is a log scale for chlorophyll: purple = <0.06 mg Chl m⁻³, orangered = I-10 mg Chl m⁻³. Provided by NASA/Goddard Space Flight Center. # Why isn't chlorophyll the same everywhere? #### Basic Zones of Plankton Distribution - Polar -- Arctic, Antarctic Circumpolar - Subpolar -- Subarctic, Subantarctic - Temperate -- "Transition Zone" - Subtropical Gyres -- Northern & Southern - Equatorial -- Tropical - Eastern Tropical Pacific - Warm-Water Cosmopolitan These provinces have unique hydrographic characteristics and appear to be self-sustaining ecosystems #### Winds and Currents #### Main Ocean Current Systems Figure 2.19 The major surface currents of the oceans in northern winter. Dashed arrows indicate cool currents; solid arrows show warm currents. Lalli & Parsons 1997 # Surface Nitrate Concentrations *Annual Averages* ## Light varies with Latitude http://www.xpeditiononline.com/climatepage.html ### Light and Nutrients **Light** increases from the poles towards the equator Surface **nutrients** increase from the equator towards the poles Phytoplankton **productivity** varies with latitude as well # What nutrients are we usually most concerned with and why? Required nutrient elements: carbon, nitrogen, phosphorus, oxygen, silicon, magnesium, potassium, calcium Trace element nutrients: iron, manganese, zinc, etc. Redfield Ratio: "Healthy" phytoplankton have a molar C:N:P ratio of 106:16:1 (or a C:N ratio of 6.6) # Life requires energy and certain raw materials - Energy: sunlight is the primary driver - Raw materials: dissolved inorganic nutrients - **Photosynthesis**: biochemical reactions that use the raw materials and light to synthesize the organic matter found in all living things - Heterotrophs then consume phytoplankton (or organic matter derived from phytoplankton) and thereby the organic matter is transferred to other components of the ecosystem #### Elemental Stoichiometry Phytoplankton tend to have a **constant molar ratio of elements** because all cells are made up of essentially the same components Nucleic acids: DNA, RNA Proteins: essential machinery of cells (enzymes) Carbohydrates: sugars and starches Lipids and fats: cell walls and all internal membranes, energy storage Rhizosolenia chain (with Chaetoceros chain behind) 100 um ### Heterotroph Stoichiometry At low trophic levels (primary and secondary consumers), elemental stoichiometry also tends towards constancy Elemental ratios are different than in autotrophs however, as cellular machinery is used to break down consumed food Later in course: differences in elemental stoichiometry between predator and prey directly impacts what is recycled back to the mineral phase ## Limiting Nutrients **Concept:** as phytoplankton grow, one of the many nutrient elements that they require will be limiting first: when that element runs out, growth will stop till more is available In the ocean, the limiting nutrients are usually nitrate or iron because of their low concentrations **relative** to other required nutrients ### Microbial Abundances 1 drop of seawater (~1 ml) 10 million viruses I million bacteria and archaea 1000 eukaryotes # The Phytoplankton Players (Autotrophs) #### 1° Producers Photosynthetic bacteria (**Cyanobacteria**): Prochlorococcus: 40°N - 40°S, but not abundant/present in coastal higher-nutrient systems Synechococcus: wider latitudinal range, including coastal systems, but not in polar (Arctic or Antarctic) systems Pico & nano-eukaryotes (<2 - $20 \mu m$) Dinoflagellates (~10 - 200 μm) Diatoms (~5 um to chain lengths up to mm size range) Important in coastal/high nutrient systems, present but otherwise not usually a large component of community # A Selection of Diatoms (Autotrophic Eukaryotes) #### Surface-Volume Ratio $V = 4/3 \prod r^3$ V = abc Nutrient transport proteins are located on surfaces Gases must cross surfaces to penetrate to the interior Spines add drag -- help keep cells in lit layer ## Adaptive strategies #### Low nutrient concentrations small cells favored: higher S:V ratio leads to better uptake capability at a lower nutrient concentration Levinton 2009 #### **High nutrient concentrations** larger cells favored, having higher growth rates varied shape allows better S:V ratio despite larger cell size varied shape also can function as predator defense #### Why study consumption? Standing stock is only a small fraction of production: need to understand