Fisheries Oceanography: Fisheries Management OCN 621

Fisheries as Predation

- From a fisherman's perspective, natural mortality is "wasted."
- Fisheries compete with natural losses by catching fish before they are eaten or die of old age.
- Fishing changes the size and age structure of the stocks, thereby reducing the "resiliency" of stock to environmental fluctuations.

Fisheries Management Approaches

- Goals to Balance:
- Socio-economic -- maximize "benefit" to society, i.e., optimize physical yield without jeopardizing ability of stock to reproduce
- Biological -- protect genetic diversity, population integrity, habitat
- Economic -- optimize economic gain; efficiency

Theory of Fisheries Management

- Unfished, "virgin" stock

- Fished stock

Compensating mechanisms for Fishing Mortality leading to lower Natural Mortality (Density-dependence):
-- growth increases (less competition for resources)
-- recruitment increases (less competition, more survivorship, less predation)

What is a suitable (sustainable) amount of Fishing Mortality? MSY = Maximum Sustainable Yield

Zone 1: under-fished (catch good, cost low, profits high)
Zone 2: MSY (catch more, costs more, profit good)
Zone 3: over-fished (catch less, costs high, profit negative)
Zone 4: optimum yield (catch vs. cost best, max. profit)

CPUE

Catch Per Unit Effort

- Catch/Fishing Effort: really the only relationship we know well
- If this ratio is declining, we are over-fishing
- World CPUE in decline since 1980s
- Estimate that 45% of fisheries over-fished at present

Fig. 15.7 (a) CPUE (catch per unit effort) for yellowfin tuna in the eastern tropical Pacific, 1934-1965, (b) Line is ia) converted to show catch vs. effort, a parabola, (a,b after Schaefer 1967.)

Single Species Management

Usual method, but, too narrowly focused, as fishing for one species can affect other exploited fish

- Discards/bycatch usually discarded dead
- dead mammals, reptiles, etc. in gill nets
- example: Shrimp trawling: 125-830\% by catch excess over shrimp and bycatch is snapper

NOAA Photo library

Top 10 Fish of 2006 (30\% of fisheries production)

Source: FAO Fisheries - The State of World Fisheries and Aquaculture, 2008 PART 1:World review of fisheries and aquaculture, p. 12

Current state of world fisheries production

Source: FAO Fisheries - The State of World Fisheries and Aquaculture, 2008 PART 1:World review of fisheries and aquaculture, p. 33
$\sim 50 \%$ of world stocks fully exploited
Previously over-exploited, depleted or recovering stocks have been stable for 10-15 years

Commercially harvested marine fish

- Anchovy, herring and sardines: all small pelagic fish, represent by far the largest fisheries in the world
- Live in highly productive areas (upwelling regions \& off Japan \& Argentina)
- Unstable populations (time scale of $10-30 \mathrm{yrs}$)

Unstable populations: collapse of fisheries is a function of over-fishing \& natural environmental change

Peruvian anchoveta: \#1 Engraulis ringens

- Vital statistics
- Max size: 20 cm
- Max reported age: 3 years; time to maturity: 1 year
- Depth range found: $3-80 \mathrm{~m}$
- Distribution
- Ecosystem role: eats phytoplankton \& zooplankton, preyed upon by man and seabirds
- Spawn near shore; Behavior enabling high success of fishery? Schooling

History

mid-1950 Fishery begins and rapidly expands (fish meal for livestock)
1964 Catch = 8.7 MMT (17\% of world catch); Schaefer (FAO study) estimates MSY at 9.5 MMT, but guano birds and other predators took 2 MMT leaving 7.5 MMT for man 1965 El Nino - low reproductive success, schools dispersed, bird predators gone (Cormorants)
1970 Harvest 12.5 MMT; 50\% greater than MSY; fishing efficient, $\sim 95 \%$ of fish caught before reaching reproductive age (overcapitalization)
1971-2 Bad recruitment years (EJ Nino, too): collapse of fishery
1986-96 Recovery
1997-98 EJ Nino collapse, recovering now
2004: 10.7 MMT (FAO)
2006: 7 MMT (FAO)

