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Low-Frequency Shelf/Slope Responses Induced 
by Localized Offshore Forcings 

Bo Qiu • 

Geophysical Institute, Kyoto University, Kyoto, Japan 

Using a two-layer/3 plane model with bottom friction, we investigated the shelf/slope responses 
induced by localized offshore forcing sources which (1) propagate in the along-slope direction and (2) 
have oscillating amplitudes. The two cases represent typical forcing patterns of cutoff eddy propaga- 
tions and unstable meanders in western boundary currents. When the localized forcing source 
propagates in the along-slope direction, it tends to induce components of bottom-trapped topographic 
Rossby waves (TRWs) with a similar cross-slope structure, and the shelf/slope response depends 
strongly upon the magnitude of the propagating speed c. In the inviscid limit, maximum response 
occurs when c is such that the induced bottom-trapped TRW components may freely cross the slope 
region. When bottom friction is considered, however, the shelf/slope response due to the bottom- 
trapped TRWs is important only in large c value cases. In small c value cases, we found the shelf/slope 
response is determined by surface-intensified wave components, whose existence is due to the 
planetary/3 effect. For observed warm eddies with c = 3 --• 5 cm s-I, the result of the present study 
suggests that both bottom-trapped TRWs and surface-intensified baroclinic waves are significant in 
determining the shelf/slope response. In cases when the localized forcing source oscillates in 
amplitude, we found that a localized response peak exists in the shelf/slope region. Along a fixed 
cross-slope section this response peak in the frictional case tends to shift offshore as the oscillating 
period of the forcing source increases. This result is opposed to the inviscid result, which shows that 
the response peak is independent of the forcing's oscillating period. The result for the frictional case 
is qualitatively consistent with that observed across the continental rise south of Cape Cod, thus 
suggesting the importance of bottom friction in determining the shelf/slope response. 

1. INTRODUCTION 

Many world shelf, slope, and rise regions are located near 
the western and northern edges of the interior ocean where 
boundary current meander and cutoff eddy activity is com- 
mon and intense. Such activity can be an important energy 
source, causing current and temperature variations in neigh- 
boring ocean regions. Increasing evidence suggests that 
some of the low-frequency current fluctuations observed 
over shelf, slope, and rise regions (hereinafter abbreviated as 
shelf/slope regions) are indeed related to these offshore 
forcings. For example, on the basis of moored observations 
of current and temperature at 15 sites on the continental rise 
south of Cape Cod, Hogg [1981] found that a majority of 
fluctuation energy was contained in the frequency band 
spanning periods 8-108 days. By calculating the ray paths in 
a WKB model he concluded that the fluctuations of different 

wave periods have a common source near the Gulf Stream 
axis. Hogg's conclusion was further supported by synoptic 
field observations that revealed anomalous activity of the 
Gulf Stream during the first few months of the moorings 
[Luyten, 1977]. Shoreward propagating topographic waves 
were also detected by Louis et al. [1982] on the continental 
margin off Nova Scotia. Supported by sea surface tempera- 
ture data of satellite imagery and other sources, Louis and 
Smith [1982] concluded that these wave bursts were associ- 
ated with warm eddies shed by the Gulf Stream. Other 
examples of current fluctuations and their interaction with 
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offshore forcings in the world shelf/slope regions can be 
found in the extensive review by Smith [1983]. 

Several studies have been proposed to investigate the 
shelf/slope response to offshore forcings. Under the assump- 
tion that the offshore forcing is a monochromatic wave 
which extends infinitely in the along-slope direction, Kroll 
and Niiler [1976] studied the onshore transmission of wave 
energy across a sloping bottom topography in a barotropic 
model. They found that high transmission can occur if the 
slope width is an integer number of the half cross-slope 
wavelength. This result for monochromatic wave forcings 
was also obtained by Ou and Beardsley [ 1980] in a stratified 
ocean model. In the stratified case, Ou and Beardsley further 
found that part of the incoming energy could scatter into 
baroclinic modes trapped to the steep slope. Recently, 
Chapman and Brink [1987] extended the study of monochro- 
matic wave forcings by allowing the forcing to have a wide 
range of vertical structures, periods, and offshore locations. 
They found that the shelf/slope response depends largely 
upon the forcing period: when the period is shorter than 10 
days, the response is dominated by near resonances of free 
coastally trapped waves; if the forcing period is long, the 
response is confined near the forcing region with a horizontal 
scale of the baroclinic Rossby radius. 

When the offshore forcing is localized in space as in the 
real ocean, however, the shelf/slope responses can be con- 
siderably different from those caused by the monochromatic 
wave forcings. Kroll [1979] studied the shelf response in a 
barotropic ocean model by assuming that the forcing source 
is an isolated pressure cell with oscillating amplitudes. He 
found that such a forcing source can induce a distinct peak in 
the energy spectrum on the shelf. The barotropic radiation 
field of topographic Rossby waves generated by a localized 
source oscillator was also studied analytically by Louis and 
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Smith [1982] and by Shaw and Peng [1987] using a numerical 
model. Both of these studies showed the importance of wave 
refraction and speculated that the wave refraction effect may 
explain the observed lack of reflected waves [e.g., Thomp- 
son, 1971]. By assuming that the localized forcing source 
propagates in the along-slope direction, Chapman and Brink 
[1987] investigated the shelf and slope circulations in a 
continuously stratified ocean model. They found that when it 
propagates close to the continental slope, such a forcing 
source induces a narrow jet moving in the direction against 
the topographic waves near the shelf break. Chapman and 
Brink [1987] attributed the existence of this narrow shelf 
break jet to arrested topographic waves [Csanady, 1978]. 

Although the shelf/slope response to the monochromatic 
wave forcing is relatively well understood, understanding of 
the shelf/slope response to localized offshore forcing is still 
insufficient. For cases where the forcing source has an 
oscillating amplitude, previous studies by Kroll [1979], Louis 
and Smith [1982], and Shaw and Peng [1987] have not 
considered how bottom friction and stratification may influ- 
ence shelf/slope responses. In the present study we will 
show that the inclusion of bottom friction crucially influ- 
ences the shelf/slope responses. For cases where the forcing 
source propagates in the along-slope direction, as considered 
by Chapman and Brink [1987], the role of the planetary/3 
effect has not yet been explored. Though small in compari- 
son with the topographic /3 effect in the lower layer slope 
region, the planetary/3 effect is important because it induces 
surface-intensified wave motions and offshore barotropic 
wave motions. Both wave motions, as will be shown in the 
following investigations, are essential in transferring off- 
shore wave energy onto the shelf/slope regions. The relative 
importance of these two wave motions in the shelf/slope 
response will be shown to depend upon the propagating 
speed of the forcing source. 