consumption to get whole picture. PP = phytoplankton COASTAL POLAR TRADES WESTERLIES 3.1 This figure shows how (i) monthly accumulation of phytoplankton carbon (top) is FIGURE 3.1 This figure shows how (i) monthly accumulation of phytoplankton carbon (top) is generally about one-half of I day's primary production and (ii) that standing stock (bottom) is equivalent to 0.02–0.10 of the monthly primary production or about one-half to 3 days productivity. The figure is based on CZCS data as described in the text; the analysis is split between oceans (A, I, P, and S) and biomes. Longhurst 1998 0.05 0.00 median: middle line of box range: top & bottom bar # 1° Consumers: Microzooplankton (Eukaryotes) Ciliates Dinoflagellates #### Protist grazers • a.k.a. protozoans -- single celled organisms Note: Protists can be autotrophs OR heterotrophs OR mixotrophs (e.g., diatoms, coccolithophorids, dinoflagellates, "picoeukaryotes", etc.) NOT PROTISTS: *Prochlorococcus*, *Synechococcus*, other bacteria #### 2°Consumers - Heterotrophic bacteria and archaea - DOC produced as a by-product of grazing* - Other protists (ciliates/dinoflagellates) -- many are omnivores - Metazoans - usually metazoans are 3° consumers or higher, however #### 2°-4° Consumers #### Copepods -- most common (numbers and biomass) Well-studied: easily caught with nets and seen with low power microscopes or the naked eye Specialized feeding appendages - Filter or Suspension feeders (usu. herbivores) - Raptorial feeders (usu. carnivores) #### Euphausiids (krill) -- Shrimp-like Some herbivorous, some carnivorous Significant populations in Antarctic waters # Chaetognaths (arrow worms) - Ambush predators -- mainly feed on copepods - Common, 1 10 cm - Sensory hairs to detect vibrations of prey - Once prey captured, it is injected with a neurotoxin #### Gelatinous Zooplankton - Definition based on water content: diverse groups - Herbivores: body adapted to filter large quantities of water (sacks of jelly), e.g., salps, doliolids and appendicularians - Carnivores: sticky tentacles, e.g., tentaculate ctenophores and medusae. Also, lobate ctenophores capture prey using lobed feeding surfaces GELATINOUS ZOOPLANKTON (Jelly Plankton) - taxonomically diverse grouping sharing a common strategy - high water-content bodies and/or secreted mucus nets increase effective size of animal and its food gathering capability relative to other zooplankton of comparable organic biomass. Many of the oceanic representatives of these groups are very fragile and disintegrate when captured with nets. CTENOPHORES - "comb jellies" characterized by bands of joined cilia (comb rows) around body surface. Tentaculate forms have two tentacles with tentacles are "set" like nets. Lobate types capture tentacles armed with paralyzing nematocysts. Most coastal (neritic) species alternate generations between attached (benthic) hydroid form which is asexual and a free-swimming, sexual medusae. Most oceanic forms do not have an attached hydroid generation. Siphonophores, the order containing the Portugese man-of-war (Physalia), is particuarly significant in oceanic waters. In these pelagic hydroids, several types of "individuals" perform different "jobs" within the SALPS - barrel-shaped animal with muscle bands that contract to force water into a buccal opening and out of an atrial opening (jet-propulsion). Ciliary-mucus, filter-feeders - particles in the water current entering the buccal opening are captured on a net of mucus strands which is continuously being passed backward along the gill bar to the esophagus for ingestion. Alternation of sexual (colonies) and asexual (solitary) generations. Salps are chiefly oceanic; dense coastal plankton may clog their feeding mechanism. High food gathering and reproductive capability, sometimes occur in dense swarms. APPENDICULARIANS (LARVACEANS) - mature forms retain appearance of tadpole chordate larvae, head with tail. Body enclosed in feeding "house". Undulations of tail cause water to enter house through coarse filter where fine particles are concentrated and conveyed to pharynx (mouth?) by a complex collection apparatus (not a simple net). The house is abandoned periodically (predator disturbance or clogged filter) and a new house is built. Old larvacean houses are an important component of "marine snow" in some areas. #### Fish • Role of fish eggs, larvae and juveniles in open ocean