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ABSTRACT

Baroclinic Rossby wave motions in the off-equatorial oceans are investigated with emphasis on how eddy
dissipation can influence the propagation of the height anomalies when both the forced wave response to wind
in the interior ocean and the free wave response originating along the ocean’s coastal and topographic boundaries
are present. By explicitly estimating the decay scale for the long baroclinic Rossby wave, the authors show that
the forced wave patterns at all off-equatorial regions appear to propagate westward at 2cr, where cr is the phase
speed of the long baroclinic wave. The presence of the boundary-generated, free Rossby waves in the low
latitudes, however, reinforces the 1cr phase propagation in the combined height anomaly fields. Toward higher
latitudes, this reinforcement weakens as the boundary-generated, free waves become highly dissipative; as a
result, the forced wave motion becomes more dominant, which works to increase the apparent phase speed up
to 2cr. In the subpolar regions where the annual baroclinic Rossby waves become evanescent, an apparent phase
speed higher than 2cr is observed when an annual, standing wave response and a propagating wave response
with an interannual frequency coexist. Stronger annual and interannual wind fluctuations over the Southern
Hemisphere subpolar regions than over the Northern Hemisphere subpolar regions suggest that this coupling,
and the phase speed higher than 2cr, are more likely to be detected in the Southern Hemisphere subpolar oceans.

1. Introduction

In a recent study, Chelton and Schlax (1996) con-
ducted a thorough analysis of the satellite altimetric data
from the first 3-year TOPEX/POSEIDON (T/P) mission.
Focusing on the sea surface height (SSH) anomalies
with wavelengths $500 km, Chelton and Schlax showed
that the propagation speed of the observed SSH anom-
alies was in discord with the linear theory for free, first-
mode baroclinic Rossby waves. They found that the
linear theory predicts well the observed westward prop-
agating phase speed only in the tropical band from 108S
to 108N. Poleward of this band, the ratio of the observed
phase speeds to the theoretical ones tends to increase
monotonically from 1 to 2 in the Northern Hemisphere
oceans and from 1 to 3 in the Southern Hemisphere
oceans (see Fig. 1).

The presence of the first-mode, baroclinic Rossby
waves in the low- and midlatitude oceans has been de-
tected by many investigators based on upper-ocean tem-
perature data and, more recently, on satellite altimetric
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data (e.g., White 1977, 1985; Meyers 1979; Kang and
Magaard 1980; Kessler 1990; Jacobs et al. 1993, to cite
the studies of the North Pacific Ocean alone). That the
linear theory underestimates the phase speeds of the
observed baroclinic Rossby waves was, in fact, previ-
ously noted by White (1977), Meyers (1979), and Kess-
ler (1990) in their analyses of historical XBT/MBT data.
As the domains of their analyses were confined, re-
spectively, to the zonal bands from 108N to 208N and
from 58N to 228N in the North Pacific, the generality
of this discrepancy between the theory and observations
was not clear. The analysis of the global T/P altimetric
data by Chelton and Schlax (1996), for the first time,
suggests that this discrepancy is universal, existing in
both hemispheres of the Pacific, Atlantic, and Indian
Oceans. In addition, recent analyses of simulated sea
level fields from a global ocean general circulation mod-
el (OGCM) developed at the Los Alamos National Lab-
oratory by Chelton (1996) and from the global OGCM
of Chao and Fu (1995) by White et al. (1997) revealed
very similar trends to that in Fig.1; namely, the west-
ward phase speeds of the modeled SSH anomalies are
systematically higher than the theoretical predicted val-
ues. Clearly, a robust, dynamic mechanism for this dis-
crepancy must exist.

Several mechanisms have been suggested in the past
that help explain the high phase speeds of the observed
baroclinic Rossby waves. To explain the high phase
speeds of the observed baroclinic Rossby waves found
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FIG. 1. (a) Phase speeds of westward propagating SSH anomalies
estimated from 3 years of T/P altimeter data. Solid circles correspond
to Pacific estimates, and open circles correspond to Atlantic and In-
dian Ocean estimates. Solid lines denote the theoretical phase speed
of the long baroclinic Rossby waves averaged globally. (b) Ratio of
the observed phase speeds to the theoretical values. [Both figures are
taken from Chelton and Schlax (1996).]

in his XBT data analysis, White (1977) considered the
ocean response under direct surface wind forcing. He
showed that the ocean response in this case consisted
of a directly forced component and a free, baroclinic
Rossby wave component. A no-normal-flow condition
along an eastern boundary yields an interior wave so-
lution that propagates westward at a phase speed of
2g9bHo/ f2 (52cr), or twice the speed of the free, bar-
oclinic Rossby waves, where g9 is the reduced-gravity
constant, f the Coriolis parameter, b the meridional gra-
dient of f, and Ho the mean upper-layer thickness. Al-
though White’s theory, which indicates that all wind-
driven interior waves have twice the speed of the free
waves, cannot explain all aspects of the observations
revealed in Fig.1, it does suggest that the wind-driven
response in an off-equatorial ocean is more complicated
than the free wave response.