In the present study these problems will be investigated in 
a two-layer /3 plane ocean model. A two-layer model is 
adopted because we can more clearly interpret the numerical 
results when topographic changes in the slope region are 
large. Moreover, a two-layer model is a good simplification 
of the real ocean situation: observations by Thompson [1971] 
and Louis et al. [1982] show that current fluctuations at 
different depths below the thermocline are similar in phase 
and amplitude, although they may differ from those observed 
in the upper layer. It should, however, be pointed out that 
the density interface in the present layered model cannot 
intersect the bottom topography and the model's results are 
thus applicable only in the outer shelf and further offshore 
regions. Responses in the inner and middle shelf regions will 
not be pursued because low-frequency motions in these shelf 
regions are strongly affected by bottom friction and their 
responses are dynamically different from those in the outer 
shelf and slope regions. 

2. MODEL FORMULATION 

The model ocean shown in Figure 1 consists of an open 
ocean region, a relatively steep slope region, and a shallow 
outer shelf region. The right-hand coordinate system is fixed 
on the topography, wherein the z axis is positive upward, the 
y axis is parallel to the isobath, and the x axis is directed 
positively offshore. In the model ocean the upper layer has a 
constant undisturbed depth h, and the lower layer has a 

Fig. 1. Coordinate system and schematic diagram of the two-layer 
model ocean. 

variable undisturbed depth H(x) which is independent of y. 
The disturbed free surface is r/•(x, y, t), and the interfacial 
displacement around its mean position is r/2(x, y, t). The 
velocities are (uj, vj), and the density is pj, where j = 1 and 
j = 2 represent the variables in the upper layer and the lower 
layer, respectively. 

First, we nondimensionalize the variables as follows: 

(œ, 29)= (x, y)/L (h, •) = (h, H)/Hi t7 = tfo 

f=fifo (•j, Oj)= (uj, vj)/U (1) 

il• = rl•/(foLU/g) //2 = rl2/(foLU/g') 

where L is a horizontal scale of the slope width, U is a 
characteristic horizontal velocity which is taken to be the 
maximum velocity of the offshore forcing eddy, H1 is the 
lower layer thickness at the open ocean, fo is the Coriolis 
parameter at the reference latitude, and g' = (/92 - /91) g/P2 
is the reduced gravity constant. Under the hydrostatic 
approximation the linearized momentum equations and the 
depth-averaged continuity equations become (after dropping 
the tildes for the nondimensional variables) 

HIt -- f?21 = -- T] lx (2a) 

Vlt if-f//1 = -'t/ly (2b) 

ltlx if- Vly - rl2t/Sh + g' rlit/gSh = 0 (2c) 

lt2t--fv2 = --l/ix- l/2x (3a) 

V2t +f//2 = --l/ly- l/2y (3b) 

U2x + V2y + u2Hx/H + rl2t/XH = lrl/2t •v I, V2x- U2y) (3c) 

In (2) and (3), subscripts (x, y, t) denote partial differentia- 
tion, and S = g'ttl/fo2L 2 is the stratification parameter. The 
Coriolis parameter f is 1 + ax+13y, where (a,/3)=(-sin 0, 
cos 0)/30L/f 0, 0 is the angle measured clockwise from the east 
to the x axis, and/3 o is the dimensional northward gradient of 
f. In (3c) the term on the fight-hand side represents Ekman 
pumping from the bottom boundary layer, where Ev=2Av / 
fott 2 is the vertical Ekman number and A v is the vertical 
eddy viscosity [e.g., Pedlosky, 1979]. 

In the following analysis we will assume Ev, the depth 
ratio of the bottom Ekman layer to the lower layer, to be 
small and independent of x. We will also omit the surface 
elevation term g'*l lt/g Sh in (2c) because it is negligibly small 
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in comparison with the interfacial elevation term -•12t/Sh. 
Eliminating uj and vj from (2) and (3) and neglecting 02/Ot 2 
against f• (since we are interested in responses with low 
frequencies), we obtain the following two equations govern- 
ing nl and n2: 

(TJlxx + TJlyy + •12/Sh)t + j3•llx- a•ly = 0 (4) 

(•q•xx + TJ•yy + •q•xHx/H - •12/SH)t + [3•1• x 

a•l•y •l•yHx/H = 1•1/2, , - - •'v [TJ2xx + Tj•yy) (5) 

where •/• -- •/1 + •/2- In deriving (4) and (5) we have also 
used the assumptions 1/31 << IO/Oyl and lal << IO/Oxl, which 
are consistent with the/3 plane approximation. 

We will divide the investigation into two cases according 
to the pattern of the forcing source movement at the offshore 
boundary. When the forcing source propagates in the along- 
slope direction or has an oscillating amplitude, the offshore 
forcing functions will be assumed to be 

(•/1, •/:•)(x0, Y, t) - (1, 3')A 0 exp [-(y - ct)2/d 2] (6) 

or 

(•/1, •/•)(Xo, y, t) = (1, 3,)A 0 exp [ -y2/d2 - icrft] (7) 

respectively. The Gaussian-shaped forcing source of (6) was 
also used in the study by Chapman and Brink [1987]. In (6) 
and (7), x0 denotes the offshore distance where the forcing is 
imposed, 3' denotes the forcing strength of the lower layer 
relative to that of the upper layer, and A0, c, crf, and d denote 
the amplitude, the along-slope propagating speed, the oscil- 
lating frequency, and the half width of the forcing source, 
respectively. 

