6. Distribution Patterns & Community Ecology

- Population Dynamics
- Community Dynamics
 - Community Succession
- Zonation
 - Faunal driven
 - Environmentally driven
- Global Biogeography

Dr Rhian G. Waller 19th April 2010 Reading: Levinton, Chapter 17 "Biotic Diversity in the Ocean"

Levels

* Individual

* An organism physiologically independent from other individuals

* Population

* A group of individuals of the same species that are responding to the same environmental variables

* Community

* A group of populations of different species all living in the same place

* Ecosystem

* A group of inter-dependent communities in a single geographic area capable of living nearly independently of other ecosystems

* Biosphere

* All living things on Earth and the environment with which they interact

Population Dynamics

- What do populations need to survive?
 - Suitable environment

- Populations limited
 - Temps
 - O₂
 - Pressure
 - Etc
- Range of Tolerance

Population Dynamics

- Environment selects traits that "work"
 - r strategists
 - K strategists
- What makes a healthy population?
 - Minimum Viable Population (MVP)
 - "Population size necessary to ensure 90-95% probability of survival 100-1000 years in the future"
 - i.e. Enough reproducing males and females to keep the population going

Community Dynamics

Communities

- A group of populations of different species all living in the same place
- Each population has a "role" in the community
 - Primary Producers
 - Turn chemical energy into food energy
 - Photosynthesizers, Chemosynthesizers
 - Consumers
 - Trophic Levels
 - Decomposers
 - Recycle waste

Niche

- · Every organism has it's "Niche"
 - The ecological role of an organism in a community
 - Where it lives, what food it eats, what animals eat it
- Niche is not a "habitat", it's an "occupation"
- Most organisms do not fill their whole niche
 - Fundamental
 - The theoretical niche an organism can fill
 - Realized
 - The real niche an organism actually fills
 - Why? Other organisms encroach/overlap

Communities

- Mix of life histories
 - Suitable for different environments and different roles in communities
- · Communities are not fixed in time

- Biological Influences
 - Recruitment, growth, predation, immigration, emigration
- Environmental Influences
 - Temp changes, sedimentation, salinity, 0₂ etc.

Community Dynamics

- Up to "Carrying Capacity"
 - Population size each community can support indefinitely under a stable set of conditions
 - Carrying capacity NOT fixed
 - Environmental changes

- Growth Rate & Carrying Capacity affected by -
 - Environmental Resistance
 - Space
 - Food
 - Competition
 - Temp
 - Etc.

Community Changes over Time

- Not as rapid as terrestrial systems
 - · Volcanoes, earthquakes, landslides

• Environmental changes

- Seafloor spreading
- Climate cycles
- Evolution

• Organism caused changes

- Communities can modify their own environments
 - E.g. Coral Reefs
 - Accumulation of coral & sediment changes the habitats & niches

Community Changes over Time

* Succession

- * How communities change (naturally) over time
- * Replacement of one community by another

* Climax Community

- * Long established community
- * Stability

Community Succession

- * Hydrothermal Vents
 - **★** Ephemeral (primarily r strategists!)
 - * Smoker appears
 - * Bacterial mat (biofilm)
 - * Scavengers
 - * Climax community

Distribution Patterns

- Organisms within a community compete for resources
 - Food, light, space etc.
 - Can be within the same population, or between populations
- In communities undergoing succession/ unstable communities
 - Populations cannot live in the same niche forever
 - Populations eliminated
- In Stable and Climax Communities
 - Leads to zonation

Distribution Patterns

Competition for resources can lead to zonation

Zonation Patterns

- Environment can lead to zonation
- Intertidal Zonation
 - Freshwater Input
 - Rivers, ice accumulation
 - Wave Shock
 - Force of waves move animals
 - Temperature Changes
 - Cold water hits rock warmed by sun
 - Desiccation
 - Constant drying and rehydrating

Zonation

- Environmentally driven zonation
 - Oxygen, Temperature, Sedimentation, Pressure, Geology, etc.
- Scales
 - Micro Scale
 - Sediments
 - 02, grain size
 - Large Scale
 - Depth Gradients
 - Land deep-sea
 - Global Scale
 - Biogeography

Huettel & Webster, 2001

Depth Zonation

- Increase in pressure
- Decrease in light, temp and food

Depth Zonation

- Majority of Deep-Sea is sediment
- Smaller distinct habitats
 - Seamounts
 - Ridges
 - Shelf-edges
 - Hydrothermal vents
 - Cold-Seeps
 - Whale falls
 - Azooxanthellate reefs

Distinct fauna in each of these habitats

Deep Sea Animals The sea Animals The sea Animals

Deep Sea Gigantism Paradox

- Deep sea is dominated by either very small or very large organisms
 - Why?
- Monopolize resources
 - Wider foraging area
 - Larger gut systems
 - Deposit feeders more energy from low nutrient food
- Predation Prevention
 - Lager less likely to be eaten (K strategy)
- "Caloric Dwarfs"
 - Large size but little actual body tissue
 - Lipps & Hickman (1982)

Global Biogeography

- "Global Zonation"
- Influenced by many factors
 - Temperatures, primary production, flow, habitat availability

Global Biogeography

- Majority of "habitat" available on Earth is deep sea
- Most Habitat = 4000m; Most species = ~2000m
 - Environmental factors come into play

- Flux to the benthos important in biogeography
- Driven by primary production on surface

Drives their ecology

Conclusions

- Individual Population Community Ecosystem -Biosphere
- Community Ecology
 - Zones of tolerance
 - Niches
 - Carry capacity and environmental resistance
 - Succession
- Zonations
 - · Faunal influenced
 - Competition and predation
 - Environment influenced
 - Depth zonations
 - Pressure, light, food
 - Majority of deep-sea is sediments
- Global Biogeography
 - Whole ocean processes lead to different habitats, different biogeography of fauna