A more recent study by White et al. (1997) suggested
that the oceanic Rossby waves are coupled with the

overlying atmosphere. By analyzing the spatial phase
relationship among the sea level, SST, and meridional
surface wind data and using a simple coupled model,
they demonstrated that a positive feedback exists be-
tween the oceanic and atmospheric variables, which
works to increase (decrease) the westward phase speed
of an oceanic Rossby wave poleward (equatorward) of
the 258 latitude.

To account for the high phase speeds of the observed
baroclinic Rossby waves, Killworth et al. (1997) con-
sidered the effects of background, baroclinic mean zonal
flow upon the propagation of free baroclinic Rossby
waves. By solving an eigenvalue problem for the ver-
tical normal modes, they showed that inclusion of the
mean zonal flow alters the background potential vortic-
ity and works to increase the westward propagation of
the free, baroclinic Rossby waves. Using the density
profiles and the geostrophic shear flows calculated from
the climatological temperature and salinity data (Levitus
et al. 1994; Levitus and Boyer 1994), Killworth et al.
showed that the theoretical phase speeds are similar to
the observations and poleward of 308 they are several
times faster than the linear theory without the mean flow
would predict.

Another salient feature from Chelton and Schlax’s
(1996) study is that wave trains emanating from the west
coast of the North American continent can be traced to
cross the Pacific basin only in low-latitude regions (see
their Fig. 4). Toward higher latitudes, the wave trains
appear to be highly confined near the coast. In fact,
Chelton and Schlax’s Figs. 2a and 2b showed that most
of the SSH anomalies observed along 398N and 328N
originated in the middle of the ocean basin. This is in
contrast to the signals along 218N, where the SSH anom-
alies can be traced eastward to originate from the North
American coast (their Fig. 2c).

That the boundary-originated baroclinic Rossby
waves tend to dissipate rapidly offshoreward toward
midlatitudes is also a common feature in numerical
ocean modeling studies. Figure 2 shows an example
from a 1½-layer, reduced-gravity model run, in which
a zonal wind stress patch of annual frequency is ap-
plied over the equatorial Pacific centered at 1708E.
The contours show a snapshot of the upper-layer
thickness anomaly field after the model ocean reached
a dynamically quasi-steady state. In this model, the
baroclinic Rossby waves seen in the interior ocean
are induced by the equatorial Kelvin waves (and the
subsequent coastal Kelvin waves) excited by the os-
cillatory equatorial wind forcing. The confinement of
the Rossby waves to the coast is obvious in midla-
titudes. Although such a confinement has been com-
monly detected in observations and models, system-
atic studies on how dissipative forces will influence
the propagation and decay of baroclinic Rossby waves
are still lacking.

In this study, the theory of the forced ocean response
put forth previously by White (1977) and other inves-
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FIG. 2. Instantaneous upper-layer thickness anomaly field (in meters) derived from a nonlinear, 1½-layer reduced-gravity
model. The model ocean has an initial constant depth of 300 m and is forced by an oscillatory zonal wind stress patch
on the equator:

2 2t cos[p(x 2 x )/L ] exp[2y /2L ] sin(vt), 2L /2 # x # L /2o c x y x x
xt 5 50, otherwise,

where xc 5 1708E, Lx 5 208 long, Ly 5 58 lat, v 5 2p/1 yr, and to 5 0.1 N m22. The model run reached a quasi-steady
state after a 30-yr integration and the anomaly field shown here is from yr 5 35. The horizontal eddy viscosity coefficient
used in the model is Ah 5 500 m2 s21.

tigators will be extended in light of the observations
summarized above. Notice that in addition to the eddy
dissipation mechanism in the ocean’s thermocline, ver-
tical propagation of wave energy into the subthermo-
cline ocean can also contribute to the disappearance of
the boundary-originated Rossby waves (Kessler and
McCreary 1993). The vertical propagation occurs in
shorter distances at higher latitudes and longer distances
at lower frequencies. In the present study, however, we
will focus on the mechanism due to eddy dissipation.
In particular, using a simple analytical model driven by
idealized wind forcings, we will address the following
questions: 1) Why does the free wave solution work
well in low-latitude regions and why does the discrep-
ancy between the theory and the observations become
progressively greater with increasing latitude? 2) What
roles do dissipative forces play in controlling the prop-
agating pattern of the long baroclinic Rossby waves? 3)
Can the ratio of the observed wave speeds exceed 2, as
is suggested to be the case in the high-latitude, Southern
Hemisphere oceans?