Shelf/slope responses to these forcing sources are ob- 
tained by first Fourier decomposing the forcing functions 

(Z1, Z•)(xo, m, cr)--ff_•ooff_•oo(*ll, *l•)(xo, y,t) 
ß exp [-i(my - crt) dy dt (8) 

To each forcing component in (8) the shelf/slope response 
(Z1, Z•)(x, m, rr) is then calculated from 

Zlxx+(il3/tr)Zlx+(-m2+am/tr-1/Sh)Zl+Z•/Sh = 0 (9) 

eZ•xx+(il3/rr + Hx/H)Z•x + (-em 2 + am/rr 

- 1/SH- mH•,/Htr)Z• + Z1/SH = 0 (10) 

where e = 1 + E•l/2i/2rr. Finally, the total response in the 
shelf/slope region is obtained by summing up all the Fourier 
component responses: 

(*l l, ,l•)(x, y, t)= • (Z1, Z•)(x m 
4rr2 ' , 

ß exp [i(my - trt)] der dm (11) 

If the slope has large depth changes, the conventional 
"weak slope assumption" (in which H(x) is assumed to be 
constant except when differentiated [e.g., Allen, 1984]) can- 
not be used to solve (9) and (10) [Gratton and LeBlond, 
1986]. Most of the world continental slope regions, however, 

have large depth changes. In the present study we allow for 
bottom depth changes with arbitrary amplitudes by numeri- 
cally solving (9) and (10). The boundary conditions for the 
model are chosen such that (1) the waves reflected from the 
slope propagate freely through the offshore open boundary 
and (2) over the shelf region we consider only transmitted 
waves. Waves reflected from the shore are not considered 

because dissipation at the shallow shelf region effectively 
damps out the transmitted wave energies [Kroll and Niiler, 
1976; Chapman and Brink, 1987]. 

The numerical technique used in solving (9) and (10) is as 
follows: We first divide the depth-varying region into N + 1 
subregions. Assuming the depth in each subregion to be 
constant (the mean value of the subregion), we can write 
solutions for each subregion as a sum of transmitted and 
reflected barotropic and baroclinic wave components: 

4 

Z1 = • Anexp (iknx) 
n=l 

(12) 

4 

Z• = E øtnAn exp (iknx) 
n=l 

(13) 

In (12) and (13), wave numbers k n are solutions of the 
following biquadratic equation: 

k 4 d- (a 1 d- a2)k 3 d- (ala2 + bl + b2)k 2 

+ (alb2 + a2bl)k + (bib2- clc2) = 0 

where 

al = [31o' a2 = flitre cl = 11Sh C 2 = 1/SHe 

b 1 = m 2-- am/it + c 1 b2 = m 2- am/ire + c 2 

and the separation constants a n satisfy a n = (kn 2 + a lk n + 
bl)/Cl. 

Across the depth discontinuity, conditions 

[Z1]__ + -- 0 [Z•]_ + = 0 (14) 

[Zlx]_ + = 0 [H(creZ•,- mZ• + il3Z•/2)]_ + = 0 (15) 

are required to ensure the continuity of mass flux and 
pressure, where [ ]__+ denotes the difference of the brack- 
eted quantities across the discontinuity [e.g., LeBlond and 
Mysak, 1978]. By applying these matching conditions at N 
points of depth discontinuity and by using the above men- 
tioned boundary conditions, we can obtain a set of 4N linear 
equations in terms of 4N unknown wave amplitudes. The 
response (Z1, Z•)(x, m, rr) is calculated by solving this set of 
linear equations. In the actual numerical calculations, N is 
chosen to be 31, which we found gives fine enough resolution 
for the present problem. 

To simplify the analysis of the numerical results, we will 
concentrate our discussion on a simple basin case in which 
the lower layer has a depth configuration of 

H(x) = H2 x -< 0 
H(x) = H2 exp (Mx) 0 < x < W (16) 
H(x) = 1 W_<x 

where H2 and M (-- H•c/H) are both constant. Despite its 
simplicity this basin case provides us with the essential 
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characteristics of the shelf/slope response in a stratified 
ocean of varying depth. In the following analysis we further 
assume that the offshore forcing source is barotropic (that is, 
3' - 1) and fix the external parameters for the figures at H2 - 
h = 0.143 M = 1.946, W = 1 0, S = 0.411 F. 1/2 = 0.0025, (a, ' ß '•U 

/3) = (0.0, 0.0488), x 0 = 2.0, and d = 0.4. In the formulation 
and discussion, however, these parameters will be as general 
as possible. 

3. SHELF/SLOPE RESPONSES TO ALONG-SLOPE 
PROPAGATING FORCING SOURCES 

First, we will investigate the shelf/slope response caused 
by the propagating forcing source (6) in the inviscid limit. 
Fourier decomposing (6) yields 

(Z1, Z:•)(Xo, m, 0-) 

= (1, 3')A02 d;r 3/2 exp (-d2m2/4)•i(0-- inc) (17) 

where •i is the Dirac delta function. The appearance of •5(0- - 
mc) in (17) implies that given a propagating speed c, only 
wave components that satisfy 0- = mc contribute to the 
shelf/slope response. Since cutoff warm eddies generally 
propagate with the slope to the right [Joyce, 1984], we will 
concentrate our investigation on the case of c < 0. 

In Figures 2a and 2b we show the (•l, •) patterns and the 
along-slope distributions of the energy density averaged over 
the shelf when c is -0.0055 and -0.0065, respectively. 
These c values correspond to the dimensional speeds of- 5.5 
cm s -1 and-6.5 cm s -• when f0 = 10-4 S-1 and L = 100 
km. Notice that the velocities in the upper and lower layers 
are nearly proportional to the gradient of the •/1 and •/• 
contours. The shelf/slope responses in the two cases are 
considerably different, even though the propagating speed 
differs by only 0.001' In Figure 2a, strong responses are 
induced over both the shelf and lower layer slope region 
shoreward of the forcing source, but in Figure 2b the induced 
responses in the shelf/slope regions are weak, and we find 
instead large-amplitude reflected waves in the offshore ocean 
region. The difference in response between the two cases is 
also clear from the shelf energy density distributions shown 
in Figure 2; the maximum energy density value in the case c 
- -0.0055 is 4 times larger than in the case c = -0.0065. 

