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Abstract

The Samoan Passage Abyssal Mixing Experiment (SPAM-Ex) is a unique data set comprised of a
deep mooring array and a long-term mooring time series in the Samoan Passage (10°S, 170°W),
an abyssal constriction through which the majority of deep and abyssal waters in the North Pacific
pass. As near-inertial waves (NIW) are episodic and propagating, they are difficult to observe. Deep
observations of NIW are even more difficult and as a result there are a limited number of deep
observations of NIW. This work hopes to provide a detailed description of such an observation.

Depth-time plots of velocity and shear, in addition to rotary spectra at each depth, show a NI
event between 4000 and 4200 m on the mooring array. An idealized model is formed to describe the
shear by using a plane wave method fitting the best fit. Plane wave solutions found independently
for each mooring and show spatial coherence across the array. The idealized model found the wave
to be comprised of both a downward propagating and an upward propagating wave, used for all
subsequent research. Wavelet analysis shows multiple NIW over the course of the long-term, 17-
month mooring deployment. These events correspond to an increase in the magnitude of the v velocity
and a decrease in the magnitude of the u velocity. In addition, on average the 27.786 kg/m? isopycnal
is depressed 14 m on average during NI events.

In calculating the various variables describe the observed NIW, the inclusion of the horizontal
Coriolis term (f) is found to be important. This solution was expanded across latitudes and values of
N? near the inertial limit. It was found that f should be included in the dispersion relation at low
latitudes (< 10°) and low stratification (N < 0.001s~") and for groups speeds at all latitudes at low
stratification (N < 0.003s7"). As a result, inclusion of f specifically in the group speed calculation is
particularly important during ray tracing.

Increased mixing was found to correspond to the NIW but only at one of the 4 moorings in the
array. Both meridional shear above the interface and below the interface are found to have a high

correlation to the near-inertial variation in depth integrated dissipation rate. This corresponds to a



decrease, but not reversal in the magnitude of the velocity. Low Richardson numbers (below 0.25)

correspond to increased turbulence indicating the observed mixing is shear driven.
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CHAPTER

Introduction

1.1 Samoan Passage

The Meridional Overturning Circulation (MOC) in the Pacific is dramatically different from the Atlantic.
There is limited deep water formation in the North Pacific (Warren, 1983) and consequently the deep
branch of the Pacific MOC (PMOC) is supplied with waters only from the south. Approximately 20 Sv
of cold water sinks near Antarctica and flows northward into the Pacific Ocean around Campbell
Plateau and along Kermadec Ridge. Half of this water makes it into the North Pacific (Roemmich
et al, 1996), where it spreads throughout the basin, mixing with the waters above and gradually
warming. Eventually, the warmed waters return southward at intermediate depths, completing the
PMOC (Wunsch & Ferrari, 2004). The North Pacific's long residence time and large capacity for
storage of heat and atmospheric carbon dioxide make it important to climate on longer time scales
(Sloyan et al, 2013, Fukasawa et al, 2004, Purkey & Johnson, 2013).

A submarine ridge extending from French Polynesia to Fiji largely blocks the northward transport
of abyssal waters. The first appreciable gap deeper than 4000 m is the Samoan Passage (10°S,

170°W). Roemmich et al. (1996) found more than half, 6 Sv, of the northward transport into the North
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Pacific at 9°S was through the narrow Samoan Passage, with other main flow routes across Robbie
Ridge, 1.1 Sv, and around Manikiki Plateau, 2.8 Sv. Also, using hydrographic measurements, Taft et al.
(1991) and Johnson et al. (1994) estimated northward transport of water colder than 1.2°C through
the passage of 6.0 Sv and 4.8 Sy, respectively. Rudnick (1997) calculated a volume transport of 6.0 Sv
with a standard deviation of 1.5 Sv below 4000 m from a six-element mooring array deployed from
1992 to 1994 at the mouth of the passage. A 2012-2014 reoccupation of the four western moorings
recalculated the transport below 4000 m to be 5.4 Sy, a statistically significant decrease over the
20-year interval at the 68% but not at the 95% confidence levels (Voet et al,, 2016).

The Samoan Passage constricts flow, resulting in substantial acceleration (Reid & Lonsdale, 1974),
hydraulic control (Freeland, 2001), and turbulence (Roemmich et al, 1996). Freeland (2001) observed
velocities of up to 6.7 cm/s and believed there to be western intensification of the flow. Over the
length of the Passage, mixing erases the NADW signature and modifies the deep and bottom waters

(Alford et al., 2013).

1.2 Near-inertial waves

Near-inertial waves (NIWs) are internal waves near the inertial frequency, f. NIWs were first ob-
served in 1930 by Ekman (1953) and since then, some general characteristics of NIWs have been
determined. NIWs are polarized, clockwise in the northern hemisphere and counter-clockwise in
the southern hemisphere. In rotary spectra, NIWs appear as a peak in the anticyclonic component
near the inertial limit. NIWs are episodic and freely propagating (Fu, 1981). NIWs tend to propa-
gate toward the equator, during which time the wave becomes super-inertial relative to the local f,
with frequencies between 1 and 1.2f (Alford et al, 2016). While propagating equatorward the NIWs
also propagate vertically: upward/downward phase propagation corresponds to downward/upward
energy propagation. As the wave propagates, variation of the Coriolis frequency can modify the
horizontal length scales (D'Asaro, 1989). The rate of vertical energy transfer is affected by the vari-

ation of this horizontal length scale. Pure inertial motion is composed of only horizontal rotation.
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Figure 1.1: Map of the Samoan Passage and zoomed-in on the sill between the eastern and western channels.
Orange circles in the main panel indicate the mooring locations in Rudnick (1997) and Voet et al. (2016). The
zoomed-in map area is denoted by the white box. Mooring locations used in this work are marked with red
circles. Purple diamonds denote the location of full depth Conductivity, Temperature, and Depth (CTD) casts,

while the dashed black box outlines the bump.
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In near-inertial motion the horizontal rotation tilts, resulting in vertical displacements that modulate
the stratification.

There are a myriad of NIW sources that include wind, wave-wave interactions, lee waves, and
spontaneous generation. Observations tend to be linked to events at the surface because surface
observations are easier to make and consequently more extensive. However, this is to not say that
a large proportion of NIWs could not originate at the surface. There is evidence of increased mixing
associated with seasonal storms (Alford & Whitmont, 2007). The amount of NI energy propagating
out of the mixed layer and into the deep ocean is uncertain. Alford et al. (2012) found 12-33% of
mixed layer NI energy propagates to the deep ocean; D'Asaro (1995) found an energy decrease of
36%(+£10%) in the mixed layer after three weeks; and in a numerical study, Furuicht et al. (2008)
found 15% of NI energy to propagate out of the upper 150 m. All in all, there are simply not enough
observations of NIWs and NIW generation to know the partition of NI energy sources.

Along the propagation path, three factors are known to influence the kinematic structure of NIWs:
buoyancy, currents, and topography. Variable stratification changes vertical wavelengths (Leaman &
Sanford, 1975). Also, strong variations in N2 can cause internal reflection (Tomczak & Godfrey, 2003).
NIWs are known to interact strongly with currents, in particular mesoscale features (Kunze, 1985,
Olbers, 1981). Internal waves can reflect (Eriksen, 1982) or scatter (Stimmons & Alford, 2012) off of
topography. In addition, topography can inhibit the lateral scales of NIWs (Gill, 1984, Lighthill, 1978).

Observations show increased mixing due to NIWs (Alford & Cregg, 2001, Hebert & Moum, 1994).
Alford et al. (2016) hypothesizes that, in the interior ocean, mixing due to NIWs could exceed that
of internal tides. Kunze & Sanford (1986) found amplification of the NIW during propagation against
the flow and NIW dispersal with reduction in energy during propagation with the flow. Enhanced

energy is associated with increased production of turbulence and mixing.
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1.3 Dissertation outline

This thesis focuses on moored hydrographic and velocity observations in the region surrounding
the sill at the mouth of the western channel (white box in Fig. 1.1). This 3 km-wide sill shallows
from 4,900m to 4,600m over the course of 4km. The western side of the sill has a secondary
topographic feature reaching 400 m above the sill, which we will denote as “the bump” (dashed black
box in Fig. 1.1). Alford et al. (2013) found that flow over the bump resulted in strong overturns and
dissipation, while flow around the the eastern side of the bump had less acceleration and shear,
producing less mixing.

The next chapter describes the mooring deployments around the southern sill, the location of this
research. A table of dates and locations is included for ease of reference.

The third chapter describes near-inertial wave observations from a mooring array, in the deep
ocean, during the Samoan Passage Abyssal Mixing Experiment (SPAM-EX). It is difficult to observe
NIW in the ocean, let alone in the deep ocean on a mooring array. A description of the observed
waves is presented. The wave was found to propagate equatorward. The wave was spatially coherent
across all moorings. The best-fit solution, which describes both the zonal and meridional shears, was
a downward propagating and a %—the—amplltude, upward propagating interference pattern. NI energy
appears to be symmetric about an energy peak at 4,100 m, disagreeing with Voet et al. (2015), and
corresponding to a peak in N?. Over a 17-month period, we observed seven near-inertial events with
a lull between May and November. These events were best described by a two-wave solution and
propagated equatorward. The NIW observed is found to be robust across moorings and not unique
in the area.

Key points:

e Coherent NIW observed with four short-term moorings in the Samoan Passage between 4000

and 4200 m.

e Fven though moorings are separated by only a few kilometers, differences between moorings
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are observed which relate to variations in N?, currents, and adjacent topography .

e |ong-term mooring in the same region observed 7 NI events over the course of a 17-month
deployment. NI events corresponded to a decrease in the magnitude of the u velocity component,
and an increase in the magnitude of the v velocity component, and a depression of the isotherms

above 3900 m.

e The plane wave description of the observations is composed of the superposition of two waves:

a downward propagating wave and an upward propagating wave.

The fourth chapter discusses the inclusion of the horizontal Coriolis term in the calculation of
horizontal wavenumbers, group speeds, and the intrinsic frequency. Traditionally, only the vertical
component of the Coriolis vector is included in the Navier Stokes equations of geophysical fluid
motion. However, in regions of low stratification and/or low latitude, the horizontal component of the
Coriolis vector (f = 2Q cos ¢, where Q —angular velocity of rotation and ¢ =latitude) is not negligible.
This research, motivated by observations of deep NIWs in the Samoan Passage (9°40.65'S), highlights
the error associated with neglecting f at low latitudes and in low stratification regions. The Samoan
passage is used as a case study to illustrate a practical application of the inclusion of f in various
calculations. Our calculations are expanded beyond the specific case of the Samoan Passage to
a range of latitudes and N in an attempt to assess the relative importance for NIWs by applying
the inertial limit. The inclusion of the horizontal component in the dispersion relation is found to
have a significant difference at very low latitudes and very low N. Outside of these regions, the
inclusion of f does not make a significant difference. However, the inclusion of f is necessary in the
calculation of the group speeds. When f is included, the percent differences of the group speeds (A,
and Ac,,) exceed 20% and 10% respectively across most latitudes for N < 0.003s~". The differences
in group speed result in more equatorward ray paths and more northerly inferred sources. There
is no discernible difference in the calculations of the effective frequency and horizontal wavelength

with the inclusion of f. Ray tracing models for NIWs, including f show a difference in the spatial and

temporal scales of their propagation paths from those calculated neglecting f.
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Key points:

e f should be included in the calculation of the dispersion relation at low stratification (N <

0.001s7") at latitudes less than 10°.

e When calculating group speeds, f needs to be included for N < 0.01s~", at all latitudes, partic-

ularly the meridional group speed.

e As ray tracing is heavily based on the group speed, f needs to be included for any ray path

that may propagate through a region with N < 0.01s™".

e |t is not necessary to include f when calculating ky or fe as the differences are minute and

result in increased error bars.

The fifth chapter investigates a unique mixing pattern observed at one of the short-term moorings.
Turbulent mixing driven by NIWs is not well documented because it is an episodic and propagating
event. During a mooring deployment, in the mouth of the western sill of the Samoan Passage (Fig.
4.1), near-inertial variation of the depth-integrated (4200-4600 m) dissipation rate is observed. The
NIW, discussed in chapter 3, occur above these depths between 4000 and 4200 m. Time series
comparison determines the meridional shear as the most likely driving mechanism for the increased
depth-integrated dissipation rate. Increased turbulence is found to occur during periods when the
NIW opposes the background flow, minimizing—never reversing-the velocity. The time-averaged,
depth-integrated rate is comparable to those found at two adjacent moorings where hydraulically
controlled mixing dominates. As a result, NIW overturns are suspected to be shear-driven and
important in the localized region. In addition conclude that mixing from NIWs should be included in
a Samoan Passage mixing budget and should be considered for other deep constrictions, in particular
those with accelerated flow speeds.

