5. Reproduction and Recruitment

- Sexual vs Asexual Reproduction
- Reproductive effort
- Developmental types
- Developmental trends
- What is recruitment
- Factors affecting recruitment
- Process of larval habitat selection

Dr Rhian G. Waller 16th April 2010 Reading: Levinton, Chapter 5, "Reproduction, Dispersal and Migration"

Sexual Reproduction

- Gonochorism
 - Single sexes
- Hermaphroditism
 - Dual sexuality
 - Simultaneous, Sequential, Cyclical
- Semelparous
 - Single reproductive effort
 - E.g., nudibranchs, nereid polychaetes
- Iteroparous
 - Multiple reproductive events
 - E.g., Corals, seastars

Asexual Reproduction

- Does not involve fertilization
- Only one parent involved
- Produces offspring genetically identical to parent
- Some organisms primarily (but not solely) reproduce asexually
 - Prokaryotes
- Some swing both ways!
 - Corals, fungi

Reproductive Effort

- It takes energy to reproduce
 - Reproductive Effort
- Metabolic energy spent reproducing...
 - Searching for mates
 - Copulation
 - Gamete formation
 - **Fecundity** = how many babies you produce
 - Fertilization mechanisms
 - Brood protection & parental care

Development Types

- Different types of larvae produced in benthic animals
 - Planktotrophic
 - Lecithotrophic
 - Direct Development
- Suitable for different strategies
 - Dispersing long distances
 - Surviving predators
 - Settling fast

Development Types

Planktotrophy

- Planktonic free living larvae
 - No parental care
 - Feeds in the plankton phyto/zoo/bacteria/algae
 - Special cilary bands
- In plankton ~hrs to months
 - Can travel V. long distances!
- High fecundity
- High dispersal potential
- Delayed metamorphosis can be possible

Thorson, 1961; Scheltema, 1988; Strathmann & Strathmann, 2007

Development Types

Lecithotrophy

- Planktonic free living larvae
 - Do not feed in the plankton
- In plankton ~hrs to months
 - Can also travel, but limited by food source
- Medium fecundity
 - Large yolky oocytes
- Evolutionary advantage
 - Correlation between lower fecundities yet still relatively high dispersal capabilities

Jaekle & Manahan, 1989

Development Types

- Direct Development
 - Brooding or egg masses
 - No free larvae
 - High parental care
 - Produces benthic juvenile
 - Lower fecundity
 - Little dispersal
 - Esp in sessile organisms

Development Types

- Mixed Development
 - Some brooding then a planktonic stage
 - Parental protection & higher dispersal
 - Best of both worlds??

Gallardo, 1977; Caswell, 1981

Evolutionary Advantages

- Advection Diffusion Dispersal
 - Advection currents
 - Diffusion random eddies
- Hill (1991) Model
 - High pelagic loses
 - Survival sensitive to mean advection
 - Minimum fecundity to overcome pelagic loses

Hill, 1991

Timing of Reproduction

- When is a good time to reproduce?
- Energy
 - Fixed amount of energy to an organism
 - Growth & Reproduction
 - Food to benthos can be seasonal
- Energy Allocation
 - To Gametes
 - Use food pulses to start reproduction
 - To Larvae
 - Use food pulses to feed larvae

Timing of Reproduction

- Eckelbarger & Watling (1995)
 - 1 Fast egg producers (immediate response to bloom)
 - 2 Slow egg producers (spawn when conditions favor larvae)
 - 3 Slow egg producers (use bloom to start repro)
 - 4 No relationship to bloom

Development Trends

- Low Latitudes
- High Latitudes
- Deep Sea

MANY EXCEPTIONS TO ALL OF THESE

Thorson, 1950; Young, 1994; Grassle, 1994; Pearse, 1994; Smith et al., 2006; Rex & Warren, 1985

Settlement/ Recruitment?

Settlement

- Attachment to benthos, metamorphosis into adults
- Site critical for sessile organisms
- Availability of larvae, settlement cues, hydrodynamic factors, larval behaviour – all affect settlement

Recruitment

- Number of organisms that settle and survive in a population
- Operationally defined, e.g., it occurs when an organism is first detectable on a settling plate or in a colonization tray.
- Incorporates post-settlement mortality

Why study recruitment?