The shelf/slope response's dependence upon the propagat- 
ing speed can be understood as follows. Studies by Kroll and 
Niiler [1976] and Ou and BeardsIcy [1980] have shown that 
when a monochromatic wave forcing is imposed in the 
offshore ocean, the energy transmission onto the shelf region 
depends largely on intrinsic phase changes of the incident 
wave across the slope. Maximum energy transmission oc- 
curs when the intrinsic phase change is n½r, while the 
transmission is minimum when it is (n + 1/2)•r, where n is an 
integer (the Ramschauer effect [Rhines, 1969]). In the 
present two-layer model, this dynamics also holds true. The 
intrinsic phase change of bottom-trapped topographic 
Rossby waves (TRWs) across the slope in the two-layer 
model can be approximated by 

I = KsW- (e Mw- 1)/MSKs (18) 

(see (A4)), where Ks satisfies the dispersion relation of 
nondivergent barotropic Rossby waves: 

Ks 2 =/32/40'2 + (or - M)m/0' - m 2 - M2/4 (19) 

In Figure 3 the (m, 1/0') dependence of I = nz-is shown by 
dashed lines. Also shown in Figure 3 are Ttr o and Tcti, the 
energy flux transmission coefficients (FTCs) transmitted 
from the offshore barotropic wave to the shelf barotropic and 
baroclinic waves. As in the work by Kroll and Niiler [ 1976], 
the FTCs are defined as the ratio of the x component energy 
flux between the incident and transmitted waves. As can be 

anticipated from earlier studies, maximum FTCs appear in 
parameter ranges around I =n½r (a more detailed discussion 
is given in the appendix). 

In the case of propagating localized forcing sources it is 
important to notice that the Ks 2 value in (19) is essentially 
determined by -raM/o' because the vortex stretching term 
predominates in the vorticity balance over the slope region. 
The fact that K• 2 -.-. (-mM/0') means that for a given c - 0'/m, 
all contributing wave components induce bottom-trapped 
TRWs with the same Ks and hence I values. From the results 
of Figure 3 we can thus expect maximum (minimum) shelf/ 
slope responses to occur if the given propagating speed 
results in I - tart with Ix being an integer (an integer plus 1/2). 
Using (18) and (19) to relate/a. with c, 

la, '"'- - W + •-• (e Mw- 1) (2O) 

we found that for c = -0.0055 and -0.0065 the correspond- 
ing/x value is 6 and 5.5, respectively. This difference in/x 
explains why the shelf/slope response differed significantly 
between Figures 2a and 2b, even though the difference in the 
propagating speed itself was small. 

The/x dependence of shelf/slope responses becomes even 
clearer in Figure 4, wherein we have plotted the maximum 
energy density values induced on the shelf against the c 
values. Note that the large solid circles in the figure denote 
cases where /x are integers, while the open circles denote 
cases where/x are integers plus 1/2. From Figure 4 it is also 
clear that the energy density maximum value increases as Icl 
decreases. This is due to the increase in the number of 

incident Rossby wave components permissible in the off- 
shore ocean as Icl decreases 

Next, we examine how bottom friction, which always 
influences low-frequency wave motions, modifies the above 
results obtained in the inviscid limit. In Figure 5 we show the 
shelf/slope response under the same forcing situation as in 
Figure 2a except for Ev •/2 = 0.0025. In the figure the energy 
density distribution is evaluated at the shelf break, and 
velocity vectors are superimposed upon the (•/•, •/•) con- 
tours. Notice that an EJ/2 value of 0.0025 in the present case 
corresponds to a bottom Ekman layer of 5 m [cf. Ou and 
BeardsIcy, 1980]. Comparing the •/• contours in Figure 5 
with those in Figure 2a, we find that wave motions in the 
lower layer slope region are greatly reduced. This large 
reduction occurs because most bottom-trapped TRWs in- 
duced in the case of c -- -0.0055 have small decay scales of 
the same order as the slope width, i.e., ki• • --• 1.0 (see Figure 
6, where ki• • is the e-folding decay scale of the bottom- 
trapped TRWs in the cross-slope direction estimated from 
(A1)). In the upper layer of the slope region, however, we 
find that the wave motion has practically the same amplitude 
as in the inviscid case. The upper layer wave motion is not 
influenced by bottom friction because surface-intensified 
wave components in the slope region generally have decay 
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Fig. 2. The (•/1, •/•) patterns and averaged shelf energy density distributions induced by localized forcing sources 
propagating in the along-slope direction when E•/2 --, O. The speed of propagation is (a) -0.0055 and (b) -0.0065. The 
contour interval values for •/• and •/• are 0.1A0, and the unit for the energy density distribution is A0 •, where A0 is the 
amplitude of the forcing source. 
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0 Fig. 4. Maximum energy density values on the shelf induced by 
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Fig. 3. Energy flux transmission coe•cients of (a) Ttro and (b) 
Tc• i across a continental slope in a two-layer model. The mode of the 
incident wave is barotropic. The stippled areas indicate highly 
transmissible ranges with coe•cients exceeding 0.5. The dashed 
lines indicate isopleths of/, which defines the phase change of the 
bottom-trapped TRWs across the slope region. 

scales at least 1 order larger than the slope width (not 
shown). 

The tendency for bottom friction to primarily damp out 
bottom-trapped TRWs in the slope region also has a signif- 
icant effect on the outer shelf response. Comparing the shelf 
energy density distribution in Figure $ with that in Figure 2a 
reveals that the energy peak induced by the bottom-trapped 
TRWs is greatly reduced in the frictional case (arrow T); as 
a result, the energy peak induced by the surface-intensified 
waves (arrow C) is relatively dominant in the shelf energy 
density field. Notice that a maximum energy density value of 
0. l a0 • in Figure $ indicates that the maximum velocity over 
the outer shelf is of the order of 0.2Vm, where V m • 
2•/2Aod-•e-•/2 is the maximum velocity of the offshore 
forcing eddy. 

Since the decay scales of the bottom-trapped TRW com- 
ponents become even smaller as the propagating speed of the 
forcing source decreases (see Figure 6), we expect the sheff 
energy peak induced by the bottom-trapped TRWs to decline 
further. In Figure 7 we have plotted the maximum energy 
density values obtained in the frictional cases with different 
c values: Circles denote energy peaks induced by the bot- 

figure, large solid circles denote cases in which the corresponding 
values are integers, while open circles denote cases in which the 
values are integers plus 1/2. 

tom-trapped TRWs, and squares denote those induced by 
the surface-intensified waves. As expected, the energy peak 
induced by the bottom-trapped TRWs decrease as the prop- 
agation of the forcing source slows down. Since the intrinsic 
phase changes of the bottom-trapped TRWs are essentially 
not influenced by the inclusion of bottom friction (see (A3)), 
the /z dependence, though much less distinctive than in 
Figure 4, is still discernable in the solid line of Figure 7. 
When the propagating speed of the forcing source is small, 
we find that the energy peaks induced by the surface- 
intensified waves surpass those induced by the bottom- 
trapped TRWs. The tendency for peak values induced by the 
surface-intensified waves to increase in slower-propagating 
forcing cases is due to the increase in the number of 
permissible surface-intensified wave components as Icl de- 
creases. 