The presentation of this study is organized as follows.
In section 2, we will consider the basic characteristics

of free baroclinic Rossby waves. The focus is on the
role of eddy dissipation in determining the propagation
and decay of the free waves. Section 3 describes the
basic features of the baroclinic Rossby waves forced in
the interior ocean. The emphasis is again on the influ-
ence of eddy dissipation. In section 4 we will address
the three questions raised above by considering more
realistic cases in which both the boundary-generated
free Rossby waves and the directly forced interior Ross-
by waves are present. A summary of the study is given
in section 5.

2. Propagation and decay of free baroclinic
Rossby waves

Like many previous studies, we will consider the
baroclinic motion in a 1½-layer, reduced-gravity sys-
tem in which the upper ocean of density r1 exists
above an infinitely deep, lower layer with a density
r2. Assuming the surface wind forcing acts as a body
force upon the upper layer and the dissipation of mo-
tion is through horizontal eddy diffusion, the linear-
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FIG. 3. A schematic showing the phase propagation along two parallels
A and B. Dashed lines show constant phase lines; the phase difference
along the coast may be neglected if the time for the coastal Kelvin waves
to travel dy from A to B is much shorter than the forcing period.

ized momentum and continuity equations can be writ-
ten as follows:

x]u ]h t
22 fy 5 2g9 1 1 A ¹ u (1)h]t ]x r Ho o

y]y ]h t
21 fu 5 2g9 1 1 A ¹ y (2)h]t ]y r Ho o

]h ]u ]y
1 H 1 5 0, (3)o1 2]t ]x ]y

where (u, y) are the (x, y) components of the horizontal
velocity, (t x, t y) the (x, y) components of the surface
wind stress vector, h the upper-layer thickness, Ho the
mean upper-layer thickness, g9 5 (r2 2 r1)g/ro the re-
duced gravity, Ah the coefficient of horizontal eddy vis-
cosity, ¹2 the horizontal Laplacian operator, and f the
Coriolis parameter. Although we have assumed the dis-
sipation in the form of horizontal eddy diffusion in Eqs.
(1) and (2), expressing the dissipation in other forms,
such as Newtonian momentum damping, will not qual-
itatively change the results presented below (see the
appendix).

Cross-differentiating Eqs. (1) and (2) and eliminating
the velocity divergence from the continuity equation
leads to the vorticity equation. Under the low-frequency
and quasigeostrophic assumptions (for a detailed dis-
cussion of these assumptions, see McCreary 1977), the
vorticity equation simplifies to

] ]h
2 2 2 2 2(h 2 l ¹ h) 2 c 1 A l ¹ (¹ h)r h]t ]x

t
5 2= 3 , (4)1 2r fo

where l 5 g9Ho/ f is the baroclinic Rossby radius,Ï
and cr 5 bl2 is the speed of free baroclinic Rossby
waves (with b being the meridional gradient of f ). As-
suming a wave solution of h ; exp(ivt 2 ikx 2 ily) in
the homogeneous part of Eq. (4) gives the dispersion
relation:

1
2 2 2 2 2v k 1 l 1 1 bk 2 iA (k 1 l ) 5 0. (5)h21 2l

Notice that if we are interested in the waves with length
scales of O(108) or longer (which is the case in analyzing
altimetrically measured SSH data), the long-wave ap-
proximation is valid: k2, l2 K l22. We may not, however,
ignore k2 or l2 in the third term of Eq. (5) associated
with the vorticity dissipation. In other words, the vor-
ticity equation with dissipation is y dependent even un-
der the long-wave approximation.

For typical values of the baroclinic Rossby waves of
our interest, namely, v # 2p/(1 yr), cr 5 0.01–0.1 m
s21, and Ah 5 500–2500 m2 s21, it is straightforward to
show from Eq. (5) that the zonal wavenumber k is

24A Ah h2 2 3 2 2 2k 5 k 1 2 (l 1 k ) 1 i (l 1 k )b b b2[ ]b b

3Ah 2 2 2 41 O k (l 1 k ) ,b b3[ ]b

where kb 5 2v/cr is the wavenumber of the nondissi-
pative, long baroclinic waves. For the parameter regime
of our interest, 4 (l2 1 )3/b2 K 1, so2 2A kh b

Ah 2 2 2k ø k 1 i (l 1 k ) , (6)b bb

indicating that the westward phase speed of the dissi-
pative, long baroclinic waves, v/Re(k), will remain the
same as its nondissipative value cr.