food webs: prey and predator, depending upon life cycle stage Figure 6.11. Pacific whiting prey fish eaten at various life history stages. (Asterisk indicates major prey species.) Modified from Livingston and Bailey (1985). Mar. Fish. Rev. 42(2):16–22. # Differences in organisms between biomes and oceans TABLE 4.1 Differences in the Composition of Mesozooplankton Between Biomes and Between Oceans* | Biomes | Oceans | Taxonomic groups | | | | | | | | | Trophic groups | | | | | | |--|--|----------------------|-----------------------|-----------------------|----------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|----------------------| | | | Medusae | Siphophora | Chaetognatha | Ostracoda | Copepoda | Euphausidae | Pteropoda | Appendicularia | Thaliacia | Coelentrate predators | Raptorial predators | Micro-herbivores | Macro-herbivores | Omnivores | Detritivores | | POLAR
POLAR | Arctic
Antarctic | 0.07 | 0.00
1.49 | 9.15
8.08 | 3.30
2.79 | 69.31
65.86 | 0.04
15.29 | 10.08
3.38 | 0.30 | 0.00 | 0.08 | 19.23
24.22 | 0.32 | 64.57
47.69 | 12.36
23.79 | 3.45 | | WESTERLIES
WESTERLIES
WESTERLIES | North Atlantic
North Pacific
Southern Indian | 1.24
5.35
3.25 | 0.94
4.40
0.00 | 2.89
8.21
7.41 | 1.21
1.61
4.72 | 53.07
40.19
34.36 | 31.57
29.01
39.24 | 3.66
3.43
1.75 | 0.07
0.15
0.03 | 1.22
0.39
0.23 | 1.68
8.02
2.55 | 31.75
33.05
36.15 | 0.99
0.45
0.60 | 20.86
22.08
16.47 | 43.79
35.08
40.53 | 0.93 | | TRADES
TRADES
TRADES | Atlantic
Pacific
Indian | 0.86
1.27
3.81 | 8.90
10.90
5.73 | 6.56
10.46
9.97 | 0.60
2.18
5.06 | 32.96
29.13
32.28 | 23.91
40.78
25.84 | 4.00
1.20
3.37 | 0.04
0.20
0.07 | 6.03
0.93
1.72 | 13.61
17.20
12.08 | 29.35
38.26
31.52 | 8.46
1.63
2.27 | 22.48
17.18
21.78 | 25.27
22.65
25.95 | 3.70
0.84
3.08 | | COASTAL
COASTAL | North Atlantic
North Pacific | 0.14
1.71 | 0.45
5.36 | 7.51
11.29 | 0.17
0.67 | 74.84
35.37 | 7.96
27.39 | 1.24
1.66 | 0.00
0.22 | 0.26 | 0.62
7.99 | 16.96
18.99 | 0.27 | 44.49
24.18 | 37.49
45.57 | 6.40
0.18
0.76 | ^aTaxonomic and aggregated trophic groups of plankton are expressed as percentage of carbon biomass. Data from 1500 samples, representing all oceans and latitudes, processed by the Smithsonian Museum Plankton Sorting Center, Washington, D.C. #### Why should we care that ecosystems differ? - Oceans: an important global sink for CO₂ - Surface ocean gases are in equilibrium with atmosphere - Photosynthesis reduces dissolved CO₂ in ocean water to organic carbon (thus more CO₂ is drawn into the ocean from the atmosphere) - High phytoplankton growth rates means lots of CO₂ is reduced to organic carbon daily - But, most phytoplankton biomass turned over on a daily basis -- so most organic carbon converted back to CO₂ via respiration by heterotrophic organisms - The rates of growth/mortality and the amount of carbon that the ocean sequesters depends upon the structure and function of an ecosystem # POC Transformations: Organisms and their wastes - Consumer waste products - CO₂ (respiration) - Excretion of low MW material (e.g., amino acids, etc.) - Egestion of "dissolved" organic matter - Heterotrophic Protist Waste - 100 um - POC to DOC or CO₂ major remineralization role - Metazoan Wastes - POC to DOC or CO₂ lesser role than protists - POC to packaged POC/DOC vertical flux - Vertical Migrants transport of wastes to deep waters #### Fecal Pellets ### Yields of Fish from Ecosystems The structure of ecosystems also governs fish yields, since every step in the food chain reduces the amount of organic carbon available to the next higher trophic level ## Trophic Transfer Efficiency TTE (or Trophic Yield) = Amount of production at trophic level (X+1) relative to production at trophic level X Because of losses to metabolism/egestion at each step, longer food chains result in less yield to the top predator How to apply to actual food chain? Overall Food Chain Efficiency = TTE(2)*TTE(3)*TTE(4)*TTE(n) #### Low Energy Stable Systems Low energy — Lack of nutrient re-supply Low nutrients ← (oligotrophic) Small Phytoplankton (high surface:volume ratio) Long food chains (small consumers at base) Relatively stable system Ocean Climate Laboratory/NODC #### High Energy Unstable Systems High energy (storm activity, eddy action, upwelling, etc.) High nutrients (eutrophic) Large Phytoplankton (small, too) Short food chain (dynamic) — (superimposed on stable long food chain) Unstable (dynamic) system (High "new" production)