Overcapitalization

- When fishing is good, more boats are built, people employed
- When yield declines, it is hard to cut back
- Subsidies are paid to fisherman
- Fishing continues, even though not commercially viable
- Exacerbates over-fishing problems, but not a surprising consequence of economic pressures
http://www.nationmaster.com
Map \& Graph: Economy: Top 10 Fishing subsidies

Definition: Subsidies to the corrmecial fishing sector Unts: US Dolars (Millions)
Unts: Data on iemized ybingsibidiat were combined from Annax 1 of the WWF report Where estimuted rangoowere given, the mid-point of the range was used. Incalcusting the ESt, the base-10 logarthm of this variablewas used
Souroe: World Widife Fund (WWF-US). Hard Facts. Hidden Problerns: A Review of Curert Data on Fishingsubsides, A
WWF Tectrical Paper, Octocor 2co1, Annex 1 , vaciesin ong WMF Tectrical Paper, October 2c01, Annex 1, va ciexin org

Peruvian Anchovy

- Effects of El Niño
- anchovy feeds on phytoplankton/zooplankton
- during El Nino, no upwelling, fewer phytoplankton, fewer zooplankton, fewer fish
- Other ecosystem effects of fishing
- Depleting anchovy stocks results in reduced populations of fish-eating sea birds

Pelican (alcatraz)
Pelecanus thagus

Alaska Pollock Theragra chalcogramma

- max size/age: $91 \mathrm{~cm}, 15$ years, age at 1st maturity: $3-5.5 \mathrm{yr}$
- benthopelagic, brackish/marine waters, usually found from $\sim 300-1000 \mathrm{~m}$ depth
- DVM, feeds on fish and crustaceans (esp. krill), TL = 2.8+
- Prey for Stellar Sea Lion (Alaska) \& other marine mammals, seabirds, bigger fish
- Well managed fishery, use midwater trawl nets with little by-catch

Alaska Pollock Fishery

- Currently well managed, but not managed as a multispecies fishery
- Efforts are going into ecosystem modeling, including physical forcing, to better predict all fisheries in region

GOA Ecosystem

Each species is a node (dots) and each predator-prey interaction is a link (line).

Four hubs are cod, pollock, halibut and arrowtooth flounder.

S. Gaichas, NOAA, www.afsc.noaa.gov

Multispecies Management

Example: New England Groundfish Fisheries
15 species managed
implemented in 1986, but did not include catch or fishing effort restrictions
1994: Amended management plan to address these problems

Key
SSB = spawning stock biomass (total mass of the stock capable of spawning)
$\mathrm{GB}=$ Goorges Bank
GOM - Gulf of Maine

Application to Anchovy Fishery

Fig. 4. Flow diagram of the Central Chile marine ecosystem $\left(33^{\circ}-39^{\circ} \mathrm{S}\right), 1992 . Q$: coasumption. Flows are expressed in tkm^{-2} per year
Niera et al. 2004. Comparative analysis of trophic structure of commercial fishery species off Central Chile in 1992 and 1998. Ecol. Model. 172:233248

Global Fish Catch

Figure 1 Estimated global fish landings 1950-1999. Figures for invertebrates, groundtish, pelagic thes and Peruvian anchoveta are from FAO catch statistics, with ajustment for over-reporting from China ${ }^{20}$. Fish caught but then discarded were not included in the FAO landings; data relate to the early $1990 \mathrm{~s}^{50}$ were made proportional to the FAO landings for other periods. Other illegal, unreported or unregulated (IUU) catches ${ }^{55}$ were estimated by identifying, for each 5 -year block, the dominant jurisdiction and gear
 use (and hence incentive for IUT) ${ }^{\text {mit }}$; reported catches were then raised by the percentage of IUU in major fisheries for each 5 -year block. The resuling estimates of IUU are very tentative (note dotted y-axis), and we consider that complementing landings statistics with more reliable estimates of discards and IUU is crucial for a transition to ecosystem-based management.