In order to find the decay scale of the dissipative
baroclinic waves, we need to evaluate l in Eq. (6). This
can be done by considering the baroclinic waves em-
anating from the eastern boundary of an ocean basin
(due to either oscillating alongshore winds or baroclinic
Kelvin waves generated along the equator). Focusing
on the two points A and B separated by dy along the
coast (see Fig. 3), we will assume the initial phase of
the waves at these two points to be equal. This as-
sumption is reasonable if the phase difference is much
shorter than the wave period of interest. For the coastal
Kelvin waves under consideration, this assumption is
well valid. At a given offshore location x, the time dif-
ference between the arrival of the initial phase line is

x x x 2xf
2 2dt 5 2 ø ( f 2 f ) ø dy,B Ac c bg9H g9HB A o o

where cA is the zonal phase speed of the dissipative
baroclinic waves at latitude A (recall that eddy dissi-
pation does not alter the zonal phase speed of the bar-
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FIG. 4. The e-folding decay scale xe as a function of latitude. In
(a) the eddy viscosity coefficient is fixed at 1500 m2 s21, while the
wave period is altered. In (b) the wave period is fixed at 2 yr, but
with different Ah values. In both figures, dashed lines denote the
approximate solution of (9) and solid lines denote the exact solution
from Eq. (8). For all cases, g9Ho 5 8.1 m2 s22.

oclinic waves, so cA ; crA 5 bg9Ho/ ). Using the def-2f A

inition for l and the above relation, we have

v vdt 2vb
l 5 5 5 x, (7)

c dy fcpy r

where cpy is the meridional phase speed. Substituting l
in (6), we can estimate the e-folding distance xe of the
decaying baroclinic Rossby waves by solving

xeAh 2 2 2(l 1 k ) dx 5 21E bb 0

or
22xe4A v 2bxh 1 1 dx 5 21. (8)E4 1 2[ ]bc fr 0

Figure 4a shows the xe values as a function of latitude
for different v for the North Pacific. Clearly, the higher
the latitude the waves emanate from, the shorter their
e-folding scales become. In the region where xe is rel-
atively large (i.e., xe k f/2b 5 R tanu/2, where R is

radius of the earth and u the latitude), the e-folding scale
can be approximated by

1/5
45b(g9H )ox ø 2 (9)e 4 4[ ]16v A fh

(see dashed lines in Fig. 4a). Notice that the y-dependence
of xe is proportional to both f24/5 and v24/5. Also notice
that under this approximation, xe ; , suggesting that21/5Ah

the e-folding scale is not very sensitive to the Ah value.
Changing Ah by tenfold will only alter the e-folding scale
by 15%. Toward higher latitudes [where Eq. (9) is less
valid], however, the e-folding scale does become more
sensitive to changes in Ah. A recent study by Jenkins
(1991) based on tritium–helium observations in the main
thermocline of the Sargasso Sea indicated Ah 5 1840 6
440 m2 s21. In the following discussion, we will consider
Ah in the range from 500 to 2500 m2 s21.

In Fig. 5, the theoretical e-folding scale xe is superim-
posed upon the rms amplitudes of the upper-layer thickness
anomalies derived from the model simulation shown in
Fig. 2. The theoretical values (the pluses) follow well the
1.0-m contours of the rms amplitude, suggesting that de-
spite the fact that the numerical model is governed by a
more complicated set of physics, including nonlinear ad-
vection and wave dispersion, the simple theory developed
above accounts well for the decay scale of the boundary-
generated, free long baroclinic Rossby waves.

3. Propagation and decay of forced baroclinic
Rossby waves

One point worth emphasizing from the preceding sec-
tion is that the baroclinic signals originating along the
eastern boundary in mid and high latitudes will not sur-
vive their journey across the Pacific Ocean (which has
a width of more than 12 000 km). In other words, toward
higher latitudes, the baroclinic wave motions will be
increasingly dominated by those induced directly within
the ocean’s interior. To understand the wave motions
there, we need to look into the characteristics of the
forced baroclinic Rossby waves. To do so, it is intuitive
to consider the case in which the wind-driven Ekman
convergence term in the vorticity equation (4), 2= 3
(t/ro f ), has a simple temporal and spatial pattern. Spe-
cifically, we assume this forcing term oscillates at a
frequency v f and has a constant amplitude Ao within
the zonal band xb # x # 0:

t A cos(v t), x # x # 0o f b2= 3 5 (10)1 2 5r f 0, otherwise.o

Without loss of generality, we have set x 5 0 at the
eastern edge of the forcing band (notice that this edge
does not have to coincide with the ocean’s eastern
boundary). To simplify the argument, we will further
restrict the attention to the zonal propagation of the h
anomaly field, as this is the quantity commonly analyzed



2410 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. Rms amplitudes (in meters) derived from the numerical model run shown in Fig. 2. Large amplitude
fluctuations in the western equatorial region are due to the forcing of the oscillatory wind stress patch there.
Fluctuations offshore of the North American continent are results of the baroclinic Rossby waves emanating from
the eastern boundary. Pluses indicate the e-folding decay scale based on Eq. (8) for the baroclinic Rossby waves
initiated along the eastern boundary.

from the observational data. Thus, no y dependence will
be explicitly included below.