Key points:

e |ncreased mixing is found to be associated with a downward propagating wave interacting with

a topographically accelerated meridional flow.
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e The depth integrated dissipation rate peaks during periods when the NIW motion opposes the

flow.

o Although NIWs are coherent across 10-100 km scales, interaction with currents cause variation

on much smaller scales (< 1km).

The sixth chapter is the conclusion. It includes a summary of this work, a discussion of ongoing
deep near-inertial research, and future work to be done. The summary includes research highlights
for each chapter in addition to a general description of work done. The discussion of ongoing deep
near-inertial research describes current limitations and difficulty of research while also including the
author's hopes for the future. The description of future work includes topics for the Samoan Passage,
deep and abyssal constrictions, and NIWs more generally.

Chapter 7 is comprised of two appendices. The first appendix is the error analysis associated
with the horizontal Coriolis calculations. Errors for fe, intrinsic frequency, horizontal wavenumber,
group speeds, water properties, and ray tracing are calculated both with and without . The second
appendix details the application of the inertial limit to the percent difference of the dispersion relation

and the group speeds.






CHAPTER

Data

2.1 Moorings

A total of five moorings were deployed within 3km of the sill crest, as shown in Fig. 1.1. Four
moorings (T9-T12) were concurrent short-term deployments (collectively denoted as T-moorings)
during February 6-14, 2014. On the sill crest, there was an ~17 month deployment (M5, August 8,
2012—January 11, 2014). Each mooring spanned the bottom 1,200-1,600 m of the water column to
study the deep northward transport of Antarctic-origin water and the interface with the overlying
waters. T12 was located 2 km upstream of the sill (relative to the flow of Antarctic origin bottom
water), whereas T9, T10, and T11 were located 3 km downstream of the sill and spaced 1 km apart.
The locations, dates, and depth ranges of all five moorings are listed in Table 2.1.

AWl moorings were equipped with McLane moored profilers (MPs) fitted with CTDs and acoustic
current meters (Doherty et al, 1999, Alford et al,, 2007). The MPs on the T-moorings continuously
profiled over their depth ranges (Table 1) at vertical speeds of 25-27 cm/s. Due to power restrictions
on the longer deployment, the MP at M5 paused after the completion of each up or down profile.

Consequently, vertical profiles of temperature, conductivity, pressure, and velocity were completed
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Table 2.1: Details of the five moorings located at the sill between the Eastern and Western Channels. T-

moorings are the concurrent short-term moorings and M-mooring is the long-term mooring.

Start date End date | Depth (m) | Latitude | Longitude | Bottom depth (m)
M5 | 2012-08-24 | 2014-01-11 | 3698-4710 | 9°38.7'S | 169°48.9'W 4730
T9 | 2014-02-06 | 2014-02-13 | 3590-4768 | 9°36.0'S | 169°49.5'W 4788
T10 | 2014-02-07 | 2014-02-14 | 3590-4804 | 9°36.0'S | 169°48.7’W 4824
T11 | 2014-02-07 | 2014-02-14 | 3590-4786 | 9°36.0'S | 169°47.8'W 4800
T12 | 2014-02-07 | 2014-02-14 | 3390-4976 | 9°40.6’S | 169°50.6'W 4996

~ 1.4 hours on the T-moorings and =~ 17.4 hours, 1/4 of the inertial period, on the M5 mooring. The
conductivity sensors were corrected on the M5 and T9 profilers for a systematic bias, which lead to

the salinities being 0.005 and 0.07 g/kg, respectively, above those observed at the other moorings.

For more details on the instrumentation used in this experiment, refer to Voet et al. (2015).
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CHAPTER

Observations of near-inertial waves

3.1 Introduction

A spectrum of freely propagating internal waves exists in the frequency band between the inertial
frequency (f) and the buoyancy frequency (N) (Garrett, 2001), with NIWs (NIWs) existing near the
lower limit, f. NIWs are unique in the internal wave spectrum as they tend to be variable and
event-like due to the natural resonance of the fluid ocean at the Coriolis frequency in response to
impulsive forcing (Kunze, 1985). Although any impulsive forcing with a resonance near f can excite
NIWs, the main sources are: wind forcing the mixed layer at NI frequencies (Gill, 1984, D’Asaro, 1985,
Alford & Gregg, 2001); lee waves developing a feedback system with the overlying flow (Nikurashin &
Ferrari, 2010a,b); parametric subharmonic instability (PSI) (Alford et al,, 2007, Alford, 2008, McComas
& Muller, 1981, Muller et al., 1986, Winters, 2005, Simmonds, 2008, Hazewinkel & Winters, 2011); and
interaction with balanced flows (Alford et al, 2013, 2016, Vanneste, 2012). All of which have been

observed except for the lee wave feedback system.
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After excitation of the NIWs, high modes stay in the local region and result in localized mixing
while low modes propagate equatorward carrying the majority of NI energy. As the NIWs propagate
equatorward, they become super-inertial relative to the local f and start to tilt transitioning from a
purely horizontal circulation to circular rotation with a vertical component modulating the strain and
stratification (Gill, 1984). In addition to equatorward propagation, the NIWs also propagate vertically.
In the transit of a NIW through the ocean, three main factors can modulate the NIW propagation
path: interaction with the flow, variations in the stratification, and interaction with topography. NIW
experiences amplification in anticyclonic vorticity or propagation against the flow and dispersal and
energy reduction in positive vorticity or propagation with the flow (Kunze & Sanford, 1986). Variations
in the stratification are well known to modify the vertical propagation (WKB) in addition to internal
reflection or trapping in cases of large variation. The waves may also encounter topography where
they may break due to topographic scattering (Simmons & Alford, 2012) or reflect (Eriksen, 1982).

On average the NI peak contains half of the total energy in the internal waveband (Munk, 1981).
NIW are a major flux of energy into the ocean. The final destination of this energy is unknown. As
such, it is possible NIW contribute to deep mixing.

NIWs have been observed at deep and abyssal depths. Using moored data from the POLYMODE
Experiment in the Western North Pacific, Fu (1981) showed an inertial peak slightly above f, with
energy varying with depth and bottom roughness. Alford (2010) observed the downward propagation
of a NIW past a mooring at 3,000 m depth. van Haren & Millot (2004) observed a peak in super-
inertial energy at frequencies 2% above the local inertial frequency across all depth ranges in the
Western Mediterranean Sea. They noted a secondary broader sub-inertial peak at 0.99f at a depth
of 2700 m, 300 m above the seafloor. Alford & Whitmont (2007) using a database of deep global NIW
observations observed seasonal variation with an increase in events corresponding to the winter.

The North Pacific has no deep water formation, consequently, the bottom water in the basin is of
Antarctic origin. The Samoan Passage (10°S, 170°W) being the westernmost gap deeper than 4,000 m
in the submarine ridge extending from French Polynesia to Fiji is the location of a significant fraction

of this northward transport, 5.4 Sv 2012/13 (Voet et al, 2016). As water transverses the passage,
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it undergoes a significant modification; the densest Antarctic Bottom Water (AABW) signature is
decreased to 1/4 of its entry density (Alford et al, 2013) due to intense mixing over the course of the
Samoan Passage, 1,000 to 10,000 times typical abyssal turbulence values (Alford et al, 2013). The
Samoan Passage consists of a deep Eastern channel and a more convoluted Western channel (Fig.
4.1). The volume transport below 4,000 m is split evenly between the two channels (Voet et al., 2015).

The Samoan Passage is located in a region with low annual mean energy input from the wind
to near-inertial mixed layer motions (Alford, 2003). However both Rudnick (1997), Voet et al. (2010)
observed NI peaks with energy decreasing toward the seafloor using moored arrays at the mouth of
the Samoan Passage. The locations of the moorings are denoted as orange dots on the map of the
Samoan Passage (Fig. 4.1). This NI energy is likely low mode propagation into the region. Rudnick
(1997) hypothesized that bottom topography inhibited the lateral scales of the NIWs, resulting in the
observed decrease in energy, whereas Voet et al. (2016) hypothesized the waves lose energy while
propagating to depth.

The primary focus of this chapter is to present observational evidence of NIWs in the Samoan
Passage. Section 3.2 presents the analysis methods used. In section: 3.3a a description of the water
properties is provided, 3.3b finds the NI signal to be concentrated between 4000 and 4200 m in the
short-term moorings (T9-T12) and above 3900 m in the long-term mooring (M5), 3.3c fits a plane wave
solution to the observations and finds the best-fit to be a superposition of a downward propagating
wave and a 1/4 the amplitude upward propagating wave, and 3.3d uses wavelet analysis to find 7
NI events over the course of the long-term mooring. Sections 3.4 and 35 are the discussion and

conclusions, respectively.
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3.2 Methods

3.2.1 Velocity

Depth-time plots of meridional and zonal velocities (Fig. 3.2) show a temporally periodic signal in
the depth range between 4,000 and 4,200 m in each of the four concurrent T-moorings. Consecutive
peaks occurred approximately every three days, consistent with the local Coriolis period of 2.99 days
(0.33 cpd). Therefore, upward sloping, alternating bands of positive and negative velocities show the
upward phase and downward energy propagation of a near-inertial wave.

To isolate the near-inertial signal in the shear and strain observations the time-series were

bandpassed (0.5{-2f) and vertically averaged with a 40 m window.

3.2.2 Spectra

Spectral analysis places variance of a time series as a function of frequency. Rotary spectra treats
two orthogonal vectors as a single complex function then separates the vector into cyclonic and
anti-cyclonic rotating circular components for each frequency (Gonnella, 1972, Mooers, 1973). After
decomposing the velocity or shear time series into these rotating components, a NIW will have an
anticyclonic component that exceeds the cyclonic near the local inertial frequency. The frequency
spectra were calculated in 4 m-depth bins and a Tukey window was applied in time. A measure of the
aspect ratio of internal waves as a function of frequency is given by the rotary coefficient (Gonnella,
1972):
_ |Cyclonic — AntiCyclonic|

C = 31
Cyclonic + AntiCyclonic 1)

where C. =1 is perfectly circular motion and C. =0 is rectilinear motion.
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Date in February
1 0 0.1

0.3 0.2 -0.

Velocity (m/s)

Figure 3.1: (left 2 columns) Depth-time plot of the u and v velocity components observed at each of the four
short-term moorings. (right 2 columns) Zoom in on the depth range where the near-inertial pattern observed
in the velocity. The x axis is the same for all plots. It begins when T9 was deployed and ends when T12 was

taken out of the water. Each mooring was deployed for approximately seven days.
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3.2.3 WKB stretching and scaling

Wentzel-Kramers-Brillouin (WKB) stretching is used to account for varying vertical stratification, N(z)
(Leaman & Sanford, 1975, Althaus et al, 2003). For NIWs propagating through variable stratification,

WKB scaling mitigates the effects of changing vertical wavelengths due to variations in N2, WKB-

7 = /ZO %dz, (3.2)

0

stretched depths were calculated as:

where Np is the reference buoyancy frequency — an appropriate value for deep and abyssal waters is
1073 s~" (Leaman & Sanford, 1975). The observed mean buoyancy frequency for the four short-term

moorings was 9.8 x 10~% s~

, confirming the applicability of the reference buoyancy frequency for
the Samoan Passage. The resultant plots of shear and strain have straighter phase lines indicating
WKB scaling is appropriate. To correct for amplitude modification caused by the depth varying N?,

the WKB scaled velocities are:

33)

where ( ) denotes a time average.

3.2.4 Shear and strain

Internal waves are identifiable in depth-time plots of shear, the vertical gradient of the speed, as bands
of alternating positive and negative values. The slope of the bands is related to the wave frequency
and propagation direction — downward/upward propagating wave energy with upward/downward
propagating phase.

To isolate the NI signal, the WKB-stretched 2 m-binned velocity were bandpassed between 0.5f
(1.5 days) and 2f (6 days), where the inertial frequency, f, is 0.33 cycles per day (cpd). Total NI shear

was calculated by adding the squares of the meridional shear and the zonal shear components:
2 2
du ov
=] +(=] - 34
0z 0z (3:4)
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Strain, the convergence or divergence of motion, was calculated using:

y=-1_1 (35)

For this calculation, it is necessary to calculate the time average over n-integer periods due to the
short record length and periodic nature of NIWs. The resulting shear and strain was smoothed with

40 m vertical averaging.

3.2.5 Plane wave solution

Plane waves are used to provide wavenumbers, phase, and frequency as a means to describe the
observed wave. plane wave fits to the NI bandpassed, vertically averaged, WKB-stretched-and-scaled

meridional shear, zonal shear, and strain were calculated using:

W = RelA exp(2ri(wot — kx —ly —moz’ + ¢))), (3.6)

where: A = amplitude, wyp = observed frequency, (k,l,mg) = wavenumbers and ¢y = phase. Where
the horizontal wavenumbers (k,l) are calculated from frequency and vertical wavenumber.