4. SHELF/SLOPE RESPONSES TO FORCING SOURCES 

WITH OSCILLATING AMPLITUDES 

In this section we consider the shelf/slope response caused 
by a localized forcing source which oscillates in amplitude. 
As the wave frequency in this case is fixed at •rf, we need to 
decompose the forcing function (7) only in terms of the 
along-slope wave number: 

(Zl, Z•_)(Xo, In, of) 

= (1, 7)A0 d•r •/•- exp [-d•-rn•/4- itrft] (21) 
Two remarkable differences exist between this case and the 

propagating forcing case in section 3. First, given a propa- 
gating speed c in the case of section 3, all wave components 
tend to have a similar FTC value and decay scale. In the 
present case, however, transmission coefficients and decay 
scales are different for each individual forcing component 
(see Figures 3 and 6). Second, the parameters (r and rn in the 
last section are locked by tr -- rnc, thus limiting dispersion to 
the cross-slope direction. In the present oscillating case, 



Qiu: LoW-FREQUENCY SHELF/SLOPE RESPONSES 9453 

12 

-4 

-8 

-12 

-16 

0.120 

c:• O. 060 

0.000 

y-ct 

--.. 10 

• 40 

i -20 , I I I h 

-i 0 I 2 -i 0 I 2 
x x 

Fig. 5. As in Figure 2a except for the inclusion of bottom friction (E? = 0.0025). The contour interval values for 
ß /1 and •/• are 0.075A0, and the unit for velocity vectors is 0.03A0. In the along-slope energy density distribution, arrows 
T and C indicate the energy density maxima induced by the bottom-trapped TRWs and the surface-intensified baroclinic 
waves, respectively. 

dispersion occurs in both the cross-slope and along-slope 
directions over the slope region. 

In Figure 8 we show the (•/1, •/•) pattern and the shelf 
energy density distribution in the inviscid limit when 1/trf = 
110. For f0 = 10-4 s-l, this 1/trf value corresponds to a 
forcing oscillating period of 80 days. After barotropic 
Rossby waves induced by the forcing source in the offshore 
ocean reach the slope region, we find that wave motions in 
the upper layer diminish shoreward gradually because no 
surface-intensified waves are excited at this 1/trf value. In 
the lower layer slope region, on the other hand, bottom- 
trapped TRWs are induced and dispersed in the -y direc- 
tion. The energy density produced by these bottom-trapped 
TRWs is shown in Figure 8 to have a distinct peak at y = 
-5.4 over the shelf. Notice that wave motions will reappear 
in the upper layer after the bottom-trapped TRWs reach the 
shelf break. This is because coupling between the upper and 
lower layer motions strengthens in fiat ocean regions. 

When bottom friction is included, as shown in Figure 9, 
we find that the (•/1, •/•) pattern is basically similar to that 
obtained in the above inviscid case. A noteworthy difference 
between the two cases, however, is that the shelf energy 
density peak appears at y = -8.1 in the frictional case but at 
y = -5.4 in the inviscid case. Moreover, numerical calcula- 
tions with various oscillating frequency values reveal that 
while the location of the energy density peak in the inviscid 
case has a relatively weak dependence on the 1/of values 
(solid circles in Figure 10), the energy density peak in the 

frictional cases tends to shift to a farther -y location as the 
oscillating period of the forcing source becomes long (open 
circles in Figure 10). 

In order to explain this difference in 1/trf dependence 
between the frictional and inviscid cases as well as clarify 
the parameters determining the location of the energy den- 
sity peak, we will simplify our discussion below to a barotro- 
pic ocean model. We can do so because coupling between 
the layer motions in the slope region is negligibly weak 
[Suginohara, 1981], rendering the dynamics determining the 
energy density peak induced by the bottom-trapped TRWs 
the same in both the barotropic and baroclinic cases. 

Following Kroll and Nillet [ 1976], we can express the shelf 
response to a monochromatic wave forcing in the present 
model case with bottom friction by 

Z(x, m, of)= G(m)Z(xo, m, of) exp (-MW/2e) 

ß exp [i(R - Rs)W + i(R - f•/2trfe)(x - xo)] 
where 

(22) 

R 2= f12/4e2o'•- rn 2 + maleof 
•2 = 132/4e2tr] _ m 2 + m(a - M)/eo'f- M2/4e 2 

G(m) = 4RRs/[2RRs(1 + e -i2Rsw) 

+ (g 2 + Rs 2 + M2/4e2)(1 -- e-i2•sw)] 
In (22) the offshore forcing function Z(xo, m, o'f) is equal to 
Zl(X0, m, trf) in (21). By inverting the Fourier transform and 
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Fig. 6. E-folding decay scales of the bottom-trapped TRWs in 
the cross-slope direction, where the vertical Ekman number (EJ/2) is 
0.0025. The dimensional unit for the decay scale is the slope width. 

assuming A = EJa/2cr << 1 (notice that e -- 1 + A) we can 
write the shelf response, to O(A2), as follows: 

rl(x, y, t) = Q(t) f-•o• F(m) e i4Km) dm (23) 

where 

1 [M.•eW itg(x-xo)] Q(t) = 2(r r)1/2 dAo exp icrft- 2cr 
cb(m) = Kro(W + x - xo) + my - KsW 

F(m) = G(m) exp [-m2d2/4 + (Kis +/gA/2o-)W 

- (Kio +/•A/2o-)(W + x - x0)] 

In •m) and F(m), Kro -- Re (/O, Kio '- Im (/C), and Kis = Im 
(•s), respectively. Since the magnitude of the u component 
velocity over the shelf is much larger than the v component 
in the present case (Figure 9), we can evaluate the energy 
density distribution over the shelf region by 

•(x, y)•«l-Wy 2 = « Q(t) mF(m)e i4•(m) dm (24) 

By setting O•m)/Om = 0 we find that the stationary phase of 
the integral in (24) is given by 

OKro [m + (M- a/2crf)] y+ -- (W+x-x0)+ . W=0 (25) 
Om Ks 

Physically, this equation determines the ray path that is 
followed by the wave component with wave number m and 
frequency crf [e.g., Kroll, 1979]. Notice that the third term in 
(25), which expresses the y deflection by the TRWs in the 
slope region, greatly exceeds the second term, expressing 
the y deflection by the Rossby waves in the offshore and 
shelf regions. In Figure 11 we depict the (m, 1/or) dependence 

of & = tan -] (-W/y), the angle between the ray path and the 
-y axis in the slope region. It is clear from the figure that 
given a fixed oscillating period a wave component with a 
smaller -m value (that is, a longer wavelength) results in a 
farther deflection in the -y direction. 