Due to the long-wave approximation, the area east of
the forcing band is unperturbed:

h 5 0 for 0 # x. (11)

(This solution is valid even when wave dispersion is
allowed, as the baroclinic Rossby waves with eastward
group velocity are highly sensitive to dissipation, due
to their shorter wavelengths.) Within the forcing band,
the solution of Eq. (4) is the sum of a standing wave
and a traveling wave:

Ao 2x /xeh 5 [sin(v t) 2 e sin(v t 2 k x)]f f b
v f

for x # x # 0. (12)b

As noted by White (1977), the amplitude of the traveling
wave matches that of the standing wave in order to
satisfy the boundary condition at x 5 0.

West of the forcing band, the solution constitutes two
traveling waves emanating from the eastern and western
edges of the forcing band, respectively:

Ao 2x /x x /xe b eh 5 e {e sin[v t 2 k (x 2 x )]f b bv f

2 sin(v t 2 k x)} for x # x . (13)f b b

Here, the amplitude of the traveling wave emanating from
the western edge has been determined by the continuity
condition of h at x 5 xb. It is clear from (13) that the h
anomalies west of the forcing band will propagate west-
ward at the free baroclinic Rossby wave speed cr 5
v f /kb. Although the phase of the h contours depends on
the relative size of xe versus xb, there exists no ambiguity
about the phase speed in the combined wave field.

This, however, is not the case for the h pattern within
the forcing band. Estimating the phase speed from the
h anomaly pattern given by (12) can be subtle. To see
this, we nondimensionalize x, t, and h by 1/kb, 1/v f, and
Ao/v f. This simplifies (12) to

2x*/x ke bh* 5 sin(t*) 2 e sin(t* 2 x*), (14)

where the asterisk denotes nondimensional quantities.
From (14), it is clear that the h* field depends on a non-
dimensional parameter xekb, or the ratio of the e-folding
decay scale to the zonal scale of the Rossby waves 1/kb.
Figure 6 shows the h* patterns as a function of the non-
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FIG. 6. Time–longitude plots of the h* patterns in which the ocean
is forced by a zonally uniform, oscillatory Ekman pumping [see Eq.
(14)]. The three plots differ in the nondimensional parameter xekb:
(a) xekb 5 `, (b) xekb 5 6p, and (c) xekb 5 2p. Dashed lines in (a)
denote the westward phase speed of the long baroclinic wave speed
cr (one in the nondimensional unit). Dashed lines in (b) and (c) denote
the westward phase speed at 2cr.

dimensional time and space for xekb 5 `, 6p, and 2p. In
the nondissipative limit (xekb → `), Eq. (14) can be re-
written as

x* x*
h* 5 2 sin cos t* 2 , (15)1 2 1 22 2

a result presented previously by White (1977) and
other investigators. Although Eq. (15) appears to sug-
gest that the h* anomalies propagate at twice the phase
speed of a free baroclinic wave, Fig. 6a shows that
connecting the positive or negative anomalies over
several wavelengths results in a phase speed the same
as that of a free wave (or, unity in the nondimensional
unit). This is simply due to the fact that the ‘‘doubled-
phase-speed wave’’ in Eq. (15) is modulated by a sine
function whose horizontal scale is the same as that of
the doubled-phase-speed wave.

When dissipation is present, Eq. (14) indicates that

the traveling wave component will be damped selec-
tively as the signal moves westward, whereas the stand-
ing wave component remains unaffected. The resultant
h* pattern in this case can be visually quite different
from the nondissipative case. As shown in Figs. 6b and
6c, the doubled-phase-speed pattern stands out more
apparently as xekb decreases. Notice that though ap-
pearing to move westward at 2cr, the traveling wave
anomalies initiated at the eastern edge of the forcing
band propagate westward at one free wave speed.

In Fig. 7, we plot the xekb values as a function of
latitude and the eddy viscosity coefficient under the
forcing of an annual frequency. For a given Ah value,
xekb attains its maximum somewhere in the midlati-
tude. Poleward of that latitude, xekb decreases due to
the shortening of the e-folding scale; equatorward, it
decreases due to the lengthening of the zonal scale of
the baroclinic Rossby waves. Except for very low Ah

values, most of xekb fall below 6p, suggesting the



2412 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 7. Values of xekb as a function of latitude and the horizontal
eddy viscosity coefficient. Physically, xekb gives the ratio of the long
baroclinic Rossby wave’s decay scale to the wave’s length scale.

FIG. 8. Time–longitude plots of the h* patterns in which a bound-
ary-generated free wave is superimposed on a forced solution [see
Eq.(16)]. In (a), the origin of the free wave is relatively close to the
eastern edge of the forced motion, xakb 5 2p, whereas in (b), it is
comparable to the baroclinic wave’s decay scale, xakb 5 25.5p. For
both cases, xekb 5 6p, u* 5 0.4p, and a* 5 21.2. Dashed lines in
(a) denote the westward phase speed at cr and those in (b) at 1.2cr.

combined h* pattern of the standing wave and the
dissipative traveling wave would, at all latitudes, ap-
pear to move westward at 2cr.

