9. Habitats: High Latitude Ecosystems

- High Latitude Environments
- Seasonal Processes
 - Sea ice
 - Food Fall
 - Reproduction
- Bentho-pelagic coupling
- Food Weds
- Climate Change Effects

Dr Rhian G. Walle 26th April 2010

High Latitude Environment

- Arctic
 - Shelf ~ 200m deep
 - Completely ice-covered in winter
- Antarctic
 - Shelf ~500m deep
 - Localized areas sea icecovered
 - Contains 70% of worlds fresh water
- Colder Water
 - ~7°C -1°C
 - Nutrient rich

Cooler water = Higher Gases

Table 13.3

The Solubility of Gases in Seawater Decreases as Temperature Rises

Solubility (ml/l at atmospheric pressure and salinity of 33%)^a

Temperature	N_2	02	CO ₂		
0°C (32°F)	14.47	8.14	8,700.0		
10°C (50°F)	11.59	6.42	8,030.0		
20°C (68°F)	9.65	5.26	7,350.0		
30°C (86°F)	8.26	4.41	6,600.0		

© 2007 Thomson Higher Education

High Latitude Environment

- Seasonal processes more pronounced at poles
- Nutrients, Phytoplankton, Temperature
- Why?

High Latitude Environment

- Time of Day
 - Daily solar cycle leaves ½ earth in darkness at all times
- Season
 - Earths rotation around the sun (at a tilt) changes light availability on a yearly basis

High Latitude Environment

- What does this mean for the benthos?
- Highly seasonal food supply

Oct-Nov (Late Spring)

- Sea-ice cover breaking up; nearing 24 hr daylight
- Ice-algae released by melting ice
- Melt water-induced stratification of the water column begins

Jan-March (Austral Summer)

Antarctica

- -Sea-ice cover receded
- -Phytoplankton bloom fully developed; sedimentation of organic material can produce thick phytodetrital carpet

May-July (Late Fall-Winter)

Antarctica

- -Nearly 24 hr darkness, sea-ice forms
- -Very low phytoplankton biomass

Aug-Sept (Late Winter - Early Spring) Antarctica

- -Period of maximum sea-ice coverage, short but lengthening daylight hours
- -Relatively austere water column

Highly Seasonal Food Fall

- Palmer LTER region (150m)
 - Ducklow et al., 2006
- Intense summer pulses of POC to shelf floor
- Feeds the benthos
 - Ecological processes center around this energy pulse

Highly Seasonal Food Fall

Fig. 3. Time series of organic carbon fluxes (C_{org} , mmol m $^{-2}$ d $^{-1}$) to the upper traps at MS-6 (a) and MS-7 (b). Ice coverages from Fig. 2 are shown for reference. The annual fluxes were averaged over a single "season", not the full deployment, beginning with the first cup (November 28, 1996) through cup 11 (November 20, 1997). The dotted lines on the fluxes for MS-7b (b) represent the estimated organic carbon flux after removing a component potentially associated with pteropods (see discussion in text).

- Flux not always tightly coupled
- Time Lags
 - Complex bloom/ current structure
 - Wind vs melting induced sea-ice removal
 - Development times of grazers

Collier et al., 2000

Highly Seasonal Food Fall

- Would expect feeding to stop during winter ice
 - Many species do stop for <2-3 months
 - Not always true!

• Suspension Feeders

- If feed on large phytoplankton seasonal
- Most feed on regenerated or resuspended material

Deposit Feeders

- Few studies
- Most highly seasonal feeders
 - Brockington et al., 2001 Sterechinus

ig. 4A, B Sterechinus neumayeri. A Seasonal variation in feeding as measured by faecal egestion) from both North (●) and South

Highly Seasonal Food Fall

Reproduction and Development

- (Usually) closely tied to energy availability
- Most polar macrofauna have brooded or lecithotrophic development
- Spawning and recruitment often occur in winter months!
- Life histories often surprisingly weakly coupled to summer blooms

TABLE 2. Mode of larval development in echinoderms from two polar and one temperate location. Table compiled from data in Pearse [1994], incorporating original data from Thorson [1936]. Data are number of species at that location utilizing a given mode of larval development, with percentage of total species in parentheses.

Site	Number of species reproducing by			
	Pelagic feeding larva	Pelagic non-feeding larva	Protected development	
TEMPERATE Monterey Bay, CA	18 (50%)	8 (22%)	10 (28%)	
POLAR				
N.E. Greenland	4 (17%)	16 (70%)	3 (13%)	
McMurdo Sound	5 (23%)	11 (50%)	6 (27%)	

Clark, 1996

Highly Seasonal Food Fall

- So.....
 - In winter there is little food
 - In summer there are intense food blooms
- Yet.....
 - Feeding occurs year-round
 - Reproduction occurs year-round
 - Recruitment occurs year-round
- How??

"Food Bank" Hypothesis

- Large amounts of summer bloom detritus rapidly deposited on WAP shelf
- Slow decomposition (cold temperatures!)
- The detritus forms a "food bank" for benthic detritivores during lean winter months

Smith & DeMaster, 2008

Food Webs

- Short food chains
 - Based around seasonal food fluxes
- Benthic ecosystem important for higher organisms
 - Arctic
 - Walrus
 - Antarctic
 - Seals

Climate Change Effects

- High Latitudes
- Warming faster than many areas in globe
 - The WAP in particular!

Grebmeier et al., 2006

Climate Change Effects

- Climate Changes
 - Faster/larger at the poles than anywhere else
 - Will it effect the benthos?
- Warming
 - Reduce annual sea ice accumulation & duration
 - Alter quantity and quality of food flux to seafloor
 - Likely to fundamentally change seafloor ecosystem structure and function

Climate Change Effects

- Duration of sea ice is correlated with shelf macrofaunal biomass
- Shift to more seasonal suspension feeders (?)
- Stronger summer peaks in recruitment (?)
- Decrease in importance of benthic prey to larger predators
 - Pelagic seas remain highly productive year-round

Smith et al., 2006

Climate Change Effects

- Arctic
- Sediment 02 uptake
 - Indicator of C supply to benthos
- Macrofaunal Biomass
- Both are rapidly decreasing

Climate Change Effects

- Arctic
 - Shrinking (35 miles in last 30 years)
 - 2100 no sea ice
- Antarctic
 - Is primarily cooling!
 - Western Antarctic Peninsula
 - Temperature risen 2.5C in last 50 years

Conclusions

- High latitude ecosystems are highly seasonal
- Many of the organisms in these ecosystems are highly adapted to use seasonal resources yearround
- Food webs are short, benthic biomass is important to larger marine predators
- Global warming effects more than just sea ice, polar bears and penguins, it will change the whole ecosystem from the bottom up