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ABSTRACT

The influence of deterministic forcing on SST predictability is investigated in a zero-dimensional, stochastic,
coupled atmosphere–ocean climate model. The SST anomaly predictability time is found to be very sensitive
to the properties of the deterministic forcing. Comparison of the amplitudes of the deterministic and stochastic
forcing terms, for example, as determined from linear regression analysis, may give a misleading impression of
their relative importance. The importance of instead comparing the time-integrated forcing terms is emphasized.
The conditions under which the model exhibits preferred timescales and the conditions under which the model
power spectrum approaches that of a univariate Markov process (red noise) are also determined.

The idealized model results are complemented with an analysis of climate observations for the Kuroshio
Extension region. Observational errors and unresolved components of the enthalpy budget limited the maximum
timescale considered to about 4 yr. This analysis revealed that the advection of anomalous geostrophic currents
is a minor source of SST variability and not the limiting factor in determining SST predictability in that region,
at least for the timescales considered.

1. Introduction

Although the possibility of seasonal forecasts of trop-
ical climate variations associated with ENSO has been
demonstrated (see e.g., Latif et al. 1998), the predict-
ability of the extratropics remains an open question. It
is clear that if midlatitude seasonal and longer timescale
climate variations are predictable, it must be due to the
dependence of the atmosphere on a slower component
of the climate system. A likely candidate is the mid-
latitude sea surface temperature (SST), though other
possibilities include a remote dependence upon polar
sea ice (e.g., Yuan and Martison 2000), or tropical SST
(reviewed by Alexander et al. 2002), or even radiative
forcing associated with greenhouse gases. However, two
major challenges to the midlatitude predictability prob-
lem persist. First the response of the atmosphere to mid-
latitude SST is complex and remains controversial (e.g,
see reviews by Palmer 1996; Kushnir and Held 1996;
Frankignoul 1985; Namias and Cayan 1981), though
some encouraging results were found recently by Bond
and Harrison (2000). Furthermore, the predictability of
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the SST remains to be established. This study addresses
the latter challenge.

Observational studies, coupled AGCM–OGCM stud-
ies, and idealized modeling studies give conflicting re-
sults for the predictability of midlatitude SST anomalies.
Two observational studies reveal propagating SST
anomalies that persist for several years in the midlati-
tude North Atlantic (Hansen and Bezdek 1996; Sutton
and Allen 1997). However, the leading EOFs of SST
anomalies, which are constrained to be stationary pat-
terns, have decay times of only about 5 months (Fran-
kignoul 1985, Fig. 19). Namias and Cayan (1981) show
that basin average SST anomalies in the North Pacific
can persist for more than a decade.

Coupled atmosphere–ocean climate models generally,
though not unanimously, suggest the leading modes of
SST have predictability times of at least a few years.
Using ensemble integrations of the Geophysical Fluid
Dynamics Laboratory (GFDL) coupled atmosphere–
ocean climate model, Griffies and Bryan (1997a,b) find
predictability times of up to 5–7 yr for the dominant
modes of SST variability in the North Atlantic. A recent
update on this study using a higher-resolution version
of the GFDL coupled model found even longer SST
predictability times (S. Griffies, T. Delworth, R. Stouf-
fer, G. Vallis 2001, personal communication). These re-
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sults are consistent with those of Saravanan et al. (2000)
found by fitting first- and second-order autoregressive
processes to the principal components of North Atlantic
SST in a coupled AGCM–OGCM study with idealized
geometry and simplified atmosphere. However, the re-
alistic coupled AGCM-OGCM modeling study by
Grötzner et al. (1999) found, using similar methodology
to Griffies and Bryan (1997b), significantly shorter pre-
dictability times (less than 1 yr) for the leading mode
of SST variability in the midlatitude Northern Hemi-
sphere.

The conceptual theory of SST formation as a red
noise process driven by white noise atmospheric forcing
(Frankignoul and Hasselmann 1977; Frankignoul 1985)
forms the basis of most idealized, stochastic, climate
models. Bretherton and Battisti (2000) argue for a pre-
dictability time of about 6 months, using a highly ide-
alized, zero-dimensional (0D), coupled energy balance
model of the atmosphere and ocean system developed
by Barsugli and Battisti (1998, hereafter BB98). How-
ever Czaja and Marshall (2000) argue that the BB98
model is not able to reveal the predictability. The only
process generating SST anomalies in the model of Bar-
sugli and Battisti is air–sea heat flux. Advection and
entrainment of deeper water is not included in their
model and may be a fundamental limitation, as they
recognized in BB98. This may have implications for
both the predictability results and reduction of atmo-
spheric variance found in their model, and formed the
major impetus for the current study.

The dominant processes driving midlatitude SST
anomalies is a crucial factor in determining their per-
sistence and predictability time. However, the dominant
processes are not well known and the situation is com-
plicated by the dependence upon temporal and spatial
scale and geographical region. An early review (Namias
and Cayan 1981) suggests that air–sea heat exchange,
horizontal advection, and turbulent mixing can all play
significant roles in generating midlatitude SST anom-
alies. Yet, the review by Frankignoul (1985) concludes
that air–sea heat flux is the dominant mechanism, though
the discussion of advection in his section 2 is limited
to Ekman currents and mesoscale eddies; large-scale,
wind stress curl–driven and nonlinear instability–driven
variability in the horizontal currents are not considered.
Plenty of research has focused on this problem in the
last 16 years. A review is currently being prepared by
the first author. The problem remains controversial
though most studies highlight the importance of anom-
alous air–sea heat fluxes driving SST variability (e.g.,
Cayan 1992; Battisti et al. 1995; Delworth 1996; Kitoh
et al. 1999). Other studies suggest that oceanic advection
is dominant at least in some regions and on decadal and
longer timescales (Delworth et al. 1993; Halliwell 1998;
Qiu 2000; Seager et al. 2001).