Using the meridional shear, zonal shear, and strain in the time versus WKB-stretched depth the
values of wp, mp, and ¢g that best fit the observations are able to be found. This is iteratively done
by varying wy between 0.95f and 1.1f, my between 0 and 0.1 m~", and ¢g between 0 and 360 degrees,
similar to Alford & Gregg (2001). The best fit solution is determined from the root mean square
(RMS) difference between the calculated interference pattern and observations. A two-wave solution
is calculated using the same iterative process. The direction of propagation(©) is calculated from the

lag between the phase of the zonal shear and the strain (Pinkel, 1985):

O = ¢(y.u,) (37)
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3.2.6 Wavelet analysis

The temporally varying frequency content of a time-series can be calculated using wavelets. This
is important for NIWs as they are episodic events. A wavelet kernel is a function that generally
has zero mean and is localized in time and frequency. The Morlet Wavelet (Grinsted et al, 2004) is
defined as:

Wo(t) = 7 etdte2t (3.8)

where t (dimensionless time) and & (dimensionless frequency) are stretched in time by varying the
scale and are normalized. The Morlet Wavelet, W,(t, 0), is complex and therefore provides power and

phase information for each time and frequency pair.

3.3 Results

Depth-time plots of meridional and zonal shear (Fig. 3.2) show a temporally periodic signal in the
depth range between 4,000 and 4,200 m in each of the four concurrent T-moorings. Consecutive peaks
occurred approximately every three days, consistent with the local inertial period of 2.99 days (0.33
cpd). Therefore, upward sloping, alternating bands of positive and negative shear show the upward
phase and downward energy propagation of a NIW.

To isolate the NI signal in the shear and strain observations the time-series were bandpassed
(0.5f=2f), WKB-stretched-and-scaled, and vertically smoothed over a 40m window (Fig. 3.3). The
NIW is the dominant signal between 4,000 and 4,200m as non-bandpassed shear pattern shows

similar results (not shown). In strain, the NIW pattern is more convoluted than the shear.

3.3.1 Water Properties

The depth range between 4,000 and 4,200 m in the T-moorings is distinct from the surrounding water
column as it includes the interface between the Antarctic-origin water and the overlying waters. This

interface is defined by a sharp thermocline and halocline, a depth of no motion, and increasing N2
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Figure 3.2: (left 2 columns) Depth-time plot of the u, and v, shear components observed at each of the four
short-term moorings. (right 2 columns) Zoom in on the depth range where the NI pattern observed in the raw
shear. The x axis is the same for all plots. It begins when T9 was deployed and ends when T12 was taken

out of the water. Each mooring was deployed for approximately seven days.
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Figure 3.3: WKB-stretched-and-scaled, bandpassed, and vertically averaged zonal shear (left column), merid-
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values peaking at approximately 4,200 m (Fig. 3.4, top row). Between the top of the mooring depth
range (3,590 m) and 4,100 m, the potential temperature profiles are similar between the moorings.
Below the interface, the moorings diverge; from coldest to warmest: T12 (black line), T9 (red line),
T10 (green line), and T11 (blue line). T11 and T12 had =~ 0.1°C difference at their maximum separation
(~4,300m). T12 was upstream of the sill prior to the flow being topographically accelerated, and
consequently has undergone minimal mixing of AABW with intermediate waters. T11, on the other
hand, was in the path of the accelerated flow and underwent mixing of AABW with the warmer
intermediate waters above (see Fig. 4 in Alford et al, 2013).

T9-T11 moorings showed similar salinity profiles between 4,000 and 4,200 m with the start of the
halocline at ~4,100m. T12 had higher salinity values within the halocline due to less mixing with
the fresh AABW signal. Below the halocline T12 is fresher than T10 and T11, but is saltier than T9.

All short-term mooring N’ profiles have a peak at the bottom of the interface, near 4200m. The
sharpest peak occurs in T11 while T12 has a spread out N? peak from approximately 4100 to just
below 4200 m.

A depth of no motion occurred at =~ 4,000 m in all moorings below which v > u, especially at T10
and T11. The velocity minimum allowed the NI signal to dominate the flow pattern and appear in
raw velocity observations. Below 4,200 m accelerated flow dominated the observations.

The bottom row of Fig. 3.4 shows the long-term average at M5 (red) and the average of various NI
events: October 10-19, 2012 (green); January 8-15, 2013 (blue); and December 31, 2013-January 10,
2014 (black). The long-term mooring and the short-term moorings had similar potential temperature,
salinity, and density profiles with just the NIW observed at different depths. Below 4,300 m, the
zonal velocity exceeded that of the short-term moorings while the meridional velocity was similar.
Above 4,300 m, the long-term velocity average approached zero in both u and v. The major difference
between the short-term moorings and the long-term mooring was N?. M5 had a double peak on
either side of 4200 m (the average depth of the peak of N? in the short-term moorings).

There were no similar water properties between the depths where the NIW is seen in the short-

term moorings and the long-term mooring besides low flow speeds and high N? values.
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Figure 3.4: Water properties observed in the MPs at each of the moorings located around the western sill. The
top panels show the short-term mooring observations averaged over the mooring lengths. The bottom panel
shows the time-average of the entirety of the M5 mooring and sub-intervals of high NIW energy (as found in
wavelet analysis (Fig. 3.8). From left to right: Theta, Salinity, Buoyancy Frequency, Density, u-velocity, and
v-velocity. T9 (red), T10 (green), T11 (blue), and T12 (black). T9 salinity has been shifted down by 0.07 at
all depths. Bottom : M5 average (red); October 10-19, 2012 (green); January 8-15, 2013 (blue); December 31,
2013-January 10, 2014 (black). M5 salinity has been shifted down by 0.0125 at all depths. Hashed area shows
depths of high ACKE. Each N? profile has been shifted 2 x 107° to the right of the prior profile from red to
black respectively.
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3.3.2 Spectra

Spectra of shear at 4,100 m show the anticyclonic component to exceed the cyclonic component of the
near inertial shear spectra at f (Fig. 3.5). This indicates a NIW signal, consistent with the velocity
observations in Fig. 3.2. The Garrett-Munk spectrum is used as a reference to show a comparison of
a general spectra and our observations of total energy (grey shaded region Fig. 3.5). When compared
to the GM70 spectra (Fig. 3.5 dashed line; Garrett & Monk, 1972, Garrett & Munk, 1975, Cairns &
Williams, 1976), the observed levels are higher than those predicted by the GM76. In addition, a M5
peak is observed.

Depth spectrograms (Fig. 3.6) show a peak in the anticyclonic downward propagating NI shear
spectra at each of the short-term moorings between 4,000 and 4,200 m. All the moorings except for
T11 have a single-depth range of elevated anticyclonic shear spectra. The extent of the peak energy
depth range varies between the moorings. The T12 mooring peak extends from above 4,000 m to
right above 4,200 m, the widest depth range of any of the short-term moorings, potentially corre-
sponding to the observed broader stratification peak. The depth range of elevated anticyclonic shear
spectra at the T11 mooring is much narrower than at T12, corresponding to a more defined peak
in N2 In total, T11 had three peaks: 3,900, 4,100, and 4,300 m, with the upper two peaks having a
statistical difference from the cyclonic shear spectra, indicating a downward propagating oscillation.
The smaller, secondary peak, centered about 3,900 m, does not correspond to a local maximum in
the buoyancy frequency. The primary and secondary peaks are almost purely circular motion while
the third, statistically insignificant peak had a rotary coefficient of approximately 0.5. T10 had the
sharpest peak in NI energy and buoyancy frequency (particularly when approaching from depth) of
any of the moorings. T9 had a similar depth range of NI energy and peak buoyancy frequency to
111 and T12 and a similar observed signal. The M5 NI peak occurred above 3,900 m. The depth
range of the NI signal extends above the shallowest MP observations (3,600 m), and therefore the
depth extent of the NI peak at M5 is unknown. This NI peak is 200-300 m above the peaks at the

short-term moorings, a similar distance to the difference of bottom depth between M5 and the other
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Figure 3.5: Rotary spectra of the four short-term moorings at 4,100 m depth. The total energy plotted in
grey patch, clockwise, cyclonic energy (blue) plotted against the counterclockwise, anticyclonic energy (black).
Black dashed line is the GM76 energy spectra and the blue dashed lines are the 90% confidence interval.
Vertical dashed lines denote the inertial, Ky and My frequencies from left to right.
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moorings.

It appears that the presence of NI energy corresponds to high values of buoyancy frequency
agreeing with past observations (Alford & Gregg, 2001), except in the case of the T11 peaks at 3,900
and 4,300m (Fig. 3.6). The peak at 3900 m is not statistically significant and the peak at 4300 m
corresponds to an increase in dissipation, discussed further in Chapter 5. However, high values of N?
do not necessarily indicate peaks in NIW energy. M5 had a double peak in stratification on either
side of 4,200 m but did not have a corresponding NIW signal. It is possible the double peaks at M5
do not have a NI signal as M5 is considerably closer to topography at the depths of the peak in N?
than the other moorings.

The peak of cyclonic shear spectra near f was not as concentrated in a single-depth range and
the depth pattern was distinct for each mooring: T9 — a single concentrated depth band at 4300 m,
T10 — a smaller signal with a peak at 4500 m, T11 — a double peak one at 4200 m and the second
at 4300 m, and T12- a dispersed peak spread from 4100 to 4400 m with the absolute peak at 4300 m.
M5 shows constant cyclonic shear spectra. As this record is approximately 17 months and the total
time of NI events was ~ 2 months (3.4) the signal may have been diluted. The majority of the cyclonic
shear spectra peaks, near f, were below 4,200 m, but there did appear to be a local maximum in
cyclonic shear, at f, which corresponded to the absolute peak in anticyclonic shear.

The difference between the anticyclonic and cyclonic shear spectra show that the anticyclonic
shear spectra exceeds the cyclonic shear spectra near the inertial frequency in all 4 short-term
moorings at the depths of peak anticyclonic NI shear spectra. M5 does not have a discernible
difference, as neither signal is strong this is not surprising.

The last column of Fig. 3.6 is the rotary coefficient and shows depths with circular motion and
corresponds to depths of peaks of the anticyclonic shear near f. In all moorings except T9, the
rotary coefficient became rectilinear almost immediately below the events where anticyclonic shear
> cyclonic shear, above 4200. This abrupt transition from circular to rectilinear motion occurred
at approximately the depth of the peak of the bump on the sill, the sill has a height of 4600 m and

the secondary bump has a height of 4200m. The agreement of these two depths is in accord with
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Rudnick (1997) hypothesis that topography limits the downward propagation of NIWs.

3.3.3 Plane wave

The NIW (Fig 3.3) can be described with a plane wave fit to to the shear and strain in the NI
frequency band. The observations are best described by the interference of a downward- and upward-
propagating NIW. The upward propagating NIW has an amplitude one-quarter of the downward
propagating wave, consistent with the relative magnitudes in Fig. 3.6. The two-wave solution over-
plotted on the T11 WKB3-stretched-and-scaled zonal shear observations is shown in Fig. 3.7. The
interference pattern of the two plane waves mimics the variations in the phase lines and amplitude,
whereas a single wave would have a constant slope and amplitude.

To assess the robustness of plane wave solution, the best-fit to the parameters in Eqn. 3.6 were
calculated in two ways: first by treating each T-mooring separately (Table 3.1), and secondly by
assuming that as the moorings are closely spaced the frequency and wavenumbers would be constant
between the moorings (Table 3.2). Errors for each parameter (Table 3.3) show that the variation
between best-fit plane-wave solutions for each mooring are all within error bars, except for the
upward propagating wave in the zonal shear of T12.

Treating each mooring independently resulted in the upward propagating wave generally having a
smaller vertical wavelength (= 100 m) than the downward propagating wave (=200 m). The difference
in wavelengths matches what would be expected of a topographically reflected wave (Eriksen, 1985).
It is difficult to determine the validity of this comparison as the depth range where the NI is observed
has approximately the same thickness (200 m) as the calculated vertical wavelength (200 m). The
downward propagating wave was super-inertial while the upward propagating wave was sub-inertial.
Local vorticity (Kunze, 1985) and the inclusion of the horizontal Coriolis term could cause the sub-
inertial frequency of the upward propagating wave. The phases of the strain and zonal shear provided
the propagation directions of 40°, 20°, 10°, and 0 ° true North for T9, T10, T11, and T12 respectively.