Pauly et al. 2002

Global Catch

"Corrected" global catch: ~80 MMT
How do they gather the data?
Individual countries tell the FAO how much was caught by their fishermen

Usual Problem: under-reporting
Apparent Problem with China: overreporting

Particularly misleading for overall picture of fisheries health, as
China's catch is a high proportion of the total world catch

Constant catch
mandated $\rightarrow \rho^{-0}-0$
--Overal marine
\rightarrow EEZ uncorrected
\rightarrow EEZ corrected

Figure 1 Tine series of gocal and Oinese marine fisherefes catches (1950 to present. a, Gibtal reportsd catch, with and without tee higity vataile Persian anchoveta. Unoorrected fygres are fron FAD (pe. 3); corrodod valuss were oftainad by repleding FAO ligures by estinates tom b. The resconse to the 1882-83 日 NiboSothem Oxxilafon (BMSO) is notvistle as anchoveta tornass leves, and henca catches were stl| very bw fron tha eflect of the previous ESO in 1972 fef. 4. b, Regortad Clinese catchas from Chira's erclusve econonic me (EEZ) and destint wobe fishariss) Incrasad exponentaly fom the mid-19005 to 1968, when the 'ero-grouth policy' mas Inroduced. The carrated values for the Cihesse CEZ wore estineted fom the geneal Inear nodel descrived in te Methods sedion.

Most recent data (released March 2, 2009): World Capture and Aquaculture Production

Million tonnes

Source: FAO Fisheries - The State of World Fisheries and Aquaculture, 2008 PART 1:World review of fisheries and aquaculture, p. 4

Aquaculture increasingly important...

Source: FAO Fisheries - The State of World Fisheries and Aquaculture, 2008 PART 1: World review of fisheries and aquaculture, p. 63

World Capture Fisheries Production

Source: FAO Fisheries - The State of World Fisheries and Aquaculture, 2008 PART 1:World review of fisheries and aquaculture, p. 6

Global MSY

- Best estimate for global MSY = 100-135 MMT (all species, all oceans)
- Most recent compilation of world fisheries:

92 MMT (Present Harvest)

+ Discards (by-catch), ~30\% of total catch
+ IUU (IIlegal, unreported or unregulated catch),
Al/ together, ~130 MMT
- So, Global MSY reached already

Aquacultured Fish on the rise, however...

- Because top, or higher, trophic levels vanishing due to over-fishing, fishermen are exploiting lower trophic levels
- Note that dip in marine curve in 60's was due to extremely large catches of Peruvian anchovetta with low trophic level of 2.2 ($\mathrm{TL}=2$ is that of primary herbivores)

1998
 Fishing Down Marine Food Webs

Daniel Pauly,* Villy Christensen, Johanne Dalsgaard Rainer Froese, Francisco Torres Jr.

Fig. 1. Giobal trends of mean trophic level of fishenes landings, 1950 to 1994. (A) Marine areas; (B) inland areas.

The mean trophic level of the species groups reported in Food and Agricultural Organization global fisheries statistics declined from 1950 to 1994. This reflects a gradual transition in landings from long-lived, high trophic level, piscivorous bottom fish towa'd short-lived, low trophic level invertebrates and planktivorous pelagic fish. This effect, a'so found to be occurring in inland fisheries, is most pronounced in the Northern Hemisphere. Fishing down food webs (that is, at lower trophic levels) leads at first to increr:sing catches, then to a phase transition associated with stagnating or declining ca.ches. These results indicate that present expioitation patterns are unsustainable.

Fishing down the food web

Figure 17. Fishing down: what it actually means.
Fishing down marine food webs means that the fisheries (blue arrow), having at first removed the larger fishes at the top of various food chains, must target fishes lower and lower down, and end up targeting very small fishes and plankton, including iellyfish.

One step in the right direction: Marine Protected Areas (MPA)

- Can "seed" fished areas
- Success dependant upon mobility of fish and size of MPA
- Wouldn't help wide-roaming fish like tuna or other pelagic fish, but would help coastal-based fisheries
(unless they stop at "oases" in the open ocean and these are inc/uded)
- Also preserves habitat in case of destructive fishing (i.e., trawling which destroys bottom populations)
- Currently , 1300 marine reserves globally, but only 0.01% of world's ocean areas are closed to fishing: need to have significantly more protection to make a global diffference

http:///www.fishbase.org
 http://www,fishondine.org I

http:i//www.mbayag.org/cr/cr seafoodwatch blueocean.org \& edf.org

Pocket
 Good Fish Guide 2006

A quick reference to buying 'eco-friendly' fish

MCH
Marine
Conservation
Society
www.fishonline.org