4. Discussion

a. Latitudinal dependence of the phase speed of
combined forced and free waves

In the real ocean, Rossby waves are generated both
within the interior ocean due to direct wind forcing
and along the eastern boundary due to either along-
shore wind fluctuations or equatorial-originated
coastal Kelvin waves. Although the forced wave mo-
tion, as we noted in the previous section, would ap-
pear at all latitudes to move westward at twice the
free wave speed, its blending with the boundary-gen-
erated free Rossby waves can change the apparent
speed of the h* anomalies in an x–t plot. To see this,
let us add a boundary-generated, free wave solution
to (14):

*2(x*2x )/x ka e bh* 5 a*e sin(t* 2 x* 1 u*) 1 sin(t*)
2x*/x ke b2 e sin(t* 2 x*), (16)

where the first term on the rhs denotes the free wave
solution with a* being its amplitude nondimensional-
ized by Ao/v f, u* its phase relative to that of the forced
wave, and being the position of the boundary (re-x*a
call that x* 5 0 is the eastern edge of the forcing
band). Notice that although the term ‘‘boundary’’
above has been narrowly defined to be the eastern
boundary of an ocean basin, it can represent other
geographical locations where free, baroclinic Rossby
waves are generated. Midocean ridges and seamounts
are good examples along which baroclinic Rossby
waves can be excited due to interaction between the
mean flow and the topography (e.g., Barnier 1988;
Wang and Koblinsky 1994).

Figure 8a shows a typical h* pattern based on (16)
when xa is relatively small compared to the decay
scale of the free wave xe (i.e., xakb 5 2p vs xekb 5
6p). In other words, it represents the situation in
which the boundary-generated free wave is not quite
dissipated when it reaches x* 5 0. Because the bound-
ary-generated free wave propagates at cr, Fig. 8a
shows that its presence works to reinforce the con-
nection between the positive (or negative) h* anom-
alies, which, in the forced solution (14), was disrupted
due to the decay of the traveling wave component
(Figs. 6b and 6c). Connecting the positive (or nega-
tive) anomalies in Fig. 8a results in a westward phase
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speed close to 1cr. Notice that the reinforcement oc-
curs when a* cosu* , 0, that is, when the boundary-
generated free wave has the same sign as the traveling
wave of the forced solution [the third term on the rhs
of (16)].

When the scale of xa (the distance between the or-
igin of the boundary-generated, free wave and the
eastern edge of the wind forcing) becomes compa-
rable to xe, the influence of the boundary-generated
Rossby wave upon the forced solution becomes weak-
er and the combined h* solution of (16) will exhibit
westward propagation at a speed between 1cr and 2cr.
Figure 8b shows the combined h* pattern when xa/|xe|
5 0.92 (the other parameters were kept the same as
in Fig. 8a); the phase speed of the combined h* pattern
from this example is 1.2cr. Though its exact value
depends on the chosen parameters, the phase speed
of the combined h* pattern from (16) always falls
within the 1cr to 2cr range. If xa becomes much greater
than xe, the boundary-generated, Rossby wave will
have little effect on the forced solution; the combined
h* solution of (16) in this case will remain the same
as those presented in Fig. 6. In other words, the h*
pattern will appear to move westward at 2cr.

Because xe in the ocean decreases monotonically
with latitude (e.g., see Fig. 4), the result presented
above suggests that the height anomaly patterns at
low latitudes are likely to propagate at 1cr because of
the strong presence of the boundary-generated, free
Rossby waves. Toward higher latitudes as the influ-
ence of the boundary-generated Rossby waves di-
minishes, the forced wave motion becomes more dom-
inant and this increases the apparent phase speed of
the height anomalies up to 2cr. The result from this
simple argument is in accord with the trend found by
Chelton and Schlax (1996) that the phase speed of
the observed SSH anomalies increases progressively
from 1cr to 2cr in the subtropical oceans (108–358 lat
band).

b. Can the phase speed of combined waves exceed
2cr?

Beyond 358 lat, Chelton and Schlax’s analysis in-
dicated that the phase speed of the observed SSH
anomalies can exceed 2cr (Fig. 1). Such a high phase
speed can be explained by extension of the above
theory in the following way. Although the wind fluc-
tuations over the ocean are dominated by the annual
signals, interannual wind fluctuations can be equally
important for baroclinic wave motions. This is par-
ticularly true in subpolar regions where the baroclinic
Rossby waves with an annual period become evanes-
cent [in the subpolar North Pacific, e.g., the annual
baroclinic Rossby waves become evanescent around
408N, McCreary et al. (1987)]. Using the monthly
ECMWF wind stress data from 1985 to 1995, we plot
in Figs. 9a and 9b the rms amplitudes of the surface

wind stress curl fluctuations in the annual and biennial
frequency bands, respectively. In general, the biennial
wind fluctuations have a rms amplitude half that of
the annual signals. The largest biennial fluctuations
are found over the subpolar oceans. Unlike the annual
Rossby waves, the baroclinic waves with the biennial
frequency can exist as traveling waves there.