Using the method of stationary phase, we can evaluate the 
energy density distribution (24) as follows: 

•(x, y) = «lQ(t)mF(m)[2rr/cb"(m)]l/2e i4•(rn) + irr/4 2 

..• d2Ao2(WH2) -l(crf/M ) 1/21F(m)[2(_m) 7/2 (26) 
where m satisfies the stationary phase equation (25). The 
result of (26) shows that the energy density •(x, y) is in 
proportion to (-m) -7/2, suggesting that components with 
shorter wavelengths contribute more to the energy density 
over the shelf. The term IF(m)l 2, on the other hand, depends 
largely on the bottom friction. 

In the limit of F• ]/2 --> 0, we find that IG(m)l < 1 and the 
amplitude envelope of IF(m)l 2 is equal to exp (-d2m2/2). 
Solving O•/Om = 0 shows that the peak of the energy density 
envelope should be induced by the component with m = 
-d-](7/2) m. Nevertheless, for observed values of d --• 0.4 
and 1/cry < O(150) this component, m = -4.68, falls out of 
the freely propagating Rossby wave range in the offshore 
ocean and consequently contributes little to the shelf/slope 
response (note that the cutoff wave number of the offshore 
Rossby wave is mc = [a - (a 2 q- [32)1/2]/2crf; see Figure 11). 
In this case the shelf energy density peak is instead induced 
by the component which has the largest wave number in the 
freely propagating Rossby wave range, that is, m = mc. 
Substituting m = m c into (25) and calculating its y deflection, 
we obtain the energy density peak over the shelf at 

Yc"• - 2[(a2 + •2)1/2 a] 1 - W - M 

(27) 
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Fig. 7. Maximum energy density values at the shelf break 
induced by forcing sources with different propagating speeds (Evm -- 
0.0025). In the figure, circles indicate the maximum values caused 
by the bottom-trapped TRWs, while squares indicate those caused 
by the surface-intensified baroclinic waves. 
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Fig. 8. The (•/1, •/•) pattern and averaged shelf energy density distribution induced by a localized forcing source 
oscillating at 1/of = 110 when Ev u2 --> O. The contour interval values for •/1 and •/• are 0.05A0, where A0 is the amplitude 
of the forcing source. 

Notice that this Yc value, as shown in Figure 10 by the 
dashed line, is independent of the 1/of values. This is the 
same tendency observed in the numerical calculations as 
Ev u2 ---> 0 (see solid circles in Figure 10). The physical 
explanation is that ray paths of the offshore cutoff wave 
components in the slope region deflect at the same angle 
regardless of the offshore forcing frequencies (see the dashed 
line in Figure 11). The difference between (27) and the solid 
circles in Figure 10 occurs because wave components with m 
= m c do not necessarily have large transmission coe•cients 
(Figure 3a). 

The term IF(m)l 2 becomes a complicated function of m 
when bottom friction is considered. Instead of solving Ot•/Om 
= 0 in detail to determine the wave component causing the 
energy density peak over the shelf, we will next discuss 
qualitatively the frictional effect on this wave component. 
First, we recall that the shelf energy density /•(x, y) is 
proportional to (-m) TM, indicating that wave components 
with larger wave numbers tend to make larger contributions. 
In the above inviscid case the energy density peak is in fact 
induced by the wave component that has the largest wave 
number in the offshore freely propagating Rossby wave 
range (i.e., the cutoff wave number m = m•.). It is worth 
noting that this mc value, as shown by the dashed line in 
Figure 11, increases in proportion to 1/of. Since wave 
components with larger wave numbers are more subject to 
damping by bottom friction (cf. Figure 6), it is clear that as 
the 1/of value increases, the wave component with rn = mc 

will be strongly damped out and the shelf energy density 
peak will be produced by a wave component with a smaller 
wave number that survives the damping of bottom friction. 
From the result of Figure 11 we can thus expect the shelf 
energy density peak in the frictional cases to appear at a 
farther -y location than the component with m = m c as the 
1/of value increases. In fact, this 1/of dependence of the 
shelf energy density peak is the result obtained in the 
numerical calculations including bottom friction (open cir- 
cles in Figure 10). 

Finally, we plot in Figure 12 the shelf energy density peak 
values obtained in the frictional cases against the 1/of value. 
The fact that larger energy density peaks are induced in 
lower-frequency forcing cases is due to the increase in the 
number of offshore Rossby wave components that are able 
to transfer energy from the offshore forcing source to the 
slope region. Notice that the energy density peak values 
induced in the present oscillating forcing cases are generally 
smaller than those in the propagating forcing cases of section 
3 (cf. Figure 7). A maximum energy density value of 
0.018A02, in the case of 1/of = 110, for example (Figure 9), 
indicates that the maximum velocity over the outer shelf is 
about 0.09Vm, where Vm is the maximum velocity of the 
offshore forcing eddy. The energy density peak in the 
oscillating forcing cases is small because dispersion over the 
slope region occurs in both the x and y directions, whereas 
the propagating forcing cases, dispersion occurs in only the 
x direction. 