All are propagating equatorward as expected. Error bars for the phases of T9-T11 overlap, Table 3.3.
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Figure 3.6: The rotary spectra plotted against depth and frequency for all five moorings in the western sill
area. The red line shows the local inertial frequency. The black line is the magnitude of the velocity with the
black dashed line denoting O m/s. A zero rotary coefficient denotes rectilinear flow while 1 is circular flow.
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Figure 3.7: Zonal shear of the T11 mooring. The calculated plane wave solution calculated using the values
in Table 3.2 is contoured on top. Dashed lines denote negative amplitude while the solid black line denotes
the zero contour.

3.34 Wavelet analysis

Wavelet analysis of kinetic energy observations at 3,706 m depth from the M5 mooring show nine NI
events occurred over the 17 month record (Fig. 3.8). These events, identified where the wavelet values
are above the 95% significance level (black lines), occur 7 times: September 14-25, 2012, October
10-19, 2012, January 8-15 2013, February 25-March 3, 2013, March 15-22, 2013, September 22-28,
2013 and December 31, 2013—January 10, 2014. The lull in NI events between May and November
could correspond to reduced wind events during the austral summer, 6 months prior. If the waves
were formed at the surface and propagated to depth, then the average vertical propagation speed
would be 22 m/day, within previous vertical propagation observations (Alford & Gregg, 2001, Alford
et al, 2016, Johnston et al,, 2010).

The fact that the M5 depth spectrogram (Fig. 3.6) shows a peak at the NI frequency when there

only events (totalling 671 days) over a 17 month record suggests these events must be energetic
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Table 3.1: Best-fit plane wave parameters when all the values are calculated individually for each short-term
mooring.

Mooring | wy Mg ¢ Aq Wy my by A,

/Zonal shear
19 036 0004 110 017|032 0009 10 004
T10 035 0005 190 016 | 032 0005 10 0.04
T 034 0004 30 016|032 0009 50 004
T12 034 0005 100 017|035 0.009 100 0.05

Meridional shear

19 036 0004 200 017|034 0009 290 0.05
T10 035 0004 280 017|034 0007 260 0.05
T 035 0004 120 017|034 0009 280 0.05
T12 037 0004 190 0171035 001 90 003

Strain
T9 035 0005 160 017|034 0008 100 0.04
T10 035 0005 170 017 | 034 0007 120 0.04
T11 035 0005 200 018|035 0006 120 0.05
T12 035 0005 240 017|034 0007 110 0.05

compared to the periods of no NIW activity. From April 14-23, 2012, a periodic oscillation at the NI
frequency was observed as presented in Fig. 3.9. The plane wave solution for the observed event was
more uncertain than that of the T-moorings because the sampling period of the moored profiler was
approximately 17.4 hours. With that caveat in mind, the best-fit for this wave was an interference
pattern between two waves: the downward propagating wave with a vertical wavelength of = 200 m
and a frequency of 0.30 cpd (1.07f), and an upward propagating wave with a vertical wavelength of
~ 111 m and a frequency of 0.32 cpd (1.05f). Each individual event observed in the long-term mooring

are analyzed and presented in Table 3.4.

3.4 Discussion

The plane wave solutions for the moorings present a coherent picture of the wave across moorings

as would be expected over small spatial scales (Alford et al, 2017). Although, some differences are
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Figure 3.8: Top: The timeseries of the horizontal kinetic energy (HKE) for M5 at 3706 m. Bottom: The wavelet
transform of kinetic energy at 3,706 m depth from the 17 month M5 mooring. Black contours denote events
above the 95% significance level against red noise. The red horizontal line is the local inertial frequency. The
light gray areas are where edge effects come into play. They are ignored for this research.
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Figure 3.9: The meridional shear at M5 from January 8-15, 2013. Black solid contours are the zero contour
and black dashed lines in regions of negative amplitude for the plane wave solution. The average flow has

been subtracted.
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Table 3.2: Best-fit plane wave parameters when frequency (w) and vertical wavenumber (m) are held constant
across all four T-moorings. The parameters for the downward and upward propagating plane waves were
calculated independently.

Mooring | wqy My ¢d Ag ‘ Wy my by A,

Zonal shear
19 036 0005 210 01619 | 03 0005 180 0.0407
T10 036 0005 190 01619 | 03 0005 180 0.0407
T11 036 0005 190 01619 | 03 0005 180 0.0407
T12 036 0005 290 01619 | 03 0005 180 0.0407

Meridional shear

19 036 0004 300 017 | 033 0009 270 005
T10 036 0004 280 017 | 033 0009 270 005
T 036 0004 280 017 | 033 0009 270 0.05
T12 036 0004 20 017 | 033 0009 270 005

Strain

19 035 0005 170 017 | 034 0007 110 0.004
T10 035 0005 170 017 | 034 0007 120 0.004
T11 035 0005 180 017 | 034 0007 120 0.004
T12 035 0005 220 017 | 034 0007 120 0.004

observed particularly in the depth ranges of circular motion and peak anticyclonic shear spectra.
This is highlighted in the rotary coefficient at T12, Fig. 3.6. T12 is the closest to the secondary peak
on the sill that reaches = 4200m and it has the most abrupt transition from circular to rectilinear
motion at =~ 4200m. The other moorings transition from circular to rectilinear motion at similar
heights, but none correspond to the height of the secondary bump as well at T12. Topography is the
most applicable reason for the differences.

Again the waves are cohesive in that they all propagate equatorward. This is as expected from
the previous results of D'Asaro (1995), Garrett (2001), Alford (2003). Equatorward propagation is also
observed in the 7 NIW events over the course of the 17-month mooring deployment. These 7 events
appear to have a seasonal cycle consistent with Alford & Whitmont (2007), Silverthorne & Toole (2009).
The two wave solution found in both the short-term mooring observations and the 7 events during

the long-term mooring is not unique. Alford et al. (2017), Eriksen (1982), Fu (1981) observed upward

35



Chapter 3.

Table 3.3: The errors and calculation method for the variables used throughout this paper.

variable average error method
salinity 34.6975 +2x107° | (Voet 2015)
temperature 1.2953 +5x 1077 | (Voet 2015)
u, v 0.0312, 0.0356 +0.02 (Voet 2015)
r 1.08 +0.15 STD
Wy 0.36 +0.01 t-score
wy 0.32 +0.01 t-score
Mg 0.005 +0.002 t-score
my 0.009 +0.002 t-score
¢bd 210 +20 t-score
oy 120 +20 t-score
P 1027.8 +0.02 STD
N? 10x107° +02x107° STD
KE NA +3.0x 1078 | Error Prop.
PE NA +0.04 Error Prop.

Table 3.4: The plane wave solutions for the seven NI events over the course of the 17 month record.

Date Frequency | Vertical wavelength (m) | Direction of propagation (6)
9/14/2012-9/25/2012 0.35 0.005 20
10/10/2012-10/19/2012 0.34 0.008 0
1/8/2013-1/15/2013 0.35 0.006 40
2/25/2013-3/3/2013 0.36 0.008 20
3/15/2013-3/22/2013 0.34 006 10
9/22/2013-9/28/2013 0.35 01 10
12/31/2013-1/10/2014 0.36 005 -10

propagating NI energy and topographic reflection has been well observed: Eriksen (1985), Kunze &
Sanford (19806). As the moorings in this experiment are near topography and the seafloor, reflection

is not surprising.

3.4.1 Previous observations

Rudnick (1997) hypothesized that “proximity to topography prevents free inertial oscillations”, which
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is consistent with the theory of NIW and interactions with bottom topography (Gill, 1984). However,
Rudnick's moorings consisted of Aanderra current meters at discrete depths, and hence did not give a
continuous image of the transport over at depths. At 4,000 m depth his observations match ours, with
both showing NI oscillations. But the greater spatial resolution between 3,600 and 4,700 m depth
provided by the moored profilers showed that the NI signal peaks around 4,100 m and decays within
a hundred meters either side. Voet et al. (2016) calculated transport using data from a reoccupation
of the (Rudnick, 1997) mooring array. Voet et al. (2016) observations showed an inertial signal in
transport that decreased with depth. However, as these moorings also had Aanderra current meters

at the same discrete depths, hence the water column was again under sampled.

3.4.2 Merdional vs zonal

Across the interface, 4,000 to 4,200 m, there are differences between the meridional and zonal shear.
The meridional shear has more linear phase lines and less amplitude variation than the zonal shear
(Fig. 3.3). Based solely of the meridional shear, it could be argued that a single downward propagating
wave best describes the observations. Whereas, the variations in phase and amplitude in zonal shear
are best described by the interference between a downward and upward propagating wave. There are
two possible hypotheses that might explain this asymmetry. First, the depth where the u component
of velocity goes to zero lies in the middle of this NIW depth band, whereas the depth of no flow in
the v component is above the interface. As a result, the weaker, upward propagating wave is not
as inhibited by the background zonal flow allowing it to be more pronounced in the zonal shear

observations. A second hypothesis could be that a secondary signal is introduced by eastward flow.

3.4.3 T12 - end of NI episode

Toward the end of the observation period (2014-02-13), it appears that the NIW event had passed by
the T12 mooring or started to break apart (Fig. 3.3). This is most pronounced in the meridional shear.

The NI event continued to be observed at the downstream moorings (19, T10, and T11), providing

37



Chapter 3.

further evidence of a northward propagation direction. As increased mixing is expected with the
dissipation of the NIW, (Hebert & Moum, 1994) and no such signal is observed it is suspected that

the wave propagates past the T12 mooring.

344 M5 events

The long-term mooring on the sill had 7 NI events over the course of its 17-month deployment. These
events occurred primarily in the months of November through June and at depths above 3900. During
time periods of NI events there was a significant, at the 95% confidence level, decrease in the magni-
tude of u and depression of the 27.786 kg/m? isopycnal. Over the course of the mooring deployment
the average magnitude of u was 0.0072 m/s with a 95% confidence interval of [0.0046 0.0099] m/s while
during NI events the magnitude of u was 0.0044 m/s. Specifically during NI events, the displacement
of the 27.786 was -14 m while the confidence interval for the entire mooring deployment was [-6.9
-24]m with a mean of -47m. In addition, the magnitude of v was significantly increased, at the
90% confidence level. Over the course of the mooring the average magnitude of v was -0.0044 m/s
with a 90% confidence interval of [-0.0064 -0.0024] m/s and during NI events the magnitude of v was

-0.0067 m/s.

3.5 Summary

A deployment of 5 moorings on and around the sill at the mouth of the Western Channel of the Samoan
Passage show NIWs. In the four concurrent short-term T-moorings the NI event lasts the entirety
of the 7 day deployment, with the exception of at the end of the T12 deployment, with NI energy
observed between 4,000 and 4,200 m. In the latter half of the week-long deployment at T12, the wave
signal started to decay. As this was not observed at the T9, T10, or T11 moorings, it demonstrates a
lag between the upstream and downstream moorings and corroborates our calculation of northward

wave propagation.
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Water column structure, specifically a peak in N?, appears to be the main instigator for NIW
observations. Above 4,000m, minimal NI energy is observed it is suspected to be due to the low
values of N2 forcing a stretching of the vertical wavelength; between 4,000 and 4,200 m, there is a
peak of the NIW energy corresponding to a peak in N?and the resulting concentration of NIW; and
below 4,200 m, the background flow and dominates over the NIW signal in addition to low N? and
close topographuy.

A plane wave solution was fitted to the band-passed WKB stretch and scaled shears and found,
between 4,000 and 4,200 m, the NIW to be comprised of an interference pattern between a downward
propagating wave and a weaker, 1/4 the amplitude, upward propagating wave. A simple model using
a sum of the modes, showed the upward propagating wave could not be the result of an internal
reflection off the interface. However, when a realistic bottom boundary is present a nodal structure
does develop at the appropriate depths showing bottom reflection may be a possible explanation
of the upward propagating wave. The upward propagating NIW is more pronounced in the zonal
shear observations than the meridional. A possible reason for this is that the depth with no zonal
background flow is in the NIW band, whereas in the meridional the depth with no flow is above
the density interface. The plane wave solutions show the NIW to be spatially coherent across all 4
moorings.

Wavelet analysis is used to determine the frequency of NIW events over the course of the long-
term mooring. Seven events occurred between November and June. The same plane wave fit applied
to the short-term moorings is done to analyze the long-term mooring NI energy events. This process
is less accurate due to the lower sampling frequency of the long-term mooring compared to the short-
term moorings. These events were found to have varying intrinsic frequency potentially indicating
different origin regions. During periods of NI events there was a significant decrease in the magnitude
of u, increase in the magnitude of v and depression of the 27.786 kg/m? isopycnal compared to the

mooring average.
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CHAPTER

Horizontal Coriolis term

4.1 Introduction

The ocean is a stratified fluid, on a rotating Earth, with momentum and buoyancy fluxes driven at
the surface. These motions are described by the Navier Stokes equations. The equations describe
a wide variety of phenomena on a wide range of space and time scales. Approximations must be
applied as the Navier Stokes equations cannot be solved analytically. These approximations assume
that the omitted terms are small when looking on the ‘large scale’ but when looking at the “small
scale’ they become an issue (Marshall et al,, 1997).