When both annual and biennial wind forcings are
present in subpolar regions, the baroclinic response
induced by the annual wind is dominated by the stand-
ing wave component sint* and the influence from the
evanescent wave component can be neglected. As a
result, the combined response due to the annual and
biennial winds in this case can be expressed by

t*
h* 5 a* sin(t* 1 u*) 1 sin1 22

t* x*
2x*/x ke b2 e sin 2 , (17)1 22 2

where the first term on the rhs denotes the standing
wave component due to the annual forcing and the
second and third terms denote the wave solution due
to the biennial forcing [cf. Eq. (14)]. In Eq. (17), a*
is the amplitude of the annual standing wave relative
to the biennial standing wave, and u* denotes the
phase difference between these two wave compo-
nents. Figure 10 shows a typical h* pattern derived
from (17). That the h* pattern in this case appears to
propagate westward at 3cr is no surprise. Combining
a standing wave solution of an annual frequency with
a nondissipative, traveling wave solution of a biennial
frequency,

t* x*
h* 5 sin(t*) 2 sin 21 22 2

t* x* 3t* x*
5 2 sin 1 cos 2 (18)1 2 1 24 4 4 4

leads to an apparent westward phase speed of 3 (in
the nondimensional unit). Like the situation we dis-
cussed in the preceding section, the dissipation of the
biennial, traveling wave component helps to discon-
nect the anomalies that appear to propagate at cr. In
(17), the biennial, standing wave component sin(t*/2)
only acts to modulate the dissipative version of Eq.
(18) at a 2-yr period.

In conclusion, a phase speed higher than 2cr is like-
ly to be detected in high latitudes because the annual
baroclinic Rossby waves are evanescent there. Al-
though the focus above was on the biennial forcing,
the argument can be easily extended to forcings with
other interannual frequencies. In fact, combining a
standing wave solution of an annual period with any
forced solution of a period longer than 1 yr will result
in an apparent phase speed greater than 2cr. It is in-
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FIG. 9. Rms amplitudes of the wind-stress curl fluctuations in (a) the quasi-annual (0.8 , period , 1.2 yr) and (b) the
quasi-biennial (1.8 , period , 2.2 yr) frequency bands. Values (unit in 1028 N m23) are calculated from the monthly ECMWF
wind data from 1985 to 1996. Areas with the rms amplitude values greater than 3.2 3 1028 N m23 in (a) and 1.2 3 1028 N
m23 in (b) are stippled, respectively.
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FIG. 10. Time–longitude plot of the h* pattern in which a standing
wave solution of an annual frequency and a forced solution of a
biennial frequency are superimposed [see Eq.(17)]. Nondimensional
parameters are xekb 5 6p, u* 5 0.2p, and a* 5 1.2. Dashed lines
denote the westward phase speed at 3cr.

teresting to note from Fig. 9 that both the annual and
biennial wind fluctuations have higher rms amplitudes
in the Southern Hemisphere subpolar regions than in
the Northern Hemisphere subpolar regions. A similar
result is also found in the other interannual frequency
bands of the ECMWF surface wind stress curl data
(not shown). This suggests that the coupling between
the annually and interannually forced responses
should be more evident in the Southern Hemisphere
subpolar oceans than in the Northern Hemisphere. The
observations presented in Fig. 1, in which phase
speeds greater than 2cr appear mostly in the Southern
Hemisphere subpolar regions, support this notion.

c. Patterns of surface wind forcing

In all of the cases considered so far, we have as-
sumed that the oscillating surface wind forcing has a
constant amplitude Ao within a zonal band xb # x #
0 [Eq. (10)]. While solutions are derivable for cases
in which Ao is more complicated and x dependent, for
example, Ao ; sin(px/xb), this is not pursued here
because the uniform-amplitude case presented above
contained the essential physics of our interest.

Notice that no restrictions have been placed upon
the width of the forcing band xb. To remove the steric
height effect in the observed sea level data, Chelton
and Schlax (1996) applied a high-pass filter, passing
the off-equatorial sea level signals with zonal scales
shorter than W 5 2 3 105 u21 km, where u is the
latitude. Such a high-pass filter will remove standing
wave signals generated by the uniform-amplitude
forcing whose zonal scale xb is wider than W. For the
surface wind forcing with an x-dependent amplitude
or if its zonal scale is narrower than W, the forced

wave signals will remain in the high-pass filtered sea
level data.