9456 QIu: LoW-FREQUENCY SHELF/SLOPE RESPONSES 

0.024[ ...... 
r-, 0.012 

LU 0 O0 I' 0 8 

•:•:•:i:{:i:i:i•!•!:i•!!!:!:i:i::-':/:..:.-'/• ..... l-:.:..'.:..'-:.:...........-....•-.:•i ß, ß ,'d/, !••ff.-:•....."'•t,•,T•g• I r.: .,..:...::• ...,-,,,,.._,.,•'• 
I. '"'"'"'" "'"" ' ': { / ' ', '. ::""'"":" i -4_---•, ;: ................................. .__.._.•....•'• 

:i•':'•:'::•.::.•'.:+'.•i.•.•.::'.':• ':::: ' :• •..',':-:•' :•'.::• :::s :a: • • 
....................... :.":::,::'.•:.s:::: •, :• '-.'/:• :;'.':"'.'-• • 'a •':i; 

-• 21--•-'w,...."•,. • / ,r,;."--•.,..:-. '.•••••.'./: -I - 
/ .. - • ' / / .• '/r'".'.".'• .. '"-.•,-.. •*.• ••i...'..a;; I . 

16 . t ':¾,',::i 1 
?, - ,,r- ' V•'"'"':':'•"::•••..-:•:•';; I . 

/ ' 4,1./"'"", •, "'""•':, ß •.. :•.•••i•'4t, I •' , 
/ ' ' i • •-'-•;';':, ' *• ••':'•.. :.'.'.*.'i:l ß I , 

2ot "t ''' ' "/'"'"'"''' ••'"'-'•••:.,. ß •...••{:: i - ', 
?,,, / - ,o I -. ,o , 

/ ' 'o !• ' ' '"'l '•" '•' ''' '""' :-- ß •'-...'"". -..'••••i.:t:: I -- 4o 
24 ' '' - ' 

-I 0 I 2 -I 0 

X X 

I 2 

Fig. 9. As in Figure 8 except for the inclusion of bottom friction (Ev 1/2 = 0.0025). The contour interval values for r/1 
and r/• are 0.0375 A0, and the unit for velocity vectors is 0.03A0. 

5. CONCLUSIONS AND DISCUSSION 

Using a two-layer/3 plane ocean model, we investigated 
the shelf/slope responses induced by localized forcing 
sources which (1) propagate in the along-slope direction and 
(2) have oscillating amplitudes. In the real ocean the first 
forcing situation corresponds to cutoff warm eddies propa- 
gating in the along-slope direction as observed by Joyce 
[1984]. The second forcing situation with a single oscillating 
frequency, on the other hand, can be regarded as one 
component in the frequency domain representing the station- 
ary meandering of the Gulf Stream front as observed by both 
Luyten [ 1977] and Louis and Smith [ 1982]. In this section we 
will summarize the results obtained in the present study and 
discuss the applicability of these results to real ocean situa- 
tions. For easy comparison the variables will be expressed in 
their dimensional units. 

We found that when the offshore forcing source propa- 
gates in the along-slope direction with the shelf to the right (c 
< 0), the shelf/slope responses are dominated by the bottom- 
trapped TRWs in the inviscid limit and their intensity de- 
pends strongly on the value 

I• = -- (-foM/c)]/2 W + • (28) 
•r g'H] M2 l 

Maximum responses occur when the/• value is close to an 
integer, and the responses are minimum when/• is an integer 
plus 1/2. The underlying physics for this/• dependence is as 
follows: Because of the dominance of the vortex stretching 

term in the vorticity balance in the lower layer slope region, 
a propagating forcing source in the offshore ocean tends to 
induce wave components over the slope region that liave a 
similar cross-slope wave structure. When the propagating 
speed c is such that the resultant phase change across the 
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Fig. 10. Locations at the shelf break of the energy density peak 
induced by forcing sources oscillating in amplitude. Solid circles 
show the numerical results obtained in the inviscid limit, while open 
circles show those obtained when EJ/2 = 0.0025. The dashed line 
shows the location deflected by the offshore cutoff Rossby wave 
component (see (27)). 
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slope region is close to n½r (that is, when/z is close to the 
integer n), all wave components can reach the outer shelf 
without much energy reflection. This consequently causes 
strong responses in the shelf/slope region. 

With the inclusion of bottom friction we found that this tz 
dependence of the shelf/slope response is valid only for the 
fast-propagating forcing cases, wherein the wave compo- 
nents have large cross-slope length scales and are weakly 
influenced by the bottom friction. When the propagating 
speed of the source is slow, however, the excited small-scale 
bottom-trapped TRWs are effectively damped out by the 
bottom friction. As a result, shelf energy density maxima in 
the slow-propagating forcing cases are mainly determined by 
the surface-intensified Rossby waves, as opposed to the 
fast-propagating forcing cases where the energy density 
maxima are determined by the bottom-trapped TRWs (Fig- 
ure 7). 

In ocean regions north of the Gulf Stream beyond Cape 
Hatteras, warm-core rings are frequently observed to move 
west-southwestward with speeds of 3 --• 5 cm s -• [Joyce, 
1984]. An estimation for M = 0(0.04 km-•), W = 0(60 km), 
f0' 10 -4 s -1, g'H 1 = 0(4 x 104 cm 2 s-2), and H• << H 2 
leads to/z = 5.1 --- 6.7. From the result of Figure 7 we notice 
that these /z values fall in the parameter range where the 
surface and bottom wave components are both important to 
the shelf/slope responses. Evidence showing the existence of 
long-period surface-intensified current fluctuations has been 
observed by Louis et al. [ 1982] at the continental margin off 
Novia Scotia. They attributed these fluctuations to the 
baroclinic radiation field associated with the offshore eddies. 

'For the case of c = -0.0055 (Figure 5), detailed study of 
velocity components showed that a jet moving in the +y 
direction appeared near the shelf break at y - ct = -2.7 --• 
-0.9. The jet's location and direction are similar to those of 
the shelf break jet found by Chapman and Brink [1987]. It 
sl{ould be noticed, however, that the shelf break jet in'the 
ChaPman and Brink model is directly driven by the forcing 
source when it is located close to the shelf break or when the 

stratification is increased, allowing the forcing eddy to reach 
the shelf break before decaying. Since the forcing source in 
ttie present study exists in the offshore region, the jet occurs 
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Fig. 11. Deflected angles between the ray path and the -y axis 
of the TRWs in the slope region. The dashed line indicates the cutoff 
wave number for the offshore barotropic Rossby waves. 
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Fig. 12. Maximum energy density values at the shelf break in- 
duced by forcing sources oscillating in amplitude (EJ/2 = 0.0025). 

after bottom-trapped TRW components have weakly dis- 
persed and interfered with their reflected waves near the 
shelf break. As a result, the direction and the location of this 
jet depend largely on the propagating speed c: when c= 
-0.0080, for example, the jet moves in the -y direction 
around the location of y - ct = -2.7 -• -0.9 (not shown). 