The primary goal of this paper is to clarify how the
inclusion of a deterministic forcing in the mixed layer
temperature equation could affect the temperature

anomaly predictability time. The motivation is that the
discrepancy between the idealized model predictability
times (e.g., Bretherton and Battisti 2000) and most fully
coupled AGCM–OGCM modeling studies (e.g., Griffies
and Bryan 1997b) may be due to more predictable terms
driving mixed layer temperature that are missing in the
former models. A surrogate for this forcing can be in-
cluded within the context of the 0D model, by adding
an arbitrary deterministic forcing to the ocean temper-
ature equation of the BB98 model. In section 2 we quan-
tify the SST anomaly predictability in this model. Al-
though the predictability of anomalous surface geo-
strophic currents ug is itself an open question, temper-
ature advection by these currents is a possible physical
mechanism for this missing forcing. The advection of
anomalous temperature gradients by the time mean flow
has been shown by Saravanan and McWilliams (1998)
to lead to a novel mechanism of oscillation in a one-
dimensional (1D) version of the BB98 model. The pre-
dictability of SST in that model was analyzed in a fol-
low-up study to the present one (Scott 2003).

There is some evidence, albeit controversial, that the
decadal variations in ug may be predictable. Venzke et
al. (2000) forced an OGCM with a prescribed, large-
scale, wind stress curl pattern and found that a signif-
icant portion of the sea level height anomaly response,
the second leading EOF that explained 17% of the var-
iance, lagged the forcing by several years. The wind
stress curl pattern was taken from the coupled model
study of Latif and Barnett (1994); insofar as their cou-
pled mode is active in nature, the wind anomaly itself
may have some predictability. But aside from the wind
anomaly predictability, the time delay, which was at-
tributed by Venzke et al. to the gyre adjustment via slow
baroclinic Rossby waves, gives some hope to these cur-
rent anomalies being predictable.

While several idealized studies of midlatitude climate
variability have represented the ocean dynamics as linear
waves (Jin 1997; Weng and Neelin 1998; Marshall et al.
2001), another perspective is presented in the unique
modeling study by Dewar (2001), which emphasizes the
importance of nonlinear internal variability of the ocean
gyres. Dewar found that the area average advection by
geostrophic currents dominated the stochastically driven
air–sea heat flux for timescales of a year and longer. This
result supports, albeit in a highly idealized modeling
study, the data analysis of Qiu (2000). However, these
results were not supported by an idealized modeling study
using a coupled model with atmosphere (160-km reso-
lution) and ocean (10-km resolution) both represented by
two-layer, quasigeostrophic dynamics (Kravtsov and
Robertson 2002). Clearly more modeling studies that also
resolve the nonlinear gyre dynamics are needed to clarify
these issues. Little research has been done in this area,
but given that the eddy turnover time in the ocean is
about two orders of magnitude longer than that in the
atmosphere, one might expect the ocean circulation to
have longer predictability times.
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A recent observational data study analyzing the win-
ter season (January–March) terms forcing the ocean
mixed layer temperature tendency equation for the Ku-
roshio Extension system revealed that the advection by
geostrophic currents may be the dominant source of
wintertime, interannual and longer timescale variability
in that region (Qiu 2000). This study has been extended
here, see section 4, where we analyze all months of the
year from October 1992 to September 2001, and address
the relative importance of various forcing terms devel-
oping monthly SST anomalies in this region.

2. Description of the stochastically forced, 0D
model of BB98

a. Background on the BB98 model

BB98 consider the idealized, 0D, linear model of air–
sea interactions based upon the stochastic model of
Frankignoul and Hasselmann (1977). The atmosphere
and ocean are represented by slabs that are characterized
by single prognostic variables, Ta(t) and To(t), which
are the average temperature anomalies of the atmosphere
and ocean. The atmosphere and ocean interact via a heat
flux proportional to the local temperature difference,

F 5 k(T 2 T ),s o

where k 5 lsa(k 5 lso) for heat flux into the atmosphere
(ocean), and Ts 5 cTa is the surface air temperature
anomaly. The small difference between lsa and lso is
due to radiative fluxes. The atmosphere, but not the
ocean, also includes a forcing term intended to param-
eterize the dynamical forcing that is not explicitly rep-
resented in the linear model. This forcing is divided into
a purely random part B(t) that is white noise in time,
and a deterministic part. The deterministic part allows
feedback from SST and depends linearly on To(t), such
that the sum of the deterministic, thermodynamic and
dynamical forcing of the atmosphere due to SST is bTo

where b is their ‘‘atmospheric response’’ parameter. Bar-
sugli and Battisti (1998, p. 482) recommend 0 , b ,
1. (For b , 0 an anomalously warm ocean tends to cool
the atmosphere, which is an unlikely scenario.)