5. Summary

In this study, we investigated some of the basic
features of the free and forced baroclinic Rossby
waves in the off-equatorial oceans. The emphasis has
been placed on how eddy dissipation can influence
the propagation of the SSH anomalies when both the
forced wave response in the interior ocean and the
free wave response originating along the ocean’s
coastal and topographic boundaries are present. This
study was motivated by the recent study of Chelton
and Schlax (1996), who showed that the phase speed
of the SSH anomalies estimated from the TOPEX/
POSEIDON altimeter data progressively exceeds the
theoretical values as one moves toward higher lati-
tudes. It was also motivated by the common obser-
vation that the boundary-generated, baroclinic Ross-
by waves are highly dissipative in midlatitudes.

The major findings from this study are as follows:

1) The decay scale for the long baroclinic Rossby
waves can be evaluated by xe ø 2[5b(g9Ho)4/
16v4Ah f 4]1/5 over most of the off-equatorial oceans
for waves having interannual timescales. (If the
eddy dissipation is parameterized by Newtonian
damping, xe ø 2[3b(g9Ho)2/4v2e f 2]1/3.) For the
baroclinic waves of an annual timescale, this es-
timation is good equatorward to about 258 lat. Be-
yond 258 lat, xe decreases much faster than f24/5,
resulting in a highly trapped signal of the baro-
clinic Rossby waves originating along the ocean’s
eastern boundary in midlatitude regions.

2) Within the ocean’s interior, a large-scale wind
forcing induces both a standing wave response and
a traveling wave response. The combined wave
pattern thus induced favors the phase speed of the
free baroclinic wave cr, if no dissipation is con-
sidered. When eddy dissipation is present, we
found the forced wave pattern appears to propagate
westward at 2cr at all the off-equatorial regions.
The appearance of the doubled phase speed is due
to the fact that the traveling-wave response is sub-
ject to eddy dissipation, while the forced response
is not.

3) When both the boundary-generated free waves and
the interior-forced wave motions are present, we
found the former can strengthen the 1cr phase
propagation in the combined height anomaly pat-
terns. This strengthening is most effective in low
latitudes where the boundary-generated free waves
are less subject to eddy dissipation; it becomes
progressively less effective as one moves poleward
because of the increasing shortening of the free
wave’s decay scale. Toward the higher latitude, the
forced wave motion, which has an apparent phase
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FIG. A1. Same as in Fig. 4b except that the eddy dissipation is
expressed in the form of Newtonian damping. The Newtonian damp-
ing timescales here range from 1/100 days to 1/300 days. Dashed
lines denote the approximate solution of Eq. (A3) and solid lines
denote the exact solution from Eq. (A2).

speed of 2cr, becomes progressively more domi-
nant.

4) In high latitude regions where the annual Rossby
waves are evanescent (poleward of about 408), bar-
oclinic Rossby waves with an interannual times-
cale play an important role for the propagating
signals. Coexistence of an annual standing wave
response and a propagating Rossby wave with an
interannual period can result in an apparent phase
speed higher than 2cr in the subpolar regions. Be-
cause the annual and interannual wind fluctuations
in the Southern Hemisphere subpolar regions are
stronger than in the Northern Hemisphere subpolar
regions, the apparent phase speed higher than 2cr

is more likely to be detected in the Southern Hemi-
sphere subpolar oceans. This notion is consistent
with the observations shown in Fig. 1.

Finally, although no attempt is made in this study
to reproduce the trend shown in Fig. 1, we believe
the results summarized above provide one possible
mechanism that helps explain the observed features
from the newly available T/P altimeter data.
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APPENDIX

Decay of Free Baroclinic Rossby Waves Under
Newtonian Damping

The momentum dissipation in section 2 was as-
sumed in the form of horizontal eddy diffusion. An
alternative way to parameterize the momentum dis-
sipation is through Newtonian damping. This is
achieved by replacing the dissipation terms Ah¹2u and
Ah¹2y in Eqs. (1)–(2) by 2eu and 2ey, respectively.
Here, e is the Newtonian damping coefficient. For e
# O(100 days21), we can derive the following dis-
persion relation for the dissipative, long baroclinic
Rossby waves in the same fashion as we derived Eq.
(6):

e
2 2k ø k 1 i (l 1 k ), (A1)b bb

where kb, b, and l have the same definitions as in Eq.
(6).

Similar to the case with the horizontal eddy dif-

fusion parameterization, we can estimate the e-folding
distance in this case by solving

2xe2ev 2bx
1 1 dx 5 21. (A2)E2 1 2[ ]bc fr 0

In latitudes where xe k f/2b, the e-folding scale can
be approximated by

1/3
23b(g9H )ox ø 2 . (A3)e 2 2[ ]4v e f

Figure A1 shows the xe values under a biennial forcing
given different Newtonian damping timescales. The
latitudinal dependence of xe is very similar to the hor-
izontal eddy diffusion parameterization case shown
in Fig. 4b, indicating that expressing the momentum
dissipation by Newtonian damping, instead of hori-
zontal eddy diffusion, will not alter the conclusions
reached in this study.
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