Unlike in the Chapman and Brink's model, the present 
study shows that a propagating forcing source located away 
from the shelf break can still be significant for the neighbor- 
ing shelf/slope responses. The difference between the 
present model and that of Chapman and Brink stems from 
the inclusion of the planetary/3 effect. The planetary/3 in the 
offshore regions supports the barotropic Rossby wave mo- 
tions, enabling the energy of the offshore forcing source to 
be transferred to the slope region. Moreover, the planetary/3 
supports the surface-intensified wave motions, which, as we 
found in the present study, have a direct influende on the 
shelf/slope responses. 

When the localized offshore forcing source is stationary 
and has an oscillating amplitude, we found that maximum 
responses occur along a confined line area over the -y slope 
region. Using the method of stationary phase, we found that 
in the inviscid limit, this line area can be approximated by 

Y '•- 2/30(1 + sin 0) 1- foM (W-x) (29) 
where x is the offshore distance from the shelf break. 

Physically, (29) expresses the ray pat h of the cutoff wave 
component of the offshore barotropic Rossby wave. Notice 
that the y value in (29) is independent of •rf, the oscillating 
frequency of the forcing source, but decreases when the 
bathymetry is more zonal (0-* •r/2). Typical values of Mfo - 
0(4 x 10 -ll cm s-•), W = 0(60 km), and 0 = •r/4 --- •r/2 yield 
y = 420 --• 460 km at the shelf break (x = 0). 

By including the bottom friction we found that although 
the energy density peaks appear at around the same -y 

. 

location as in the inviscid case, they tend to shift to a farther 
-y location (or shift to an outer slope location along a fixed 
cross-slope line) as the oscillating period of the forcing 
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source increases. This shift occurs because bottom friction is 

more effective in damping out small-scale wave components 
with small -y deflections when 1/0.f becomes large. Because 
of the increase of the incident Rossby wave components 
permissible in the offshore ocean, we further found that the 
energy density peak value in the shelf/slope region tends to 
increase as the forcing period increases. 

From moored results of current and temperature across 
the continental rise south of Cape Cod, Hogg [1981] ob- 
served that the energy maxima for the three different period 
bands appear further north with decreasing period and that 
the maximum energy values increase along with the period 
(his Figure 8). Although the present model is too simple to do 
quantitative comparisons, these observational results are 
consistent with and can qualitatively be explained by the 
result of the present study. 

Finally, it is worth emphasizing that although the offshore 
current meandering and warm-core eddies are governed by 
nonlinear dynamics, their influence upon the neighboring 
field is mainly via the forcing of the dispersive Rossby waves 
[e.g., McWilliams and Flied, 1979]. Shelf/slope responses 
induced by such offshore forcing sources can be adequately 
understood by using our present linear model. When the 
localized forcing source is located close to the shelf break, as 
observed along the southeast U.S. outer continental shelf 
[e.g., Lee and Atkinson, 1983] and the East China Sea 
continental shelf [Sugimoto et al., 1988], the nonlinear 
effects of the forcing source on the shelf/slope dynamics 
should no longer be neglected. The nonlinear effect can also 
enter the problem when the forcing source is close to the 
shelf/slope region, causing resonance in the response field. 
These nonlinear effects will be incorporated in our subse- 
quent studies on shelf/slope responses. 

APPENDIX 

slope parameter M- O(1), as in the case under consider- 
ation, we have -raM/0. >> 1/SH(x) with the exception of m/0. 
--) 0. Physically, this means that the effect of vortex stretch- 
ing caused by the slope inclination predominates over that 
caused by the interfacial elevations. This fact enables us to 
obtain the WKB solution for (A1): 

I x } Z'(x) oc exp +__i [K 2- 1/SH(x) + O(A2)] 1/2 dx 

(A3) 

Evaluating the integrand in (A3) at x = W and noting that 
-mM/0. >> 1/SH, we obtain the intrinsic phase change 
across the slope as 

f0 TM I-- [Ks 2 - e-MX/SH2 + O(A2)] 1/2 dx --) KsW 

- (e '•w- 1)/MSKs + O(A 2) (A4) 

If S is a priori set to be infinite and A -• 0, (A4) reduces to the 
result obtained by Kroll and Niiler [1976] for the nondiver- 
gent barotropic system. Notice that inclusion of bottom 
friction only influences the intrinsic phase change to O(A2). 
Also notice that the solution (A4) fails in the parameter range 
of rn/0.-• O, thus causing the discrepancy between the results 
of maximum FTCs and I - •r in Figure 3. 

When the forcing period is large, allowing propagating 
baroclinic wave modes, the intrinsic phase change of bot- 
tom-trapped TRWs is still given by (A4). This is because the 
coupling between the surface waves and the bottom-trapped 
TRWs is generally negligible in the slope region [Sugino- 
hara, 1981]. Detailed discussion, however, will be omitted 
from the present paper. 

The intrinsic phase change of TRWs across a slope region 
has been shown by Kroll and Niiler [1976] and Ou and 
Beardsley [1980] to be a crucial quantity in determining the 
energy transmission by monochromatic wave forcings. In a 
two-layer ocean the intrinsic phase change of bottom- 
trapped TRWs can be evaluated as follows. 

When the forcing period is short such that surface- 
intensified waves are not induced (in Figure 3: 1/0. < 180), we 
can neglect the influence from the upper layer motion and 
simplify the lower layer equation (10) to 

eZlxx + (0310. + M)Z•x 

+ [-em 2 + (a - M)m/0. - 1/SH(x)]Z• = 0 (A1) 

Assuming A 1/2 = Ev /20- << 1 and transforming Z« - Y• exp 
[-(il3/0.+M)x/2e], we can rewrite (A1), to O(A2), as 

Y•xx + {Ks 2 - 1/Sm(x) - Ai[am/0. - mm/0. 

+/32/20.2 - M2/2 - 1/SH(x)] + O(A 2)} y• = 0 

where 

Ks 2 =/32/40.2 + (C• -- m)m/0.-m2-m2/4 (A2) 

satisfies the dispersion relation for the nondivergent barotro- 
pic TRWs in the slope region. Notice that the term -mM/0. 
in (A2) generally predominates over other terms. When the 
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