The model equations are derived in BB98 and the
nondimensional, time domain versions, are

d
T (t) 5 2aT (t) 1 bT (t) 1 B(t), (1)a a odt

d
b T (t) 5 cT (t) 2 dT (t), (2)o a odt

where b, a, and d are nondimensional, positive definite,
real parameters. The dimensional timescale that non-
dimensionalizes the time derivative is g a/lsa, where g a

is the heat capacity of the atmosphere. The parameter
values recommended in BB98 are listed in appendix B;
see BB98 for further details. Here we simply note that
b is the ratio of the oceanic to atmospheric heat capacity,
and hence we expect

b k 1. (3)

b. The damped harmonic oscillator

Solving for To 5 x(t) we obtain an equation in the
form of a stochastically forced, damped, harmonic os-
cillator (dho),

2ẍ 1 v x 1 2aẋ 5 j,o (4)

where vo is the natural frequency of the unforced and
undamped system,

ad 2 bc
2v 5 , (5)o b

a is the damping coefficient,

ab 1 d
2a 5 ø a, (6)

b

because of the large ocean heat capacity [(3)], and j(t)
is the purely stochastic, white noise forcing term,

cB(t)
j(t) 5 . (7)

b

The oscillator is overdamped for a2 . . One can show2vo

(appendix A) that this is the case whenever bc . 0.
This implies there is no preferred timescale for To for
positive parameters a, b, c, d, b. However, a preferred
timescale for To occurs for

2 2 2d 1 a b
bc , 2 , 0.1 22

But this requires either that a warm SST anomaly tends
to cool the atmosphere (through some dynamical feed-
back) or that warm surface air anomalies are associated
with cool depth-integrated air temperatures. This is dis-
cussed more in appendix A.

c. Red noise process approximation

In the subsequent analysis for the 0D model we made
the approximation that for long timescales we can ignore
the atmospheric temperature tendency term. As Breth-
erton and Battisti (2000) mention, the BB98 model then
becomes a red noise process. Although the order of the
differential equation has been reduced, the results were
found not to be singular to this approximation. That is,
the analysis with the full ODE [(4)] gave similar results
to that with the red noise, approximate ODE,

1
ẋ 1 x 5 white noise, (8)

t dc

where tdc is the decorrelation time. Thus we only present
the simpler, approximate analysis. In appendix C the red
noise approximation is justified.
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3. Predictability of the 0D model with stochastic
and deterministic forcing

As discussed in the introduction, the predictability
times found for the BB98 model are much shorter than
the midlatitude SST predictability times found for some
coupled AGCM–OGCM studies and the persistence
times found in observational data. This motivated look-
ing at the predictability of the stochastically and deter-
ministically forced model.

a. Predictability in a stochastically driven system

The 6-month predictability time calculated by Breth-
erton and Battisti (2000) is the decorrelation time of the
approximate red noise process. In fact using their pa-
rameters (same as BB98 except b 5 40), one finds a
decorrelation time (15) of tdc ø 10 months.

The predictability of the red noise process and the
underdamped dho are discussed in a general way in
Griffies and Bryan (1997b). For comparison with Breth-
erton and Battisti (2000), we also calculated the pre-
dictability of SST in the BB98 model (again with b 5
40) based upon the method discussed by Griffies and
Bryan. The predictability time t is defined as the time
period for which the expected mean-square error (MSE)
of an optimal forecast reaches a fixed fraction g of the
variance (VAR) of the process:

MSE(t) 5 gVAR. (9)

(The parameter g is a measure of the choice of forecast
skill tolerance.) Using the overdamped harmonic oscil-
lator process [(4)] and the approximate red noise process
[(8)] gave similar results. With g 5 1/2 predictability
defined by (9) gives t ø 3.7 and t ø 3.6 months, re-
spectively. This method of finding predictability time is
more general, and also more stringent for g 5 1/2, than
using the decorrelation time. It will be used in the next
section to find the predictability of SST when deter-
ministic forcing is included in SST evolution [(2)].

b. Predictability with deterministic ocean forcing

While most terms forcing SST evolution involve at-
mospheric variables that, in the extratropics at least, are
well represented by white noise processes, terms that
involve ocean processes are most likely not white noise.
In particular, advection by geostrophic currents, and to
some extent entrainment at the mixed layer base, involve
slower dynamics. It is not immediately clear what noise
process, if any, well models these terms. For the sake
of generality, here we introduce an unspecified deter-
ministic forcing, with the caveat that it may be unpre-
dictable beyond some timescale. This allows us to de-
velop an expression for the predictability of a simple
BB98-type model, but with oceanic forcing. This was
done using the full, second-order dho equation for To

[(4)], and also using the red noise approximation, [(8)].

Because the results were similar, only the simpler, red
noise approximation is presented. Interpretation of the
resulting expression serves to guide the data analysis,
for example of section 4, and interpretation of predict-
ability experiments.

It is worth clarifying that of course the deterministic
forcing associated with the seasonal cycle enhances pre-
dictability albeit in a trivial way. We emphasize that we
are, by definition, interested in anomalies about the sea-
sonal cycle and so the deterministic forcing relevant
here is of nonseasonal timescale, and more subtle origin.

We include in the ocean temperature tendency equa-
tion [(2)] an unspecified, deterministic forcing term,
bf D, that has zero time mean and is analytic (can be
represented by a Fourier series). The governing ODE
then becomes,

dT T
5 2 1 f, (10)

dt t dc

where we have dropped the subscript on To since it is
the only dependent variable discussed until further no-
tice, f is the total forcing term that now contains a
random and deterministic part,

f 5 f 1 f ,R D

with f R 5 j/(2a) 5 cB/(2ab) from the red noise ODE
approximation for T [(C2)].

