Ecosystem Mass Balances and Models of Terrestrial Nutrient Cycling

OCN 401 - Biogeochemical Systems

20 September 2012

Reading: Schlesinger, Chapter 6
Outline

1. Ecosystem mass balances
 • The watershed concept
 • Hubbard Brook Forest: a classical ecosystem-scale study

2. Budgets
 • Chemical budgets for forests
 • Continental-scale budgets
 • Estimates of uncertainty

3. Models
 • From budgets to predictive models
 • Models that track mass fluxes through time
Stochastic = random, unpredictable
Irruption = sudden increase

Factors Controlling Ecosystem Operation

Groffman et al. (2004)
BioScience 54:139
Ecosystem (Landscape) Mass Balances

The mass balance for any material in an ecosystem can be represented by a simple equation:

\[
\text{Input} - \text{Output} = \text{Change in Storage}
\]

Each of these terms (input, output, storage) can have multiple components.

However, there is a fundamental controlling concept (Conservation of Mass):

\textbf{THINGS HAVE TO ADD UP!}
A Water Balance
Subsurface Hydrologic Zones

- VADOSE ZONE
- GROUNDWATER ZONE
- Water Table
- River or Lake

Two Subsurface Hydrologic Zones:
- VADOSE ZONE (Unsaturated Zone)
- GROUNDWATER ZONE (Saturated Zone)
Groundwater Flow & Residence Times

USGS circular 1139
Small Watershed Concept

Precipitation Collector
Ridge Line
Evapotranspiration

Precipitation

Topographic Divide
Stream Gaging Station

Soil
Mantle
Bedrock

Stream Flow

Water Budget at Hubbard Brook:
Precipitation (100%) = Streamflow (60%) + Evapotranspiration (40%)
Hubbard Brook Forest:
A Classical Ecosystem-scale Study
Example of a weir at Hubbard Brook:

Weather station (note treated watersheds on ridge):
Hubbard Brook Forest

[Graph showing water amount (cm) for different months with streamflow and precipitation data.]
Mass-Balance Modeling at Hubbard Brook

Input - Output = Change in Storage
Nitrogen: Pre- and Post-Cut

Forest

Organic N

 decomposition → NH₄⁺ → nitrification → 2H⁺NO₃⁻ → leached

Cut

Organic N

 decomposition → NH₄⁺ → nitrification → 2H⁺NO₃⁻ replaces Ca, Na, K, Mg → leached
Element Flux and Disturbance Over Time

Undisturbed system:
constant flux through time ("control")

Disturbed system:
dramatic modification of flux, then recovery back to behavior like undisturbed system
Chemical Budgets for Forests

If positive, then export of material (e.g., due to Ca release from weathering)

If negative, then import of material (e.g., due to atmospheric input)

<table>
<thead>
<tr>
<th></th>
<th>Ca</th>
<th>Cl</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Columbia</td>
<td>15.8</td>
<td>2.9</td>
<td>-2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Oregon</td>
<td>41.2</td>
<td>---</td>
<td>-1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>11.7</td>
<td>-1.6</td>
<td>-16.7</td>
<td>0.0</td>
</tr>
<tr>
<td>North Carolina</td>
<td>3.9</td>
<td>1.7</td>
<td>-5.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Venezuela</td>
<td>14.2</td>
<td>-1.4</td>
<td>8.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Where does the N come from?
Cultivated and Uncultivated Systems in a Continental-Scale N Budget

Figure 6.19 The nitrogen budget for west Africa in 1978. All flux estimates are in units of 10^6 kg/yr. Pool-values are in 10^6 kg and increments to the pools are in parentheses. Modified from Robertson and Ross wall (1986).
Many Budgets Contain Estimates of Uncertainty

Table 7. A budget for atmospheric NH₃.

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>'Best' estimate</th>
<th>Potential range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic animals (Table 4)</td>
<td>32</td>
<td>24—40</td>
</tr>
<tr>
<td>Sea surface (text)</td>
<td>13</td>
<td>8—18</td>
</tr>
<tr>
<td>Undisturbed soils (Table 3)</td>
<td>10</td>
<td>6—45</td>
</tr>
<tr>
<td>Fertilizers (Table 6)</td>
<td>9</td>
<td>5—10</td>
</tr>
<tr>
<td>Biomass burning (text)</td>
<td>5</td>
<td>1—9</td>
</tr>
<tr>
<td>Human excrement* (Warneck 1988)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Coal combustion* (Warneck 1988)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Automobiles* (Warneck 1988)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>TOTAL INPUTS</td>
<td>75</td>
<td>50—128</td>
</tr>
</tbody>
</table>

Outputs:		
Wet deposition on land	30	
(Warneck 1988)		
Dry deposition on land	10	
(Warneck 1988)		
Wet deposition on sea surface	16	
(Duce et al. 1991)		
Reaction with OH radical	1	
(Warneck 1988)		
TOTAL OUTPUTS	**57**	

* incremented to represent current human and automobile populations.

Tg = teragram = 10^{12} g
Higher nutrient availability
...leads to
higher plant nutrient content
...leads to
lower nutrient reabsorption before leaf-fall
...which reflects
lower nutrient-use efficiency
Models, As Well As Budgets, Often Track Mass Fluxes Through Time

- The CENTURY model describes grassland soil development
- Boxes = pools of plant C residue in soil
- Arrows = C fluxes between soil pools
- Turnover times ranges from 0.5 y (fresh metabolic C) to 1,000 y (“passive soil”)
- Each arrow is represented by an equation describing flux
The model simulates the time-course of grassland soil development over 10,000 years.

Grass production and soil C accumulation is closely linked to P availability during the first 800 yr.

After that, they are related to increases in soil N mineralization.
Lecture Summary

- Element flux at the ecosystem scale is an integrating measure of ecosystem function -- thus we determine *Ecosystem Mass Balances*

- **Budgets** are descriptions of material flux from one functional unit (or reservoir) to another

- **Models** may be superficially similar to budgets, except that simultaneous equations are used instead of purely descriptive data to describe the time course of material flux through a system

- With both budgets and models there is often added insight by the simultaneous examination of fluxes of several linked materials (e.g., C, N, P) through the system