One such approximation is the "traditional” approximation where the radial coordinate is replaced
by the earth's mean radius and the horizontal component of the Coriolis vector (f = 2Q cos(¢), where
(2 = angular velocity of rotation and ¢ = latitude) is neglected. Needler & LeBlond (1973) found a
non-separable solution for an inviscid, incompressible, rotating fluid including . Based on the factor

of the mixed derivative, they determined it safe to neglect f everywhere except for buoyancy waves
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in weakly stratified deep layers.

This has since been found to not always be the case. The inclusion of f has been found to be
necessary including but not limited to situations with: weak stratification, bottom generated NIW,
inertio-gravity waves, and atmospheric motions. Kasahara (2010) found the inclusion of the horizontal
Coriolis term significantly enhances the intensity of bottom generated NIW. Gerkema & Shira (2005)
found that the properties of inertio-gravity waves changed when the traditional approximation was
neglected. White & Bromley (1995) found through scale analysis that the horizontal Coriolis term
can attain values of up to 10% of the major terms in both planetary scale and diabatically driven
tropical motions in the atmosphere. As such, the numerical prediction models developed at the Met
office now include the horizontal Coriolis term (Davies et al,, 2005).

NIW have been observed in many locations (Alford et al., 2007, Webster, 1968) including: the
deep ocean (Leaman & Sanford, 1975, Fu, 1981, Gill, 1984, Alford et al,, 2012), where N? is low, and
near the equator, at low latitudes. As NIW propagate equatorward (Alford et al, 2012), they become
super-inertial (Gill, 1984) and for downward propagating waves, the ray angles generally steepen
while propagating to depth (Garrett, 2001). Previous observations in the Samoan Passage (Alford
et al, 2013) have been found to have a NIW signal in the deep and bottom water transport (Roemmich
et al,, 1996, Voet et al, 2015).

In this chapter NIW observations at the sill of the western channel of the Samoan Passage are
used as a case study of why the horizontal component of the Coriolis vector needs to be included
in calculations of NIW in low-latitude, low-stratification environments. Section 2 calculates the
equations for the: dispersion relation, effective frequency, horizontal wavenumber, group speed and
ray tracing for both the inclusion and exclusion of the horizontal component of the Coriolis vector.
Section 3 looks a the values found, using the equations calculated in Section 2, specifically for the
NIW observed in the Samoan Passage. Section 4 generalizes the percent difference between the
dispersion relation and group speed when including and neglecting f for a wide range of latitudes
and N. Section 5 summarizes our findings and explores the importance of not always neglecting f.

Appendix A includes the error calculations for the calculated quantities. Finally, appendix B describes
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the method used to calculate the percent difference for the dispersion relation, and group speeds

between including and neglecting f as a function of latitude and N.

4.2 Equations

4.2.1 Dispersion relation

Start with the incompressible Boussinesq equations on the f-plane, including the horizontal Coriolis

term:
du 5 1 dp
v fw=——2" 41
o TS T Ak 1
ov 1 dp
5t +fu= o0 3y (4.2)
%_lez_l@_% (4.3)
ot P00z po
du ov dw
T A T A A | 4.4
ox * dy * 0z 4
ap /
2r_ 45
5, ~ 9P (4.5)
/
CLIONEN (4.6)
ot g

where Q = (0,cos¢,sin¢) which can be used for 2Q = (0,f,f) where f = 2Qcos¢ and f = 2Qsin¢ and
Q = the earth's angular velocity (7.292 x 10~ rad/s), i = (u,v,w) the perturbation velocities, p =
pressure, pp = background density, p = perturbation density and N = buoyancy frequency.

A single equation can be derived for w from these equations. Start by taking a%(Eqn. 4.3) and

subtracting %(Eqn. 4.2) to get:

9 (ow o
ot \ay oz

- (i +1g)u-2% (47)

A similar result can be found by taking %(Eqn 4.1) and subtracting %(Eqn. 4.3) and then substituting
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—g—; = % + %—"ZV from the continuity equation and taking %(Eqn. 4.2) and subtracting (%(Eqn. 4.1) to
get:
/
;(g_gj):(fjgﬂjz)wi‘;z (48)
and
;(ZZJ): (f;gﬂ;z)wfv. (49)

. 2 . 2 . . . .
Then by taking aa—a of Eqn. 4.7 and subtracting 2= of Eqn. 4.8 and use substitution of the continuity
yot oxot
equation (Eqn. 4.4) and Egn. 4.9 an equation solely in w is derived:
aZ

ﬁvszr(fv)szervﬁw:O, (4.10)

F_ Nt 2 _ & 9? _ 9 9? 92
Whele f - (O,f,f), Vh - ﬁ_’_sz, aﬂd v — W+W+ ﬁ

Neglecting the horizontal Coriolis term

The application of the traditional approximation (f = 0) to Eqn. 4.10 and the substitution of a solution

kx+ly+mz—wt)

of w = ell gives the dispersion relation:

) f\lz(kz—l—lz)—l—fzm2
KR+ P+m2

(4.11)

Including the horizontal Coriolis term

i(kx+ly+mz—wt)

If the traditional approximation is not applied and solutions of the formw = e are assumed,

the dispersion relation is found to be:

N2 (k2 + 12) + (fL 4 fm)?
2 (k —H)—l—(H—m). (412)
k2 + 12 +m?
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4.2.2 Group speeds

The group speeds can be found by taking the derivative with respect to each wavenumber:

Neglecting the horizontal Coriolis term

2 kN2
Cox = a—: - (4.13)
m? /12 legH
9] IN?
Coy= 5 = — (4.14)
m2y/ 2 4+ ="
212
- dw N“KF (4.15)
Yo om o 2, NG
m?
where ky = sqrt(k? +12).
Including the horizontal Coriolis term
i 0 k(N? —a?)
TG T (410
. _ 0w _UN* 42— 0?) +ffm 417)
oo wm? .
dw  fl4+m(f? —a?)
= =" 418
9= 9m wm? (415)
4.2.3 Effective frequency (fof)

The observed frequency differs from the intrinsic frequency because of Doppler shift by the mean
currents and shifting by the background vorticity. The method described in Alford & Gregg (2001) is
followed to compute the intrinsic frequency of the observed NIW using quantities observed in the data

set. The background vorticity is taken into consideration by using the effective Coriolis frequency

(ferr) (Kunze, 1985),
¢

fof = fo + = 419
fi="fo+3 (4.19)
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and then Doppler shifting by the mean currents (Alford & Gregg, 2001)
w—w = |[Ky||U|cos(6 — a). (4.20)

The variable ry is calculated to compare the ratio of energy in the vertical to energy in the horizontal
and calculate the waves intrinsic frequency (wj = rifes).

Where 1 describes the ratio of KE to PE, is calculated using:

KE
pE +1

I’|:w/£_1- (421)
PE

The mean value of r over 4000-4150 m is used for r| with an error of one standard deviation. Since

the value for the horizontal wavenumber is unknown, Eqn. 4.20 is solved for I<a:

W2 — w2
Kf=—-o— 1 422
™ U2cos2(0—a)’ (4.22)

and substitute this into the dispersion relation, solving for fe. As we are working with NIW, it is

possible to simplify the equation using K = m? because |<E| <<m?

Neglecting the horizontal Coriolis term

Start with the dispersion relation:

+1% (4.23)
and substitute Eqn. 4.22 to eliminate Ky:

2¢2 N2 (w? — "|2fe2ﬁ)

g = 1efil 2 4.24
el = 12 UZcos?(0 — a) e (%.24)

Finally, solve for fe:

N
ff = w _ (4.25)

\/(rl2 — 1)m2U%cos?(0 — a) + NzrlZ
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Including the horizontal Coriolis term

To solve for the effective frequency, without applying the traditional approximation, substitute Eqn.

4.22 into the non-traditional dispersion relation:

o NPKE A+ (fLfepm)? NPKE + 1212 2ffql
W™ = > = +

+1% (4.26)

m m? m

along with the definition of the intrinsic frequency to get:

2Aeiif (w— riferr) f2wﬂf$§9+hgwﬂf@ﬁ)

2¢2 2 | eff
e =1 — 4.27
Mo = legr + N A w2 (427)
where G = |U|cos(6 — a). After rearranging this equation into standard form:
2fr P2 N
0=t [(1—py- 2 I N
V2mG  2m?2G2 m2G2
2w
Hetf | —=—— 428
eff \/in’]G ( )
f2w? N?w?
T\ 2mece T
it is possible to calculate the fe using the quadratic formula:
—B+VB2—4A
fa = D22 T (429)

where:

A =2m’G’(1— r|2) — |‘|2(2N2 +19)— 2v/2rmGf
B = 2V2fwmG

C = W?(2N? +72).

48



Chapter 4.

4.2.4 Horizontal wavenumber

The horizontal wavenumber (Ky) can be found by substituting in the calculated value of the effective

frequency into the dispersion relation:

Neglecting the horizontal Coriolis term

When f is neglected and wj = nfef has been substituted in, an equation for ky dependent on known

values is derived:

2(,.,2 _ f2
K= VK212 = W (4.30)

Including the horizontal Coriolis term

When f is included and the dispersion relation is rearranged in standard form an equation:

]FZ

0=k{ |[N*+ =
<H +2

ki (\fzfeﬁfm) +m2 (2 — @), (431)

is derived, where the quadratic formula can be used to calculate a value for ky:

]FZ
A=N?+ 5 (4.32)
B = V2fefm (4.33)
and
C = mA(f2 — wf). (4.34)
4.2.5 Ray Tracing

It is possible to determine the time elapsed between wave formation and its observation at the

moorings by integrating the ray equations (Lighthill, 1978) backward in time. We use Wentzel-
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Kramers-Brillouin (WKB) stretched depths so as to account for changes in the vertical wavenumber,
due to buoyancy fluctuations (Leaman & Sanford, 1975, Alford & Gregg, 2001). fes is used to account
for the background vorticity. As a result, only | will have refractive changes, due to the B effect. It is
incorrect to assume constant vorticity, but as a better assessment is impossible with our data set, it

is necessary. Applying these assumptions gives the reduced ray tracing equations:

dx

g =Gt |U|cos(a)

dy )

?ﬂ = Cqy + |U[sin(a)
dz’ (4.39)
@~

d ow o

i w

Where:
U = the magnitude of the background velocity, a = the direction of the background flow, and cgxqy,q- =
the group speed in the zonal, meridional and vertical directions respectively. A Fourth Order Runge-

Kutta method is used to calculate the group speed and % for each time-step.

4.3 Case study: Samoan Passage

Four concurrent 7-day moorings (Fig. 4.1B), located around the western sill, observed a NIW between
depths of 4000 and 4200m (Fig. 3.7). Moorings were equipped with moored profilers traveling
between 3600 and 4800 m. For a more detailed description of mooring instrumentation refer to Voet
et al. (2015) and the Data and section in Chapter 2. Time and depth averaged N was 0.001s~" with
a peak at approximately 4200 m reaching values up to 1.8 x 1073s~", Fig 4.1C. A plane wave solution
was fit to the observed shear and strain. Values were found for the vertical wavelength, propagation
direction, amplitude, and observed frequency 4.2. The observed plane wave solution was comprised
of two waves: one downward propagating and one 1/4 the amplitude upward propagating wave (Fig.

3.7). Unless otherwise noted, values describing the downward propagating wave will be used.
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Amplitude (A) | Vertical wavenumber (m) | Frequency (w) | Propagation direction (6)
[1/m] [1/day] [° from true North]
Downward 0.16 0.005 0.36 10
Upward 0.04 0.009 0.32 60

Table 4.1: The values calculated by applying a plane wave fit to NIW observations at all 4 short term moorings

(T9 - T12).

r 1.08 123 1.01
w (s 45x107° 5535x107° | 4185x107°
wo (s 41667 x 107° | 41667 x 107° | 41667 x 10~°
foir (s7) 3865 x107° | 3865x107° | 3.865x107°
1/ky (km) 127 72 365
m (1/m) 0.005 0.005 0.005
Y (1/s) 0.0458 0.0458 0.0458
7o (M) 4000 4000 4000
latitude 9°40.65'S 9°40.65'S 9°40.65'S
longitude 169°50.57'W | 169°5057'W | 169°50.57'W
a (° true North) 0 0 0
O (° true North) 20 20 20
[U| (m/s) 0.003 0.003 0.003

Table 4.2: The values used in the ray tracing calculations from 4 concurrent short-term moorngs (T9-T12).