The optimal forecast has minimum MSE and is the
expected value of the solution, ^T(t)&, where the expec-
tation operator is the ensemble average over realizations
of the stochastic process j; see Monin and Yaglom
(1971) for a discussion of this operator. Only the sto-
chastic part of the solution contributes to the MSE,

2t t 2 u j(u)
MSE(t) 5 exp 2 du .E75 1 2 6 8[ ]t 2adct0

Using ^j(u)j(y)& 5 d(u 2 y), one finds,2sj

2s t 2(t 2 tj dc 0MSE(t) 5 1 2 exp 2 .
2 5 6[ ]8a t dc

We define the variance to be

2VAR(T ) [ {[T(t) 2 ^T(t)&] }.

The time average was introduced because the process
is not stationary. For a deterministic forcing of zero time
mean, we have [ ] 5 0. This can be seen by repre-T(t)
senting f D as a Fourier series. The optimal forecast then
has a term that decays exponentially with (t 2 t0) and
another term that involves the sum of cosine and sine
terms, so that the long time mean approaches zero. Thus,
VAR(T) 5 {[ ]2}. The influence of the initial so-T(t)
lution T(t0) decays exponentially with time and hence
only the forced solution contributes to the variance. In
fact one can easily show that the variance is simply the
sum of the variance due to the stochastic and deter-
ministic forcing VAR(T) 5 VAR(TR) 1 VAR(TD), with,
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FIG. 1. The predictability time vs relative importance of determin-
istic and random forcing x [ VAR(TD)/VAR(TR): g 5 3/4, dashed
line; g 5 1/2, solid line; g 5 1/4, dash–dot line. The predictability
time is normalized by the decorrelation time, tdc, and thus has units
between 6 months and a year, depending upon mixed layer depth.
The y- intercepts correspond to red noise predictability.

2t 2(t 2 u)
VAR(T ) 5 lim exp 2 f duR E R75 6 8[ ]t(t2t )→` dc0 t0

2t sdc j5 , and
28a

2t

VAR(T ) 5 exp[22(t 2 u)] f du .D E D5 6
t0

An explicit expression for VAR(TD) of course would
require that we specify the form of the deterministic
forcing. But this is not necessary for drawing conclu-
sions about the implications for predictability. Normal-
izing the MSE by the variance, we find after some ma-
nipulation,

2(t 2 t )01 2 exp 25 6[ ]t dcMSE(t)
P(t) [ 5 . (11)

VAR(T ) VAR(T )D1 1
VAR(T )R

This is the main result of the idealized model.
Several important conclusions can be drawn from

(11). Of course the deterministic forcing increases the
predictability time; this is clear since VAR(TD) increases
with increasing strength of deterministic forcing f D, yet
the optimal forecast is not degraded, that is, MSE is
unaffected. Furthermore, this expression reveals that the
key parameter is the ratio

VAR(T )Dx [ .
VAR(T )R

It is worth mentioning that the key parameter is not
simply the relative strength of the forcing terms, since
the response to the forcing, VAR(TR), depends upon
both the strength of the forcing and the inverse of the
decorrelation time. For white noise forcing the response
will be nil, VAR(TR) 5 0, unless the forcing has infinite
variance. Horsthemke and Lefever (1984) suggest that
this point is often misunderstood in many fields. Eden
and Greatbatch (2002), for example, claim that the BB98
model was forced with unit variance; yet, if this were
true the ocean and atmosphere temperature variance
would be zero. This is merely a semantic point regarding
their work, but the subtlety is emphasized here because
it may lead to incorrect conclusions about the relative
importance of forcing terms in driving a stochastic dy-
namical system. Previous studies on the source of SST
variability have examined the relative strength of the
forcing terms, without regard to their relative decorre-
lation times. Kitoh et al. (1999) estimated the regression
of forcing terms on the SST tendency on a point by
point basis, their Fig. 8, to conclude that latent heat flux
is the dominant source of variability. This conclusion
requires that the forcing terms have similar decorrelation
times (which might actually be the case in their study

since they only considered surface forcing). They also
used a lagged regression between the principal com-
ponent of SST and the forcing terms as was performed
by Delworth (1996). The latter study concludes that
anomalous oceanic heat advection plays a lesser role
than anomalous surface fluxes in generating the leading
modes of winter North Atlantic SST anomalies. But the
response to oceanic advection has been underestimated
because of the much slower timescale of this forcing,
as will be apparent in section 4. A more appropriate
comparison is to consider directly the variance driven
by each forcing term, as obtained by time integrating
the forcing terms.

Another important conclusion is that the influence of
deterministic forcing upon predictability is very nonlinear.
In Fig. 1 the predictability time is plotted versus x for
three choices of forecast tolerance g. The limit x 5 0
corresponds to the case with no deterministic forcing
f D 5 0, so that VAR(TD) 5 0. As expected, we obtain
red noise predictability since (11) reduces to

MSE(t) 2(t 2 t )05 1 2 exp 2 .5 6[ ]VAR(T ) t dc

Increasing x corresponds to increasing the deterministic
forcing and, surprisingly, the predictability time is bare-
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ly affected until an abrupt increase near x 5 (1/g 2 1).
At this critical value the predictability time based upon
g is infinite. In particular, for g 5 1/2, (solid line in
Fig. 1) for VAR(TD) . VAR(TR) the predictability time
is infinite. This result is of course unrealistic and we
must invoke the caveat that the deterministic variations
are in practice predictable only for a finite time period.
This should be interpreted as implying that the pre-
dictability of SST, near x 5 (1/g 2 1), is limited by
the predictability of the deterministic forcing. The other
lines in Fig. 1 are for g 5 1/4 and g 5 3/4. A quali-
tatively similar sudden increase holds true, but the crit-
ical value depends upon our arbitrary choice of g.

