Homework 1: Due Sep. 9, 2014

Hand in a hard copy at the beginning of class. Show your work.

- 1. Do question 1 on page 88 of the text.
- 2. Consider a photovoltaic (PV) panel that generates 1 KW with 500 nm wavelength light.
 - (a) Incident solar radiation at the top of the Earth's atmosphere is $S_0 = 1370 \, \text{W/m}^2$, and average albedo is $\alpha = 0.31$. Show that the average incident solar radiation at the Earth's surface is $S = (1 \alpha) \frac{S_0}{4} = 236 \, \text{W/m}^2$.
 - (b) For the average incident energy at the Earth's surface, *E*, how big does this panel need to be?
 - (c) How many photons is the panel collecting per second?
 - (d) In very general terms, how do you think a PV cell works? (only 1 or 2 sentences).
- 3. Consider a planet with a simple perforated glass atmosphere. A fraction e of the simple atmosphere is glass, and (1-e) of the simple atmosphere is *hole*. The glass and the planet are perfect black-bodies, absorbing then radiating all their energy. The glass is completely transparent to shortwave radiation, however, the planet has an albedo of α .
 - (a) Draw and label EM radiation flux arrows on the figure (or copy). In addition to e, and α defined above, use $S (= S_0/4)$ for solar radiation, R_p for radiation from the planet, and R_a for radiation from atmosphere. Make sure you locate the arrows under the correct shortwave or longwave heading.

Shortwave Radiation

Glass

Ground

- (b) Write steady state radiation balances for above and below the atmosphere. Then write expressions for R_p and R_a .
- (c) Write equations for T_p planet surface temperature, and T_a atmospheric temperature.
- (d) Calculate S_0 for Mars. You will need to look up distances.
- (e) Calculate T_p for e = 0, 0.5, and 1 using S_{Mars} , and $\alpha = 0.17$.