The average flow speed (|U|) and direction () were calculated by taking the time average of the

velocity observations between 4000 and 4200 m at all four moorings. The average depth profile of

N (Fig. 41C) was found by temporally averaging all moored profiler profiles from the 4 moorings at

depths between 3600 and 4800 m. N? at other depths is the time-average of all full depth conductivity,

temperature, and depth (CTD) profiles in the western sill region (Table 4.3).

Latitude (S) | Longitude | Max depth (m)
9°375 169°48.8' 4763
9°35.4/ 169°45.7/ 4764
9°36.1" 169°49.0/ 4798
9°37.4 169°54.3 4288
9°40.2 169°48.7/ 4706
9°40.1/ 169°50.3 4956

Table 4.3: Location, and maximum depth of the full-depth CTD profiles around the western sill.
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2
N2 (1/s%)x 107

Figure 4.1: A) Global location of the Samoan Passage. B) The four 7-day moorings situated around the sill at
the entrance to the western channel. C) a time averaged plot of N? vs depth, time average of all four moorings.
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4.3.1 Dispersion relation

The importance of the horizontal Coriolis term can be assessed in the calculation of the dispersion
relation by looking at the percent difference between the dispersion relation including the horizontal

Coriolis term and the dispersion relation neglecting the horizontal Coriolis term:
AN=——. (4.36)

After substituting in Eqns. 4.11 and 4.12 an equation for the percent difference is found:

212 + fflm

_ _raffm 437
“ T NZRZ P22 #37)

A, is plotted against depth, where A,; is calculated using a time averaged, depth varying N? at
9.5°S and holding all other values constant: m = 0005m~" and K, =47 x10"°m~" (Fig. 42). As
N? increases from 3600 to 4200 m, the difference between the two equations decreases. Moreover, at
minimum stratification the difference is maximized. The average difference ranged between 0.004%
and 0.0052% with an average value of 0.005%. The inclusion of f is determined to not be important in

calculating w? for the Samoan Passage.

4.3.2 Group speed

Substituting the values from the planewave solution into Eqns. 4.17 and 4.18 gives an initial horizontal
group speed of 0.003 m/s and an initial vertical group speed of 0.7 m/day. When  is neglected, Eqns.
414 and 4.15, the group speeds are found to be 0.007 m/s and 1.1 m/day respectively.

The relative error on the group speed is calculated using the same basic equation for the percent
difference used for w? except now using group speeds:

A = Sz~ Cor (4.38)

Cyz
Cqz
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Dispersion relation

2 4 6 8
A 2 (%) +107

. 02— w? . .
Figure 4.2: A plot of A = ‘*’wiz‘” versus depth with depth varying N2,
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and

A, = 0" (439)

“ Cqy
In Fig. 43 and 4.4 the meridional group speed (cq,) and vertical group speed (cq), calculated using
the depth varying N? values observed at the mooring site and holding m, ky, and latitude constant,
are plotted. For A the differences in the two equations vary between 3 and 20% and by an average
of = 10%. It is apparent that there is a large difference in cqy when f is included compared to when
it is neglected. The A, does not have as large of a percent difference as A, but can reach as high
as 10% in regions of low N. Over these depth ranges there is a 5% difference between cq, and Cg,. It
can be concluded that in the Samoan Passage, it is important to include f in the calculations of the

group speeds.

4.3.3 foff

When fer is calculated with the traditional approximation (Eqn. 4.25) it is found that fe = 0.33 cpd
(0.99f). When the traditional approximation is not applied (Eqn. 4.29), fes = 0.33 cpd (0.99f).
The differences between the effective frequency equations can be calculated using:

feff - fef‘f

Afeﬁ - fef‘f

(4.40)

The differences between the effective frequency calculated with the horizontal Coriolis term and those
without are negligible for the observed values of N (Fig. 4.5). In the Samoan Passage, there is no
significant difference between the two calculations, beyond a less complicated calculation of fe when
neglecting f.

The intrinsic frequency can be calculated using:
wi = rifer (4.47)

giving a value of 0.36 +0.06 s~ 1(1.06+0.15f). If the intrinsic frequency is used to calculate the latitude
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Figure 4.3: A plot of A = % versus depth with depth varying N2,
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Figure 4.4: A plot of A = % versus depth with depth varying N2,
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Figure 4.5: A plot of A = % versus depth with depth varying N2,
e
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of origin it is found that the wave originates at 10°24’S with an upper bound of 12°06'S and a lower

bound of 8°42’S.

4.3.4 Horizontal wavenumber

Substituting known values into Eqns. 430 and 431 gives Ky = 7.87 x 107° cpm, a horizontal wave-
length of ~ 127 km for both equations. There is no discernible difference between the two observed
values.

The difference between the horizontal wavenumber with the traditional approximation and the

horizontal wavenumber without the traditional approximation is calculated using:

Ag, = 1 H (4.42)

When the latitude is held constant if is found that the depth varying N? does not affect the
percent difference of the horizontal wavelength (Fig. 4.6). At low values of N the percent difference
can reach values of =~ 0.18%, at the highest values of N a percent difference of =~ 0.12% is seen. The
average percent difference across the depth range lies a little below 0.15%. As there is no discernible
difference, it is easier to calculate the horizontal wavenumber neglecting f as that is the simpler

equation.

4.3.5 Ray Tracing

Using a starting position for the ray tracing to be the latitude and longitude of the T12 mooring
(9°40.65'S, 169°50.57'W) and start time of February 14, 2014 at 19:00 GST. It is from this starting
point that the NIW is propagated back both in time and space (Figs. 4.7 and 4.10).

Constant vorticity and mean flow are assumed throughout the water column. This is a necessary
but not necessarily valid assumption, simply due to the extent of the ray tracing in depth, time and

space. Two solutions are presented: a ray tracing from 4000 m up to 3600 m, depths with good data
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Figure 4.6: A plot of A = % versus depth with depth varying N,
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coverage, and a ray tracing to the surface, because wind events are a common, but not the only,

generation mechanism.

Ray tracing - up to 3600m

The observations were comprised of a two-wave solution for the near-inertial signal. The ray tracing
from 4000 to 3600 m shows a possible path for the upward propagating component. As such values
used in the ray tracing equations were those found to describe the downward propagating wave
(Table 4.1).

The time-averaged values of N are plotted against depth in Fig. 4.7. When ray tracing is used
to find the path from 400m to 3600m, the differences between the two solutions, including f and
neglecting f, are apparent at 3600 m (Fig. 4.8). The solution including f reaches 3600m on November
17, 2013 after 89.1 days while the solution neglecting f reaches 3600m on November 3, 2013 after
103.9 days. There is already a difference of 14.8 days. This shows the inclusion of the horizontal
Coriolis term increases the vertical velocity, as previously shown. This translates into a difference
between expected latitudes: 10°12’S with f and 10°24’S without f. As expected from Figs. 4.6 and
45, there is no apparent difference between the calculations for horizontal wavelength and the ratio
of the intrinsic frequency to the effective frequency (wy/fef).

Fig. 4.9 shows the locations of the NIW using the two methods, the results are for the inclusion

of f (10°12’S, 170°54'W) and neglecting f (10°24’S, 170°48'W) separated by a distance of 25km.

Ray tracing - to the surface

As the wave propagates up to the surface there is a difference between the solution including f and
that excluding f. The ray tracing solution with the inclusion of f reaches the surface on July 8, 2013
after 191.1 days, while the ray tracing neglecting f reaches the surface on June 26, 2013 after 203.7
days (Fig. 4.10). This is a difference of 12.6 days. The calculation with f reaches the surface at (13°S,

174.1°W) and the calculation neglecting f at (13.2°S, 173.7°W). These two solutions are separated by

61



Chapter 4.

0 3600

E 1000 3700 T

2000 3800 £
o

i
3000 39000

4000 4000
0 5 10075 0.8 0.85

N(cpd)  N{(cpd)

Figure 4.7: N vs depth for the whole water column (left) and zoomed in between 3600 and 4000 m (right).

49km and are 593km and 574km from the observation site respectively (Fig. 4.11).

Ray tracing - down from the surface

When the ray tracing is started at the surface and propagated down to the observation site, starting
at (15°36.6’S, 175°04.2'W) on June 3, 2013 the wave takes 226.5 days when f is included. When f is
neglected the ray tracing starts at (15°46.2’S, 175°36.6’'W) on May 22, 2013 and takes 2353 days to

reach the observation site. This is a difference of 8.8 days and 52 km between the two equations.

4.4 Generalizations/sensitivity

In the previous section, it was clear that the inclusion of f was important in the calculation of the
group speeds observed at 4000 m in the Samoan Passage. To determine the extent of the regions and
the variables where f is important, the relative error as a function of latitude (f and f) was calculated

and in addition to N for the dispersion relation and group speeds.
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Figure 4.8: The ray tracing solutions for a NIW observed at (9°40.65’S, 169°50.57'W) on February 14, 2014
propagating up to 3600 m. Dashed lines show the upper and lower envelopes for wj & wierror. The solid line is
the solution.
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Figure 4.9: The ray tracing solution for a wave propagating up to 3600 m plotted in latitude vs. longitude.

64



Chapter 4.

9
10 —~
n()'J
11:;
¥/ L g
e/ 12'(%
—f' 13—|

= ——— Including

E’SGO : —-Neglecﬁng | =112

@ I

) I

= 200 1

= !

T 100 !

2 gt 0.6

% -200 -100 0 -200 -100 0
Time (days) Time (days)

Figure 4.10: The ray tracing solutions for a NIW observed at (9°40.65’S, 169°50.57'W) on February 14, 2014

propagating up to the surface. Dashed lines show the upper and lower envelopes for wj & wierror- The solid
line is the expected path.
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Figure 4.11: The ray tracing solution for a wave propagating up to the surface plotted in latitude vs. longitude.
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Figure 4.12: Ray tracing starting from the surface propagating down to the observation site. The wave
originates at ((15°36.6’S, 175°04.2'W)) when f is included, and when f is neglected the wave originates at
(15°46.2'S, 175°36.6'W). The origination sites are seperated by a distance of 52 km.
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Figure 4.13: Ray tracing starting from the surface propagating down to the observation site. The wave
originates at ((15°36.6'S, 175°04.2'W)) and takes 2265 days when f is included. When f is neglected the wave
takes 235.3 days to propagate to the observation site from (15°46.2'S, 175°36.6’'W).
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Following Guiles (2004), equations are converted to independent variables and then the percent
difference is calculated. As a simplification, the inertial limit is applied. A full discussion of the
derivation technique is outlined in Appendix 8.1. All figures shown illustrate the percent difference in
the southern hemisphere as this is the location of the Samoan Passage. Calculations can be applied

to the northern hemisphere.

4.4.1 Dispersion relation

When comparing the dispersion relation including f (Eqn. 4.12) to that neglecting f (Eqn. 4.11), it
is apparent that the magnitude of the divergence between the two equations is dependent on the
latitude and N (Eqn. 4.37). At low latitudes, f is going to play a large role in the dispersion relation.
This is simply due to the differences in magnitude of the respective Coriolis force components. In
regions of low stratification, N? will not dominate the dispersion relation and the f term will be more
important.

The latitude is varied from the equator to 60°S and N from 0 to 0.05Hz, in the calculation of A 2,
while holding all other variables constant to determine the relative importance of including f (Fig.
414). As expected, at low latitudes and low stratification @ is larger, when the horizontal Coriolis
term is included. The significant percent difference only occurs over a small range of latitudes, 2—5°
S, and low N, N < .0007. Outside of this range there is no discernible difference between the two
equations. As the Samoan Passage is outside of this range, the percent difference of ~ 0.004 for
A2 in the Samoan Passage (latitude = 9°40.65'S and stratification =~ 0.001 Hz) is expected (Fig.
42). There is a decrease in the percent difference between the two forms of the w? equations at the
equator: when the latitude is 0, where the terms with f in the difference equation drop out and the
remaining terms are small, and the numerator is effectively multiplied by 0, reducing the value of the
percent difference. At most latitudes and N, the inclusion of f does not make a significant difference

in the calculation of w?, although it may at low latitudes and extremely low N.
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Figure 4.14: Calculation of A > near the inertial limit as 6 approaches 7 as a function of latitude and N.
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4.4.2 Meridional group speed

The percent difference of the meridional group speed exceeded 20% in our case study of the Samoan
Passage (Fig. 4.2). If we expand A, be a function of both latitude and N (Fig. 4.15), it is shown
that the inclusion of f is significant across a wide range of latitudes and N. This is particularly true
for low N?, N < 0.003, across our range of latitudes where the two calculations diverge by at least
5%. Similar to the A, near the equator, the percent difference decreases due to the low inertial
frequency going to 0. A, has the largest percent differences out of any of our calculations and the

inclusion of f needs to be considered in most situations with low N.