A minor point gleaned from (11) is that without the
deterministic forcing, the amplitude of the stochastic
forcing did not influence the predictability time. With
deterministic forcing, this is no longer true.

The previous analysis suggests that it is of interest to
SST predictability to determine where upon the x axis
of Fig. 1 the real ocean lies. A first attempt at this is
addressed below via data analysis of the Kuroshio Ex-
tension region, selected specifically for its favorable
conditions for large oceanic advection.

4. Kuroshio Extension system mixed layer
enthalpy budget

a. Governing equation and data sources

Qiu (2000) analyzed the enthalpy budget for the oce-
anic mixed layer of the Kuroshio Extension region 318–
378N, 1418E–1808, by estimating the terms, averaged
over that region, in the mixed layer temperature ten-
dency equation,

]Tm 5 HF 1 VE 1 EA 1 GA, (12)
]t

where HF 5 Qnet/(rocphm), VE 5 2we(Tm 2 Td)/hm,
EA 5 2ue · =Tm, and GA 5 2ug · =Tm. See Qiu (2000)
for a complete description. Here Tm is the mixed layer
temperature, a proxy for the SST. The mixed layer depth
was defined as the depth hm such that the depth-averaged
temperature was 18C greater than the water just below,

01
T(z) dz 2 T [ 18C.E dhm 2hm

Thus Tm 2 Td 5 18C by definition. Monthly upper-ocean
temperature data was taken from the Joint Environ-
mental Data Analysis (JEDA) Center of Scripps Insti-
tution of Oceanography (White 1995). The entrainment
velocity we was taken from the rate of change of hm,
and was positive for increasing hm and zero otherwise.
The air–sea heat flux, Qnet, was taken from the monthly
datasets from the National Centers for Environmental
Prediction–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis (Kalnay et al. 1996; Kistler
et al. 2001). The constants ro and cp are the seawater
reference density and specific heat. The mixed layer

Ekman velocity ue 5 2k̂ 3 t/(rofhm), where the wind
stress t was also taken from the NCEP–NCAR reanal-
ysis monthly mean data and f is the Coriolis parameter.

The SST was taken from the dataset described by
Reynolds and Smith (1994). For the tendency term, the
weekly mean data was used and the central differencing
estimate of the time derivative was applied before re-
gridding to monthly means. The time mean geostrophic
current ug 5 gk̂ 3 = / f , was calculated from the meanh
dynamic topography relative to 1000-m depth (Teague
et al. 1990). Similar results were found using the mean
dynamic topography estimated by Qiu (1995). For the
ug anomalies we used the satellite altimeter data of the
TOPEX/Poseidon mission, obtained from the 5-day, 18
3 18, gridded data of the World Ocean Circulation Ex-
periment (WOCE) satellite data CD-ROM, version 2.
The SST data were regridded to 5-day means for the
advection calculation, then monthly means estimated.

Because of the finite resolution of the data used, the
estimates for the terms in the tendency equation [(12)]
ignored the correlation of instantaneous values, that is,
between hm and t, and perhaps most significantly, the
eddy heat flux due to unresolved space and timescales
(the diffusive flux).

b. Analysis and results

The seasonal cycle was found to dominate the SST
tendency, and the surface heat flux was clearly the dom-
inant source of this variability. This is consistent with
the simple scaling assumptions of Gill and Niiler (1973),
as well as the findings from ocean weather station data
they report. Here, we are interested in the interannual
variability so the monthly means were removed to em-
phasize the anomalies.

Using consecutive monthly data allowed us to esti-
mate the time integral of the Tm tendency equation
[(12)], providing approximations of the time series of
Tm and its contributions from each term relative to un-
known integration constants. The time integral was ap-
proximated via a simple cumulative summation. Ap-
plying the integral to the entire length of the record
resulted in significant errors. This is to be expected since
not only the systematic errors accumulate with time, but
also the variance associated with the random errors
grows linearly with time (as in a random walk). The
time integration is crucial for the analysis however, as
argued in section 3. A compromise was reached to re-
move the monthly anomalies and time-integrate for the
first and second half of the record separately. The results
are shown in Fig. 2 and some statistics are summarized
in Table 1. For the period October 1992 to December
1996 the agreement is very good. Note that the time
integral of the anomalies necessarily concludes with a
final value of zero, so the integrated forcing and tem-
perature tendency agree by construction in December
1996 and September 2001. The period January 1997 to
September 2001 reveals the sensitivity of the method
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FIG. 2. The time-integrated balance of the monthly anomalies of
(12). (left) Oct 1992 to Dec 1996; (right) Jan 1997 to Sep 2001. (top)
The time integral of the monthly anomalies of the temperature ten-
dency (black), and the sum of its forcing terms (red). (The extra red
line in the upper-right plot shows the influence of the EA, which was
only available until May 1999.) The difference between the two
curves is due to omitted terms in (12) as well as data and discretization
error. (bottom) The components of the forcing terms: #t HF dt9, green;
#t GA dt9, red; #t VE dt9, blue; #t EA dt9, light blue. The integration
constant is arbitrarily taken as zero. Units are 8C.