- Important process in determining community structure
- Cannot predict recruitment from reproduction
 - Just because you have high fecundity doesn't mean you have high recruitment
 - Post-Settlement Mortality
 - How can you predict recruitment?
- Two long standing hypothesis
 - Supply Side Ecology
 - Populations limited by factors affecting adults
 - Larval Habitat Selection
 - Populations limited by habitat

Lewin (1986), Young (1987)

Supply Side Ecology

- Space will not be occupied unless propagules get to it
- Processes causing variation in arrival of recruits
 - Production of larvae
 - Fertilization
 - Dispersal
 - Transport, period of dispersal, mortality
 - Oceanographic conditions
 - Larval mortality
 - Larval behaviour
 - Settlement

Larval Habitat Selection

- Much of early motivation for studying recruitment
- Directed towards settlement
- Main Issues
 - Do larvae actively select habitat?
 - If so, how?
- Alternatives to Active Selection
 - Passive
 - Hydrodynamic dispersal and sorting
 - Larvae and substrate have related characteristics (eg Stickiness)

Larval Habitat Selection

- 3 Stages of Settlement
 - Stage 1 Getting to/staying in vicinity of suitable habitat
 - Stage 2 Getting to the bottom
 - Stage 3 Staying on the bottom
- Active processes could be useful in all these stages

Conclusions

- Many life histories amongst invertebrates
 - Though there are trends, these are not rules
- Though direct development is more evolutionary evolved, many advantages to pelagic development
- Cannot infer recruitment from settlement
 - Modified by post-settlement mortality
- Larval arrival/retention often influenced by larval behaviour
- Interactions between benthic recruitment and water column processes in the field are poorly known

Larval Habitat Selection – Stage 1

- Stage One
 - Ample evidence for active behaviours that keeps larval benthos in general area
- Blue Crabs Callinectes sapidus
 - Adults live in upper estuaries
 - Larvae live in the water column on the open continental shelf
 - No adults live on the continental shelf
 - How does this happen?

Forward et al., 2002; Tankersley et al., 2003; Goodrich et al., 1989

Larval Habitat Selection - Stage 1

- Larvae hatch in estuary and are advected offshore
 - Late stage females migrate to mouth of estuaries
 - Spawn at peak high tide, just when starts to ebb
 - Larvae taken out to sea rapid transport to feeding grounds
 - Why?
 - More food available in coastal waters!

Forward & Cohen, 2003

Forward et al., 2002; Forward & Cohen, 2003; Tankersley et al., 2003; Goodrich et al., 1989

Larval Habitat Selection - Stage 1

- Larvae return to estuaries after 1-2 months
 - Reverse vertical migration
 - Up in the day down at night
 - Phototaxis & Geotaxis
 - On shore transport
 - Day time on-shore winds drive the larvae back into the estuary
 - Storm surges
 - Megalopes accumulate near surface waters in fall transported in shore by storms/hurricanes at this time of year

Forward et al., 2002; Tankersley et al., 2003; Goodrich et al., 1989; Little & Epifiano, 1991

Larval Habitat Selection - Stage 1

- Once near mouth of estuary
 - Flood Tide Transport
 - Leap-Frog up the estuary

Hydrodynamic Transport Megalopse swim in response to high nabulence to maintain their position in the water column and are transported uperstaary by strong flood-tide currents. Phase 2 Vertical Migration/Ascent During nowtheral flood tides, negalopse useed into the water column in response to vising salinity Phase 1 Position Maintenance During the day and nocturnal ebbitides, negalopse minitain their position near the bottom

Fig. 1. Callinectes sapidus. Conceptual model of flood-fide transport and settlement of megalopae in catasines (modified from Forward and Tankersley 2001; Forward et al. 2002b)

Forward et al., 2002

Larval Habitat Selection - Stages 2&3

- · Getting to the bottom & staying on the bottom
- Factors implicated
 - Specific microbial populations
 - Cement from adults
 - Specific chemicals
 - Grain size itself
 - Chemical gradients from disturbed sediments = avoidance
 - Water borne polypeptides oyster larvae
- Sensing Mechanisms
 - Tactile larvae feel rather than smell
 - Chemotaxis (for specific polypeptides (oysters))

Larval Habitat Selection – Stages 2&3

- Conclusions from Lab Studies
 - In still water, active selection can occur on small spatial scales (mm-20cm)
 - Swimming & crawling
- BUT is this true in the field?
 - Larger spatial scales 10m km??
 - Water flows??
 - Swimming speeds??
 - Size??
 - Sinking rates??
- No studies have adequately shown upstream transport of larvae past their swimming speeds
 - Still active debate!