4.4.3 Vertical group speed

The vertical group speed has a smaller percent difference than horizontal group speed but still shows
a considerable difference when f is included. Similar to Cqy, the largest difference between the two
terms is determined by the value of N?, as was seen in our calculation for the Samoan Passage (Fig.
4.4). For values of N < 0.003, across most latitudes, the difference between including f and neglecting

f is in excess of 10% (Fig. 4.10).

4.5 Summary

The percent difference was used to determine the necessity of including f in both the Samoan Passage
and more generally at the inertial limit. At low latitudes and low stratification, the dispersion relation
was significantly different when f was included. As a result, the inclusion of f needs to be determined
situationally. The effective frequency and horizontal wavenumber were not found to differ with the
inclusion of f in the Samoan Passage and generally. The equations for fe and ky including f, are
unnecessarily complicated and the authors recommend neglecting f for fo and ky, for the ease of
calculation. The magnitude of group speed was found to be significantly different in the Samoan

Passage when f is included. More generally, the percent difference of the group speeds are found to
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Figure 4.16: A plot of A = CQ%ZCQZ varying in latitude and N.
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vary significantly at low N across a wide range of latitudes. The extent of the latitude range where
the inclusion of f is significant is extensive and in situations with low N f should be included. This

applies to calculations using the group speed such as ray tracing.
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CHAPTER

Mixing

5.1 Introduction

Stommel (1958) was the first to propose a relationship between: abyssal circulation, deep water
formation and water modification processes. This turbulent mixing diffuses heat downward and links
the surface ocean to the deep ocean in the global thermohaline circulation. There is strong evidence
for mixing in the abyss: cold dense water enters and warmer less dense water exits (Hogg et al,
1982). Some of such mixing is known to occur in constricted passages due to strong turbulence: Faroe
Bank Channel (Fer et al, 2010), Vema Channel (Hogg et al, 1982) and in fracture zones: Romanche
Fracture Zone (Ferron et al, 1998), Mid Atlantic Ridge (Polzin et al, 1997) and Southwest Indian
Ridge (MacKinnon et al,, 2008).

Near-inertial waves are commonly observed throughout the world's oceans, including at deep
and abyssal depths (Webster, 1968, Fu, 1981). Estimates of the near-inertial energy input vary from

03TW to 0.7 TW (Alford, 2003). NIW have been associated with increased mixing in the interior
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ocean (Hebert & Moum, 1994, Alford & Gregg, 2001). In the internal ocean NIW have the potential
to induce more mixing than internal tides (Alford et al, 2016). Microstructure measurements have
shown enhanced diffusivity once per inertial period corresponding to strain induced instantaneous
stratification. This corresponds to a Richardson number (Ri) of 0.6 (Alford & Gregg, 2001). Kunze &
Sanford (1986) found amplification of NIWs during periods of NIW propagation opposing the mean
flow. This is expected to induce increased mixing. During periods of propagation with the mean flow,
the NIW is dispersed. There is seasonal variation in near-inertial mixing: Alford & Whitmont (2007)
found an increase in mixing events corresponding to the winter.

Looking at the general thermohaline circulation in the Pacific, dense water flows up along the
deep western boundary current and encounters Robbie Ridge and Manthiki Plateau (Reid & Lonsdale,
1974, Roemmich et al,, 1996, Voet et al, 2016). This is where the majority of deep, cold, oxygen rich
Antarctic Bottom Water (AABW) passes through the Samoan Passage (5.6 Sv (Voet et al, 2015)/6.0
Sv (Roemmich et al, 1996)), the first gap water below 4000 m encounters. Over the course of the
passage, the AABW signal is mixed away (Roemmich et al, 1996). The Samoan Passage has been
found to have 1000 to 10,000 times the typical abyssal mixing (Alford et al, 2013). This appears to be
a result of various topographic features and accompanying hydraulic responses. The majority of the
mixing in the Samoan Passage appears to be due to the trio of hydraulic jumps distributed across
the Passage (Alford et al, 2013). Roemmich et al. (1996) concluded that strong mixing was required
to eliminate the NADW high salinity signature and estimated a turbulent diapycnal diffusivity (K,)
of 5x 1077 % Pratt (in prep.) speculates that a significant proportion of mixing in the North Pacific
occurs in the Samoan Passage. As 15% of the world's ocean lies below 2000 m in the North Pacific,
it is pertinent to understand the flow through the Samoan Passage and its associated mixing.

The primary focus of this chapter is to present deep mixing that occurs due to NIW. Section 5.2
presents the methods used including the depth integrated dissipation rate and energy flux. Section
5.3a investigates mixing at depths corresponding to NIW observations and 5.3b looks at turbulence
below the interface and attempts to determine the cause of said turbulence and the near-inertial

modulation of the signal. Correlation of various time series (Section 5.3c) and spectral analysis are
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used to assess the causes of observed mixing between 4200 and 4600 m. The final two sections are
the discussion and conclusion, 5.4 and 5.5 respectively, where the origin of the mixing and its relative

importance in the Samoan Passage are discussed.

5.2 Methods

5.2.1 Dissipation

Epsilon (€) values are calculated from density profiles using Thorpe scaling method specifically using

the intermediate profile. Where € is calculated as
€= LIN? = cL2N, (5.1)

where ¢ = (Lg/L7)%, Lt = the Thorpe length scale, and the Ozmidov scale (Lg) is 0.8 of Lt. For more
information on the calculation of the Thorpe scale method refer to the appendix of Voet et al. (2016).

As calculated in Cusack et al. (prep), the depth integrated dissipation rate (F) is calculated as

F=po /Z1 €(z)dz, (5.2)

0

where pg = 1000 kg m—> and z is depth.

5.2.2 Energy Flux

Energy flux (Fg) is a tool used to assess the loss of NI energy as the NIW propagates to depth. Fg

is calculated following Alford & Gregg (2001) where

Fe=cg.E (5.3)
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and
<0+ +N(z2)2& >

E = HKE+APE = >

(54)

where ~denotes a perturbation quantity, <> is the time average over a wave phase, N(z)? is the

time-averaged buoyancy and ¢ is the vertical displacement.

5.3 Results

5.3.1 Mixing between 4000 and 4200 m

In Chapter 3 NIW were observed between 4000 and 4200 m. Dissipation is observed at these same
depths and does not correspond to any specific phase of the shear or velocity, Figure 5.1. Dissipation
occurs throughout the duration of each mooring. The T11 mooring observed the highest amount of
depth integrated dissipation, between 4000 and 4200 m, of 2 x 1072 W kg~'. This depth integrated
dissipation is an order of magnitude larger than T9 (5 x 107> W kg~') and T10 (4 x 103 W kg™")
the other downstream moorings and two orders of magnitude larger than the upstream mooring, T12
(3x 107" W kg™).

When € is plotted against u and v velocity, no clear pattern emerges individually or across all
moorings showing there is not preferential dissipation during any of the observed velocity regimes.
The same is observed for € plotted against u, and v,. There is an even distribution of ¢ for all
quadrants. The strongest dissipation events occur during periods of time with negative v,, however
there are a limited number of these events and cannot be concluded definitively.

Overall, fewer overturns were observed at T12 than at the other moorings. However, if T12
is looked at individually, there are more dissipation events during the first half of the mooring
deployment compared to the second half. As described in Chapter 3, the wave either propagated
past the mooring in the latter half of the week or the wave event decayed. During the latter half of
the deployment, there was a decrease in overturn-inferred mixing. As decay has been observed to

correspond to increased turbulence (Hebert & Moum, 1994) it is suspected the wave propagates past
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Figure 5.1: Depth-time plot of the logigofe with the zonal shear contoured over the top in black. Zero values of
the zonal shear plane wave solution are in solid black and black dashed contour indicates negative amplitude.
The same € values, between 4000 and 4200 m, are plotted against u and v velocities and zonal and meridional
shear.

the mooring.
The magnitude and frequency of € observed at these depths are much smaller and more infrequent

than those observed below 4,200 m.

5.3.2 Mixing below the interface

Below the interface at 4200 m the moorings observed increased depth integrated dissipation rates
(Fig. 5.2), particularly the moorings downstream of the sill (time-averaged, depth-averaged dissipation
rates): T9 — 3x 107" W kg™', T10 = 4 x 107" W kg™', and T11 = 3x 107" W kg~'. The upstream

mooring, T12, had a depth integrated dissipation rate two orders of magnitude smaller than the
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Figure 5.2: To the left, € values from all moorings are plotted on top of each other. The 27.81 and 27.82 density
levels are contoured in black. The time average € values are plotted against depth to the right.

upstream moorings, T12 - 3x 107> W kg™, only one order of magnitude larger than that observed
between 4000 and 4200m. The depth-time plot of epsilon shows a banding pattern that is not
observed in the other moorings (Fig. 5.2). In addition, the time averaged dissipation signal at T11 is
distinct from the signals observed at the other moorings (Fig. 5.2): bottom intensification is observed
in the time averaged dissipation at T9 and T10 while the time averaged dissipation at T11 is higher
in the water column with a near-bottom decay in intensity.

This banding pattern in € is unique to T11 and is observed in both depth-time and mean isopycnal
depth-time plots (Fig. 5.3 and Fig. 5.4). When plotted in both depth and mean isopcynal depth, below
4200m, the overturns appear to occur at a near-inertial frequency, below 4200 m. This is of particular
interest as the other downstream moorings, that do not show this same banding T9 and T10, are
only 2 and 1km away respectively. No inertial signal in € is observed at T9 and T10 even after

bandpassing € around f or complex demodulation of € around f. This suggests that the inertial signal
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at T11 is an isolated event and that an inertial signal at T9 and T10 is not obscured by e from other
sources: M2 (Cusack et al, prep) and hydraulic jump (Alford et al,, 2016).

This banding signal is separate from the depths where we see the near-inertial signal in the shear
(4000-4200m). The inertial signal in € occurs below the deep thermocline, at depths of accelerated
flow (Fig. 3.4). The peak in dissipation coincides with a minimum in Richardson number indicating
that the turbulence is produced by shear instability.

Similarly to Fig. 5.1, Fig. 5.5 plots the observed € values in u and v velocities and u, and v,
shears. Similar to the € values discussed above, there is an even distribution of € across all shear
values. An increase in magnitude is not observed to correspond to negative values of v,. However,
the majority of dissipation events occur when there is positive values of v. This is to be expected
as below the shear interface topographic acceleration has increased the northward magnitude of v.
When plotted against the velocity perturbation from the mean, € is symmetric about the origin for all
of the moorings except for T11. Stronger and an increased number of dissipation events occur during
periods when the perturbation v-velocity is negative.

Mean dissipation as a function of inertial phase is plotted for T11 in Fig. 5.6. Inertial phase is
estimated as wt+mz where w represents the observed near-inertial frequency and m represents the
vertical wavenumber. The near-inertial frequency, 0.35 cpd, and vertical wavenumber, 0.005 m~1 were
calculated using a plane wave model in Chapter 3.2.4. At T11 the mean dissipation rate varies in
an approximately sinusoidal manner over the inertial period where times of lower and higher mean

dissipation differ by up to a factor of 2.

5.3.3 Correlation

The depth integrated dissipation rate time series will be used as a means of determining the variables
that are correlated to the inertial mixing observed at T11 below 4200m, Fig. 5.7. The variables
compared include: depth integrated dissipation, transport, layer thickness, strain, N2, shear, and

velocity.
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Figure 5.3: Background color is the zonal shear, calculated from the MP velocity profiles, plotted against
depth. green contours the dissipation rate from overturns (contour value 5x 107°W kg~"). The Richardson
number is contoured in yellow (contour value 0.25). Grey contours the isopycnals.
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Zonal Shear
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Figure 5.4: Background color is the zonal shear, calculated from the MP velocity profiles, plotted against the
mean isopycnal depths. Green contours the dissipation rate from overturns (contour value 5 x 1079W kg™").
The Richardson number is contoured in yellow (contour value 0.25).
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Figure 5.5: Similar to Fig. 5.1, logipe between 4200 and 4600 m is plotted against velocity, perturbation
velocity, and shear (from left to right) between 4200 and 4600 m.
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Figure 5.6: From Cusack et al. (prep) epsilon is plotted against the inertial phase for the depth averaged
dissipation between 4200 and 4600 m.

For these sets of time series, correlation values (r) above/below £0.25 are considered correlated.
As the time series have not been filtered, there are other signals at various depths that obfuscate

the signal and decrease the magnitude of r.