TABLE 1. Variance, VAR, and correlation with Tm, r2, and the
coefficient of regression upon Tm, RC, of each of the time series in
the bottom row of Fig. 2. The left columns are for the period Oct
1992 to Dec 1996, While the right columns are for the period Jan
1997 to Sep 2001. All variance values have been normalized by the
variance Tm, which was 0.32(8C)2 and 0.24(8C)2 for the earlier and
later periods, respectively. The lower half of the table lists the cor-
responding values after a 7-month binomial filter was applied. The
variance of Tm was 0.22(8C)2 and 0.18(8C)2 for the earlier and later
periods, respectively.

Term HF VE EA GA HF VE GA

VAR
r2

RC

0.47
0.85
0.58

0.03
0.80
0.13

0.24
0.43
0.21

0.06
0.39
0.10

3.3
0.64
1.2

0.07
0.63
0.16

0.21
0.47
0.22

VAR
r2

RC

0.45
0.87
0.58

0.04
0.89
0.17

0.34
0.52
0.30

0.09
0.54
0.16

4.3
0.68
1.4

0.08
0.70
0.19

0.29
0.53
0.29

to error. The forcing terms integrate to large deviations
that could never occur in nature. The problem is most
likely due to errors in the heat flux term (HF), since
this term shows a large departure that is unprecedented
in the previous 4 yr.

The lower two plots in Fig. 2 show the decomposition
of the integrated forcing terms, which sum to give the
red line in the upper two plots. These time series allow
us to associate directly the variability in Tm with specific
terms. The most striking result was that the air–sea heat
flux appeared to be the dominant source of variability,
with the other terms serving only to moderate this. The
geostrophic advection was the next most significant
term, perhaps showing some importance in the winters
of 1998 and 1999 and maybe in spring 1996, but oth-
erwise rather insignificant. This runs contrary to ob-
servational results for winter months (Qiu 2000) in this
region, and the OGCM study by Venzke et al. (2000),
who found current anomalies to have a significant im-
pact on the SST field in the Kuroshio Extension region
(defined slightly differently in their study).

The variance of each time series in the lower two
plots in Fig. 2 is listed in Table 1. The contribution to
the total variance from geostrophic advection (GA) var-
ied from only 6% for the first part of the record to 21%
for the second part. Even for a rather slack choice of
forecast tolerance, such as g 5 3/4, these results suggest
that geostrophic advection does not significantly affect
the predictability time, at least on timescales between
1 month and about 4 yr.

Unfortunately the limited quality of the data precludes
the possibility of looking for a role for advection on

longer timescales, at least with the methods that are
employed here. Some hint can be obtained by applying
a 7-month binomial filter to the time series of Fig. 2,
which reduces the shorter timescale variability. The re-
sulting statistics are also summarized in Table 1. The
relative contribution of the advection and entrainment
terms to the total variance increases, while the opposite
occurred for the surface heat flux term for the first 4 yr
(the latter 4 yr saw an increase with filtering, but this
portion of the time series is suspect). This indicates that
HF makes a relatively greater portion of its contribution
on shorter timescales. It is also visually apparent from
Fig. 2 that the HF time series is much noisier. As dis-
cussed in the introduction, we expect the ocean dynam-
ics to be slower than atmospheric dynamics, so it is not
surprising to see that GA has longer timescales than HF.
Similarly, the reemergence phenomenon (Alexander and
Deser 1995; Alexander and Penland 1996), which forms
part of the vertical entrainment (VE) term, is necessarily
an interannual signal. The Ekman advection (EA) also
had longer timescales, which is surprising since this is
driven by wind stress variability.

To emphasize the importance of comparing the time-
integrated forcing terms, as opposed to the forcing terms
as previous studies have done, we have repeated the
earlier analysis without time integration. The upper plot
of Fig. 3 shows the lhs of the SST tendency equation
[(12)] in black, and the rhs in red. The agreement is
quite reasonable for most of the time period, though
note the large error in summer 1998, which may account
for the problem in Fig. 2. In the lower plot the rhs is
decomposed as in the lower row of Fig. 2. The HF term
explains almost all the forcing; in fact the variability in
the other terms is barely visible. This is to be contrasted
with Fig. 2 in which the time integration has, in effect,
low-pass filtered the forcing terms. The highs and lows,
on timescales shorter than the SST response time, of the
noisy HF term tend to cancel and lead to little contri-
bution to SST formation. These effects can been seen
quantitatively by comparing Table 1 with the corre-
sponding values applied to the forcing terms presented
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FIG. 3. The monthly anomalies of the temperature tendency and
its forcing terms (as before, but no time integration). (top) The lhs
of (12) (black), and the rhs of (12) (red). (bottom) The individual
components are: HF, green; GA, red; VE blue; EA, light blue. Units
are mK s21.

TABLE 2. As in Table 1, but without the time integration, i.e., the
monthly anomalies of each term in the Tm tendency [(12)].

Term HF VE EA GA HF VE GA

VAR
r2

RC

0.55
0.70
0.52

0.01
0.50
0.05

0.06
0.43
0.11

0.02
0.14
0.02

0.78
0.57
0.50

0.01
0.19
0.02

0.01
0.01
0.001

in Table 2 for the more reliable first half of the record.
The relative variance, correlation, and regression co-
efficients between the slower forcing terms and the SST
tendency were very greatly reduced relative to Table 1.
The noisier HF was much less altered. A regression
analysis between GA and SST tendency would under-
estimate that obtained using the integrated values by a
factor of 5 (3 for VE, 2 for EA), but only 10% for HF.
We expect that this difference would be even more ex-
aggerated if higher temporal resolution data were used.

