Rock Weathering and Soil Development

OCN 401 -Biogeochemical Systems 30 August 2012

Reading: Schlesinger, Chapter 4

Outline

- Rock weathering
 - Mechanical erosion
 - Chemical weathering
- Soils and their development
- Weathering rates
- Continental denudation

Rock weathering

• Definition: The breakdown of rocks by chemical and mechanical processes

 Mechanical weathering -- caused by abrasion by water and wind, expansion of water during freezing, plant root expansion, etc.

• Chemical weathering -- caused by the reaction of rocks with acidic or oxidizing substances

What are the <u>Products</u> of Weathering?

- Mechanical weathering:
 particles (smaller than starting material)
- Chemical weathering:
 - dissolved material
 - particles
 - gas

What are the Fates of Weathering Products?

- **Deposition** at the site of weathering
- Erosion, removal, and transport from that site

Erosion

- Weathering is the process by which rocks break down; erosion is the removal of that material from the weathering site
- Principal agents of erosion are wind and water
- Natural erosion rates typically <100 t km⁻² yr⁻¹
- Human activities (especially farming) greatly elevate erosion (often to >>1,000 t km⁻² yr⁻¹)
- Most erosion products are re-deposited somewhere on land, rather than transported to the ocean

What affects chemical weathering?

Silicate minerals formed at high temperatures Rapid weathering

• Mineralogy

Silicate minerals formed at low temperatures Slow weathering

What affects chemical weathering?

- Temperature
- Precipitation

What affects chemical weathering?

• Acids

```
Weathering of Na-feldspar (albite) to kaolinite:
albite + carbonic acid + water \rightarrow
sodium ion + bicarbonate ion + silicic acid + kaolinite
```

```
2Na^{+} + 2HCO_{3}^{-} + 4H_{4}SiO_{4} + AI_{2}Si_{2}O_{5}(OH)_{4}
```

Weathering of limestone:

 $CaCO_3 + H_2CO_3 \rightarrow Ca^{2+} + 2HCO_3^{-1}$

Principal Acids in Weathering

- Carbonic Acid (H_2CO_3) forms from $CO_2 + H_2O_3$
- Sources of CO₂ include volcanoes, fossil fuel burning, and oxidation of organic matter (especially in the soil)
 - Wet soil has a higher content of CO₂ and carbonic acid than the atmosphere, so this is a primary location for chemical weathering
 - A major human pollutant

- Nitric Acid (HNO₃) primarily forms during the "nitrification" (or oxidation) of ammonia in soils, and from the atmospheric oxidation of NO_x produced during the combustion of fossil fuels and plant biomass
- Sulfuric Acid (H₂SO₄) primarily forms during the combustion of sulfur-rich coal and as a byproduct of marine algal metabolism
- These are major human pollutants, although both also have natural sources; both are found in "acid rain"

- Although acids mentioned have natural sources, human activities have increased concentrations above natural
- The consequence is that human activities have elevated rates of chemical weathering

Products of Weathering

- 1. Secondary minerals:
 - Clay minerals (fine-grained silicates, such as kaolinite, illite, montmorillonite, etc.)
 - Oxides of iron (goethite, hematite) and aluminum (gibbsite, boehmite)
 - Phosphate compounds such as CaHPO₄, FePO₄, and AIPO₄
- 2. Dissolved materials
- 3. Soil an aggregate of secondary minerals, particles liberated from parent rocks, and organic matter

Soil is **not** just a collection of inert particles.... Important chemical reactions occur in soils:

- Cation exchange
 - Clay minerals such as montmorillonite substitute one cation (e.g., Mg²⁺) for another (e.g., Al³⁺)
 - This sets up a negative charge that can make another cation (e.g., Ca²⁺, K⁺, NH₄⁺) dissolved in water stick to the clay

- Soil buffering
 - Reactions such as organic-matter oxidation, or the presence of acid rain, lower soil pH
 - As pH goes down (*i.e.*, H⁺ concentration goes up), H⁺ displaces cations (especially Ca⁺²) off the clay particles and into solution
 - This process buffers the pH (makes pH go back up)
 - Formation and dissolution of soil minerals is strongly tied to this pH buffering

Soil Development

- Rock weathering, water, and organic matter decomposition -- all influence soil development
- Soil consists of layers (called "horizons") ranging from
 - relatively fresh organic matter at the surface,
 - through a "soup" of organic matter being decomposed by fungi and bacteria and mixed with minerals,
 - to largely mineral material....
 - ...all sitting on the underlying parent rock

Hypothetical Soil Profile Showing Soil Horizons

Contributors to Soil Development

Precipitation (cm/yr)

Forest soils

- Typically form under conditions of abundant organic matter supply and abundant water (at least seasonally)... which promote soil development
- Typically the profile from rich surface organic matter to the underlying bedrock is well developed
- Time for development (e.g., since last glaciation) is an important consideration

- Grassland soils
 - Typically develop under drier conditions than forest soils and with lower organic supply
 - Rate of soil formation influenced by availability of water

- Desert soils
 - Low precipitation and low organic production, so are at the extreme (low) end of soil development rates
 - Typically high in CaCO₃ ("caliche")

Soil Types (Orders) Reflect the Varying Contributors to Soil Formation

Gelisols - soils with permafrost within 2 m of the surface

Spodosols - acid forest soils with a subsurface accumulation of metal-humus complexes

Andisols - soils formed in volcanic ash

Oxisols - intensely weathered soils of tropical and subtropical environments

Vertisols - clayey soils with high shrink/swell capacity

Aridisols - CaCO3-containing soils of arid environments with subsurface horizon development

Ultisols - strongly leached soils with a subsurface zone of clay accumulation and <35% base saturation

Mollisols - grassland soils with high base status

Alfisols - moderately leached soils with a subsurface zone of clay accumulation and ≥35% base saturation

Inceptisols - soils with weakly developed subsurface horizons

Entisols - soils with little or no morphological development

soils.cals.uidaho.edu

Weathering Rates

• Chemical weathering can be estimated from budgets of dissolved-load export from systems

Watershed	Venezuela	New	Maryland	West Africa
		Hampshire		
Precipitation (cm/yr)	450	130	112	94
vegetation	tropical	temperate	temperate	tropical
	forest	forest	forest	forest
dissolved transport				
(t km ⁻² yr ⁻¹)	37	8	22	5

Continental Denudation

- Estimated from river transport to ocean
- Contrast these rates with erosion rates of 100 to 1,000 t km⁻² yr⁻¹

Continent	Area	Chemical Denudation		Mechanical Denudation	
	10 ⁶ km ²	10 ⁹ t/yr	t km ⁻² yr ⁻¹	10 ⁹ t/yr	t km ⁻² yr ⁻¹
North America	21	0.7	33	1.46	70
South America	20	0.55	28	1.79	90
Asia	47	1.49	32	9.43	201
Africa	30	0.71	24	0.53	18
Europe	11	0.46	42	0.23	21
Australia	10	0.02	2	0.06	6
TOTAL	139	3.9	28	13.5	97

Lecture Summary

- Weathering and soil development are affected by mineralogy, temperature, water, acids, biota
- Humans are increasing the rates of weathering, soil development, erosion, river transport, and estuarine/delta sedimentation
- Weathering, etc. **increases** immediate availability of essential elements, but **removes** these materials from land for long periods (on human time scales).