Placer Deposits

OCN 631/ORE 678

Gary McMurtry

Placers Outline

- Placer Deposit Types
- Environments of Placer Mineral Occurrence
- Exploration Methods in Shallow Waters
- Sand & Gravel, Mineral Aggregates
 - Sources and Uses of Major US Nonmetallic Construction Raw Materials
 - Projected US Sand & Gravel Demand
 - Sources & Fates of Offshore Sand & Gravel Deposits
- Exploitation (Mining) Methods
 - Dislodgement Needs for Mining Marine Minerals
 - Depth of Marine Minerals & Equipment Capability
- Marine Diamond Exploration & Mining Areas of Southern Africa

Target Commodities

Source: IHC Deep Sea Dredging & Mining

IHC Deep Sea Dredging & Mining

Dredging technology has been expanding its horizons since the discovery of the treasures of the deep sea. Deep Sea Dredging or Mining is a greenfield activity since no proven technology is available for deep sea activities. A serious transition is needed in order to develop new excavation techniques and vertical transport systems for deep sea activities. The main challenges are the hyperbaric conditions, the slurry transport, the remote control and maintenance aspects.

Riding Mill Lago Head Office – The Netherlands Offices – UK

Sliedrecht

Shipyards – The Netherlands

Hardinxveld-Giessendam Hendrik-Ido-Ambacht Heusder Kinderdijk

Blandford Forum Riding Mill Office - US Wayne, NJ Representative offices

Placer Deposit Types		Table 1. Examples of placers, aggregates and other minerals.			
•	,	Commodity	Ore mineral	Specific grav	
From: D. S. Cronan, Underwater Minerals (1980)		Non-metallic Silica L ime Sand and gravel Topaz Spinel Corundum	quartz sand shells and shell sands various topaz spinel corundum	2.65 2.7 3.0 $3.4-3.63.5-4.03.9-4.1$	
Hot Industrial Metal Future Energy, High Toob Motals	ndustrial I nergy,	Heavy mineral sands Beryllium Titanium Titanium Chromium Zirconium Manganese Manganese Iron Thorium Nb, Ta Page Easths	beryl rutile ilmenite chromite zircon hausmannite braunite magnetite monazite columbite, tantalite group of 15 REE oxides	2.75-2.8 4.18-4.25 4.7 4.6 4.68 4.72-4.84 4.72-4.83 5.18 5.0-5.3 5.2-7.9	
		Tin Mercury	cassiterite cinnabar	6·8-7·1 8·10	
Ind Ec	lustrial, onomic	Precious and rare Diamond Copper Silver Gold Platinum	diamond native metal native metal native metal native metal	3.5 8.9 10.5 15-19.3 14-19	

Where <u>Specific Gravity</u> = Density relative to H_2O (=1.00) in cgs units of g/cm³

Environments of Possible Placer Mineral Occurrence

Cronan (1980)

Global Distribution of Continental Shelves, with Extent of Knowledge

Continental Shelf and Slope off East Florida: The Blake Plateau

Global Distribution of Placer Deposits circa 1970

M = monazite (yielding U, Th) D = diamonds

Earth's Future Resources: The Sea

phosphorites

Known global coastal distributions of phosphorites (P), heavy minerals, & various native metal & diamond placers (from US Minerals Management Service, 1990).

Exploration Methods in Shallow Waters

- SCUBA/NITROX Diving
- Sediment Sampling

With contacts interpretation

Raw seismic

Example of Geology Leading to Possible Location of Tin (Sn, Cassiterite) Placers in Indochina (SE Asia)

<u>Note</u> location of "tin belts", or SnO_2 -bearing granites (source rocks) on land, and possible seaward extension into Gulf of Thailand

Seaward extension of cassiterite (SnO_2) placers formed in streams off Sinkep Island, Indonesia

Can you suggest a simple method of delineating potential areas of offshore placer deposits?

Consumption of <u>mineral aggregates</u> by the US construction industry, for the periods 1959 and 1972 (in millions of tons)

	1959			1972		
Construction use	Sand	Gravel	Crushed stone	Sand	Gravel	Crushed stone
Building	123	114		188	153	
Paving	105	313		131	280	
Fill ^a	16	17		49	43	
Railroad ballast	1	5		1	2	
Other	6	7		10	13	
Concrete aggregates						134
Bituminous aggregates						83
Macadam aggregates			357			33
Road-base aggregates						337
Surface treatment aggregates						52
Other						113
Total construction	250	456	357	378	492	752
Cement manufacture			91			109
Percentage of total production used in construction	92.9	98. 9	12.2	92.8	97.3	81.6
Total production	269	461	582	408	506	922
			Sour		ram et a	al (1078

Source: Baram et al. (1978)

US Sources and Uses of Major Nonmetallic Construction Raw Materials

Source: Morgan (1973)

Projected US Sand & Gravel Demand

Source: Cooper (1972)

Which trend was correct?

Sources & Fates of Offshore Sand & Gravel Deposits: West Coast USA

Sources & Fates of Offshore Sand & Gravel Deposits: East Coast USA

Note formation of longshore barrier islands from headland erosion

Placer Exploitation (Mining) Methods

Basic Mining Strategies & Techniques

Placer Mining on Land

Open-Pit Iron Ore Mining, Brazil

Alluvial Diamond Mining, Africa

Bolivian Tin Mine

Hydraulic Gold Mining, Alaska

What have not the deland the deal that the state of the state

Placer Mining at Sea

Source: IHC Deep Sea Dredging & Mining

Mining Industry Aspects

Source: IHC Deep Sea Dredging & Mining

Grade-Volume Curve for Surficial Sediments of Nome, Alaska

4000 Theoretical Grade of Reserves (mg Au/cubic meter) 3000 Grade Volume of Reserves Volume 2000 1000 Theoretical 0 400 800 1200 1600 Cut-Off Grade (mg Au/cubic meter)

Marine Placers

High Volume = Low Grade; High Grade = Low Volume!

Progressive Dredging of a Reserve Block off Nome, Alaska

Dislodgement Needs for Mining Marine Minerals

Depth of Marine Minerals & Equipment Capability

			Depth	(feet)				
	0 100	200	300	400	500	600	1000	
						Phos	phorite	
	Diamonds							
enci	Hanny minarale							
uno	neavy minerais							
1 00	Cassiterite							
nera	Barite							
W	Shells							
	Gold							
			Air	Life .				
	AITHI							
Ville	Bottom-mounted dredge pump							
daq	Ladder-mounted	pump						
f ce	Suction							
ueu	and the second							
dint			Dra	gline				
Ĕ	Bucket-ladder							
	Grab							
						11		
	50	1	100		150	200 23	325	
	Depth (meters)							

Project Development: From customers expectations to realization.

Source: IHC Deep Sea Dredging & Mining

Marine Diamond Exploration & Mining Areas of Southern Africa

Historical annual diamond mining from Namibian sources

Diamond-bearing Igneous Pipes

Interpretive section of a pipe in Australia

Inner & Middle Shelves of Nambia & South Africa: Diamond Sizes (Carots)

Along the coastline

H Area of energy change

G....Major gullies I....Sheet gravels

Typical diamond accumulation features on inner shelf.

Progressive sampling of a "diamondiferous" feature.

FIGURE 5.9 Large drilling systems modified for marine use.

DeBeers' High-Tech Seabed Mining Machines Now in Use

It's Where You Find It.

Sluice, Alaska

Oro, Au, Gold

Gold Pan