A final point is that the correlation coefficient between
the temperature and a given time-integrated forcing term
was not a good indication of the importance of the forc-
ing term; the vertical entrainment and surface flux terms
had comparable correlation with Tm yet the former was
clearly the smallest contribution to Tm variability and
the latter dominated.

5. Summary and discussion

We have analyzed some aspects related to predict-
ability of SST anomalies using a linear, coupled, ocean–
atmosphere model incorporating stochastic and deter-
ministic forcing. Predictability time was based upon the
expected time for the mean-square error in the optimal
forecast to reach a given fraction g of the total variance
of the process. For the 0D model of BB98, the SST was
found to approach a red noise process for timescales
much longer than about 26 days, and to give predict-
ability times of about 4 months (g 5 1/2). The large
discrepancy with some coupled GCM results, (e.g., Grif-
fies and Bryan 1997a,b; Saravanan et al. 2000; S. Grif-
fies, T. Delworth, R. Stouffer, and G. Vallis 2001, per-
sonal communication), as well as the persistence of SST
anomalies in some data studies (Namias and Cayan
1981; Hansen and Bezdek 1996; Sutton and Allen 1997)
motivated our investigation of the limitations of the
BB98 model. By including a deterministic forcing term

in the ocean temperature equation, a simple model for
the predictability was developed that may be useful for
guiding data analysis and interpreting predictability ex-
periments.

The observational data study of the oceanic mixed
layer enthalpy budget of the Kuroshio Extension system
by Qiu (2000) was extended here by time-integrating
the monthly anomalies of each term in the budget. This
allowed us to decompose the mixed layer temperature
anomaly time series into its contributions from each
term. Unfortunately the errors in the data limited us to
consider time periods about 4 yr in length. Most sig-
nificantly we found that the variance associated with the
surface heat flux to be the dominant component of var-
iability for monthly to 4-yr timescales. The temperature
advection and entrainment were only a minor source of
variability, so predictability is unlikely to be affected
by these terms. This supports the use of the 0D model
of BB98 on these timescales, even in this highly tur-
bulent region of the ocean.

Unfortunately this result also leaves as unexplained
the important discrepancies between, on the one hand,
SST predictability times found with some GCMs and
the observed persistence of SST anomalies, and on the
other hand, some other GCMs and the Frankignoul–
Hasselmann theory of SST formation. Several factors
must be stressed about the longer SST predictability
times of Griffies and Bryan (1997b). They also found
that the EOF patterns naturally sorted the variability
according to predictability time. Perhaps the average
SST in the rectangular region we defined here is much
less predictable than the leading EOFs. Furthermore,
insofar as the thermohaline circulation (THC) variability
is relevant to SST predictability, we may expect dif-
ferences between the North Atlantic and North Pacific
Oceans. This is suggested by the fact that when the THC
was less active the predictability of SST (and other var-
iables) was about one-half its peak predictability of 5
yr (Griffies and Bryan 1997b). This may also be relevant
for understanding the discrepancy with Northern Hemi-
sphere results of Grötzner et al. (1999). Furthermore,
the ocean gyre and THC in the study of Griffies and
Bryan (1997b) had decorrelation times of around 10 yr.
This timescale of variability is beyond what we could
address with the data here. Finally, the analysis here of
SST averaged over the Kuroshio Extension region is not
well suited to capturing propagating signals that were
observed in the North Atlantic (Hansen and Bezdek
1996; Sutton and Allen 1997).

A positive contribution of this study is the extension
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TABLE B1. Nondimensional parameter values of the BB98 model.

Parameter a b c d b

ad 2 bc
2v 5o b

ab 1 d
a 5

2b

Value 1.12 0.5 1 1.08 20 0.188361 0.587

of a simple model that can be used to evaluate the SST
predictability when deterministic forcing is present. Two
important results from this model are: 1) that the key
parameter affecting the predictability is the relative SST
variance associated with stochastic and deterministic
forcing, and 2) that we expect the predictability to in-
crease rapidly near a critical level of this parameter. The
former should be contrasted with previous studies that
have addressed the strength of the various forcing mech-
anisms without regard to their decorrelation times. The
latter suggests a clue for the discrepancy between var-
ious GCM studies in that we may expect sensitivity to
model parameters near the critical value. To make fur-
ther progress in the SST predictability problem we re-
quire either more accurate upper-ocean and surface ma-
rine datasets, and/or another method to estimate the var-
iance associated with the various forcing mechanisms.
The possibility of using a damping term that will cause
the influence of earlier errors to exponentially decay
with time is currently under investigation.

Acknowledgments. The predictability calculations
benefited greatly from conversations with Stephen Grif-
fies. Geoff Vallis first drew my attention to the dis-
crepancy between idealized and coupled GCM predict-
ability results and encouraged me to try to understand
this discrepancy. Thanks also to Joe Barsugli and an
anonymous reviewer for their very thorough and
thoughtful reviews, which helped improve this work
significantly, especially with the data analysis section.
Funding from Natural Science and Engineering Re-
search Council of Canada and Princeton University are
gratefully acknowledged. Reynolds SST data was pro-
vided by the NOAA–CIRES Climate Diagnostics Cen-
ter, Boulder, Colorado, from their web site at http://
www.cdc.noaa.gov/. (If using this data, please note the
definition of the averaging period.) Altimeter data from
the World Ocean Circulation Experiment Satellite Data
CD-ROM, version 2.0, was provided by the Jet Pro-
pulsion Laboratory from their web site at http://
podaac.jpl.nasa.gov/cdrom/woce2ptopex/.

APPENDIX A

Preferred Timescales in the 0D Model

The characteristic equation for the dho [(4)] is
2 2l 1 2al 1 v 5 0,0

where l is the eigenvalue. Thus real eigenvalues (ov-
erdamped solutions) are associated with a2 . . Using2v0

definitions (5) and (6), this inequality becomes, after
some manipulation,

2a d bc
2 . 2 .1 22 2b b

Given that b is large, recall (3), clearly for the case
where bc . 0 the above condition is met and the dho

is necessarily overdamped. This implies that there is no
preferred timescale for this case.

Furthermore, for nongrowing solutions to (4), we re-
quire a real, natural frequency for the undamped and
unforced system, . 0. In terms of the BB98 model2v0

(1) and (2) this is the case for ad . bc, as follows
immediately from the definition of vo [(5)]. One can
find the conditions for a preferred timescale in Ta and
To by looking for resonance, that is, the conditions of
a local maximum at positive frequencies in the corre-
sponding power spectra density (PSD). With this re-
striction of nongrowing solutions, we found resonance
will occur for To only when

2 2 2a b 1 d
bc , 2 , 0.1 22

Physically this implies either a warm SST anomaly tends
to cool the atmosphere (through some dynamical feed-
back) or that warm surface air anomalies are associated
with cool depth-integrated air temperatures. The pre-
dictability was examined under these conditions but the
results were not presented because the physical rele-
vance was not clear. Note that the ‘‘advective limit’’
discussed by Webster (1981) could provide a mechanism
whereby the dynamical response of the atmosphere
tends to cool, via cold advection, the air over a warm
SST anomaly in a westerly mean flow. However it is
unlikely that the cool advection could dominate the dia-
batic warming. Furthermore, the canonical correlation
data analysis of Zorita et al. (1992) did not find this
mode of atmospheric response to SST to be significant
over the North Atlantic.

APPENDIX B

Parameters of BB98 Model

The parameters of the BB98 model can be found in
their Table 1. These are reproduced in Table B1 here
for convenience.

The dimensional timescale in the BB98 model, im-
plicit in (1) and (2), is based upon the heat capacity of
the atmosphere g a and the effective damping coefficient
lsa. The recommended values (see BB98 Table 1) are
g a 5 107 J m22 K21 and lsa 5 23.9 W m22 K21, which
gives a timescale of about 5 days.

APPENDIX C

Approach to Red Noise

Here we find the precise conditions required for the
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dho process (4), with purely stochastic forcing, to ap-
proach the red noise process (8). Clearly we require the
acceleration term, that is, the first term in (4), to be
negligible while the other terms remains significant.
This can be made more precise by working with the
Fourier transform of the nondimensional dho:

a ĵ
2 ˆ ˆ ˆ2e T 1 2i eT 1 T 5 , (C1)o o o 2v vo o

where we have normalized by and introduced the2vo

parameter e [ s/vo, where s is the nondimensional
frequency. Clearly for small e the acceleration term be-
comes small. But to approach the red noise process with
significant tdc (as opposed to passing directly to white
noise, that is, negligible tdc, we also require 2a/vo $
O(e21). This is only possible for the very strongly ov-
erdamped case a k vo.

For these conditions we introduce the approximate
ocean temperature Tr ø To that satisfies,

ĵ
T̂ 5 ,r

a
2v 1 1 2i eo1 2vo

or in the time domain, we have the red noise process
ODE,

2˙2aT 1 v T 5 j.r o r (C2)

Note the nondimensional decorrelation time tdc 5 2a/ .2vo

Because of the approximation (6), this is very similar
to the decorrelation time that arises from simply drop-
ping the acceleration term in the time domain:

ab a
t 5 5 . (C3)dc 2ad 2 bc vo

The power spectra density, PSD(Tr) of this red noise
process is,

^ĵ ĵ*&ˆ ˆPSD(T ) 5 ^T T*& 5r r r 4 2 2v 1 4a so

One can easily show that the PSD of the stochastically
forced dho,

^ĵ ĵ*&
^x̂ x̂*& 5 ,

2 2 2 2(v 2 s ) 1 (2as)o

approaches PSD(Tr) for e2 K 1 and e2a/vo $ O(1).
What range of parameters satisfy the above criteria?

e2 K 1 implies s2 K so that in dimensional terms,2vo

using the parameters given by BB98 (see appendix B),

l l 1sa sav [ s K v ø . (C4)og g 26 daysa a

We must also check if the second criterion e2a/vo $
O(1) is realistic. This criterion implies that

voO(e) 5 K 1.
2a

For the parameters given by BB98,

1/2
v ad 2 bc bo 5 ø 0.16,1 2 1 22a b ab 1 d

so that it is reasonable to declare vo/(2a) K 1.
Note that for even longer times, that is, long relative

to the decorrelation time,

ga21v k t ø 5 months,dclsa

both Ta and To approach white noise processes,

j(t)
T (t) 5 5 white noise,o 2bo

b 1
T (t) 5 T (t) 1 B(t) 5 white noise.a oa a
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