Depth integrated dissipation rate

The depth integrated dissipation rate is calculated for 4000-4200 m and 4200-4600 m, Fig. 5.7. The
time series for 4000-4200 m does not show a signal, as expected (Sec. 5.3.1). However, the time series
for 4200-4600 m does show modulation of the depth integrated dissipation at an inertial frequency.
There is no correlation between the two time series (r = —0.01), depth integrated dissipation rate
between 4000 and 4200 m and the depth integrated dissipation rate between 4200 and 4600 m. This

is not surprising as the overturns between 4000 and 4200 m are infrequent.
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Figure 5.7: The depth averaged time series, between 4000 and 4200 m, 4200 and 4600 m, below 1¢ircC or
27.81 < gg < 27.82, of depth integrated dissipation, transport, layer thickness, strain - between 4200 and
4600 m, N? - between 4200 and 4600 m, shear - between 4200 and 4600 m and velocity - between 4200 and
4600 m.
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Transport

The transport below 1°C, chosen to match the definitions used in Rudnick (1997) and Voet et al.
(2015), calculated over the short term moorings does not appear to have a near-inertial signal.
When compared to the overturn signal between 4200 and 4600 m a negative correlation coefficient
of r=—-0.12 is found, showing a minimal correlation between the two time series.

The average value of epsilon between 27.81 < gg < 27.82 (black) does show a near-inertial mod-
ulation of the signal at T11, but this is not observed at any of the other moorings, not shown. The
transport between those two layers does have a higher positive correlation with the deep depth
integrated dissipation rate, r =0.16, but not showing a strong relationship. The transport does show
a strong negative relationship with u,, between 4200 and 4600 m, where r = —0.51 with no time lag.
This is not the case with v, where r = —0.18 with a time lag of approximately 2 minutes and with S
where r =0.25 with no time lag.

Voet et al. (2010) observed a near-inertial signal in the transport in the time series of the long-
term moorings in the mouth of the channel with the peaks at f between 0.85 and 1°C. There is no
obvious near-inertial signal in the transport below 1°C at T11, Fig. 5.7. The lack of inertial signal
does not contradict Voet et al. (2016)'s findings as his observations were in a different location, time,

and depth range.

Layer Thickness

There is a near-inertial signal, at T11, for the layer thickness between gy of 27.81 and 27.82 and
no near-inertial signal in the layer thickness of waters below 1°C, Fig. 5.7. The layer thickness,
2781 < 09 < 27.82, has a correlation of r = 0.33 with the deep overturn signal. This density layer
lies at the top of the 4200-4600 m depth range, in depths immediately above where the majority of
overturns occur. Also, r = 0.30 and r = —0.38 for the density layer thickness with u, and v,, between
4200 and 4600 m, respectively. It is interesting to note that the layer thickness of waters below 1°C

and v, has a negative correlation coefficient of r = —0.48. This is one of the highest correlations
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found in the various time series and shows that the layer thickness of waters below 1°C is either

driving or driven by the meridional shear in and below those depths.

Strain

No inertial signal is apparent in the strain time series, Fig. 5.7. There is no correlation between the

strain and the overturns between 4200 and 4600 m.

NZ

Similar to the strain, N? does not show an inertial periodicity and is not correlated to the deep

overturn signal between 4200 and 4600 m.

Shear

The time series of shear shows near-inertial modulation of v, and no apparent signal in u,. The S
and v, time series are highly correlated to the depth integrated dissipation rate between 4200 and
4600 m, r =0.36 and r = —0.44 with a 0 time lag respectively. The deep v, also has a high correlation
to the v, above the interface, between 4000 and 4200 m, r = 0.50. The meridional shear above the
interface has a high negative correlation to the overturns between 4200 and 4600 m, r = —0.36.

The anticyclonic and cyclonic shear spectra show a commonality of a peak in the anticyclonic
shear spectra between 4000 and 4200m in all moorings. A distinct secondary anticyclonic shear
spectra peak is observed at 4300m only in the T11 mooring. There is a signal in the cyclonic
shear spectra below 4200 m but if we look at the difference between anticyclonic and cyclonic it
becomes clear that the magnitude of the cyclonic shear spectra peak does not dominate the signal
like anticyclonic shear spectra peak. Between 4200 and 4400 m, the depths of the overturn signal,
there are approximately equal peaks in both anticyclonic and cyclonic shear spectra at T11. Below

4200 m flow is generally rectilinear, as shown by the low rotary coefficient.
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Figure 5.8: Depth plot of the shear spectra for the four short-term moorings. The red dashed line shows the
local Coriolis frequency. The black line is the magnitude of the velocity with the black dashed line denoting
0 m/s. A zero rotary coefficient denotes rectilinear flow while 1 is circular flow.
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04 Depth averaged velocities (4300-4400 m)
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Figure 5.9: The average velocity between 4300 and 4400 m plotted for each of the four moorings. Vertical
black lines are separated by one local inertial period.

Velocity

There is no apparent inertial signal in the depth averaged, between 4200 and 4600 m, velocity time
series, Fig. 5.7. However the stick plot of the average velocity between 4300 and 4400 m, Fig. 5.9,
shows decreased magnitude and modulation of the flow direction at an inertial frequency. These
minimum vector lengths correspond to the maximum epsilon values. The flow does not reverse, as
the direction of the near-inertial wave opposes the mean flow it just decreases the magnitude. The
v-velocity time series has a negative correlation of r = —0.33 with the overturns between 4200 and
4600 m.

Above the interface, where the flow is dominated by the inertial signal, the average velocity
between 4000 and 4150 m shows a very distinct signal in each of the moorings at a near-inertial
frequency, Fig. 5.10. This is in the depth range where we see the near-inertial signal in the shear,

as discussed in Chapter 3.
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04 Depth averaged velocities (4000-4150 m)
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Figure 5.10: The average velocity between 4000 and 4150 m plotted for each of the four moorings. Vertical
black lines are separated by one local inertial period.
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The spectra of the velocities show a peak near the inertial frequency between 4000 and 4200 m
for all moorings and a secondary, strong peak between 4200 and 4400 only at T11, Fig. 511. T9,
110, and T11 all have an insignificant peak in cyclonic velocity spectra near f below 4200 m. The
differences between the anticyclonic and cyclonic velocity spectra highlight the differences in the
magnitudes between the anticyclonic and cyclonic peaks. The secondary peak, centered on 4300 m,
at T11 is more distinct than the secondary peak observed in the difference of shear spectra. The
v-velocity, between 4200 and 4400 m, varies as a step function at a near-inertial frequency, Fig. 5.12.
This step function banding extends over 200m and as a result of the near-constant velocity in the

vertical has a minimal shear signal at these depths.

5.4 Discussion

Although not a significant source of mixing it could be argued that the mixing between 4000 and
4200 m is increased by the presence of NIW. For a more conclusive result, moorings would need to
be deployed during periods when a NIW is not observed. Between 4000 and 4200 m the dominant
signal is inertial and when the near-inertial wave signal started to end, at the end of the time series
at the T12 mooring, the depth integrated dissipation decreased. The depth integrated dissipation
rates, between 4000 and 4200 m, vary similarly to the magnitude of the v-velocity. Not all of the NIW
energy is dissipated between 4000 and 4200 m. The time-averaged flux shows a general increase in
the energy flux with depth, Fig. 5.13, the increase is a result of topographic acceleration below 4200.
As NI energy is the dominant signal between 4000 and 4200 m, the depth integrated dissipation rate
between 4000 and 4200 m is a small fraction of the total depth integrated dissipation rate, and the
time average total energy flux slightly increases from 4000 to 4200 m it indicates minimal energy is
lost to dissipation at those depths.

The upward propagating wave could be the result of a few scenarios: partial internal reflection
off of the N? peak, partial reflection off of the shear interface, reflection off of topography or locally

formed and upward propagating. The source of the upward propagating wave is beyond the scope of
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Figure 5.11: Rotary spectra of the velocity vs depth. The vertical red line is at the local Coriolis frequency.
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Figure 5.12: The WKB stretched depth vs time v-velocity at T11. The black bars were added manually to
highlight the presence of a pseudo-step function around 4300 m.
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Figure 5.13: Time-averaged flux at T11 plotted against depth.
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this paper. It is important to note, in all of these situations, NI energy propagates past the interface
and shear layer into the depth ranges where the near-inertial signal was observed in the depth
integrated dissipation rate.

Visually, a near-inertial signal is observed in the depth integrated flux, transport, layer thickness,
v, and velocity. There is a negative correlation (r = —0.36) between v, between 4000 and 4200 m
and the overturns between 4200 and 4600 m as well as a very strong correlation of 0.50 between
the v, above the interface and the v, below the interface. These are the only significant relationship
found between a variable above the interface and the overturns below the interface. The shear of
the inertial wave signal discussed in Chapter 3 is modulating variables below the shear and leads
to increased mixing at an inertial period. Below the interface there is a significant relationship
between v-velocity, S, v, or layer thickness and the deep overturns, with correlation coefficients of
-0.33, 0.36, -0.44, and 0.33 respectively. In addition, layer thickness is found to vary with u, and v,
with the respective correlation coefficients of 0.30 and -0.38. Strain is found to vary with shear: S,
u; and v, with correlation coefficients of -0.30, -0.30 and -0.34 respectively. The ultimate path for the
NIW shear, between 4000 and 4200 m, to elevate depth integrated dissipation rate is not clear. It is
clear that the meridional shear dominates the process. Minimal Richardson numbers corresponding
to turbulence corroborate this conclusion.

As we do not see other signals at T11: M2, K1, etc, the meridional shear above the interface
must interact with the interface or accelerated flow and ultimately result in increased mixing between
4200 and 4600 m.

The Samoan Passage is comprised of two channels and 3 hydraulically controlled jumps. The
strongest mixing (0.1W m~2) occurs at the northern sill in the eastern channel. The observations
described thus far in this chapter are at the southern sill in the western channel. Cusack et al. (prep)
describes three moorings in the eastern channel: T4 located downstream of a sill(0.1 W m?), P5
located on the sill (001 W m~2) and T7 in the middle of the passage (0.002 W m~?). While not as
dissipative the northern sill, the southern sill can be similarly described by the dissipation observed

at the moorings: T9 (0.004 W m~2) located in a high dissipation environment downstream of the sill,
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M5 (0.001 W m~?) located on top of the sill and T12 (0.0002 W m~?) located in a relatively quiescent
region at the passage entrance. However the southern sill has an anomaly, T11 (0.003 W m~2).
This mooring is downstream of the sill with comparable depth integrated dissipation to the high
dissipation environment at T9 yet it has a different pattern to dissipation. At T11, the near-inertial
wave observed between 4000 and 4200 m propagates past the interface and induces increased mixing
between 4200 and 4600 m. This near-inertial dissipation signal, below the interface, is only observed
at T11.

A brief explanation of the flow pattern will illuminate the differences between T11 and the adjacent
moorings. The southern sill has a secondary bump on the western edge, this topographic feature
induces northward acceleration of the flow past T11. The moorings T9 and T10 do experience some
topographic acceleration although not as extreme. However, T9 and T10 are in the path of the

hydraulic jump over the southern sill and accordingly experience increased dissipation as a result.

5.5 Conclusion

Although near-inertial energy is observed at all moorings around the P2 sill, the time average depth
of near-inertial wave integrated (4000-4200 m) dissipation rate for the T11 mooring downstream of
the M5/P2 sill is 0.0001 W m~2, a small fraction of the time average full depth integrated dissipation
rate at T11 (0.004 W m~2). This value is comparable to values observed at other moorings in the
region. The near-inertial wave is the dominant signal above the shear layer however, the turbulent
bottom boundary layer dominates the depth integrated dissipation as commonly observed with other
moorings in the region (Cusack et al., prep).

Increased dissipation due to NIW is found between 4200 and 4600 m. The signal is isolated to
the T11 mooring and is not observed at adjacent moorings, T9 and T10, only 2 and 1 km away
respectively. The NIW observed between 4000 and 4200 m, Chapter 3, interacts with the interface
and results in layer thickness modulation and meridional shear below 4200 m. Both the shallower

and deeper depth averaged meridional shear are found to be correlated to the observed near-inertial
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modulation of the depth integrated dissipation rate. The maximum dissipation occurs during periods
where the magnitude of the v-velocity is minimized, not reversed, when the NIW opposes the direction
of background flow. Low Richardson numbers correspond to mixing events in agreement that shear
is driving the observed mixing. While not the highest in the Samoan Passage, the mixing between
4200 and 4600 m is found to be comparable to the increased mixing, due to the hydraulic jump at the
southern sill, at T9 and T10.

Kunze & Sanford (1986) found that NIW induced mixing was increased when the NIW propagates
against the background current, in agreement with our observations. They also concluded that when
the NIW propagates with the current, the NIW is dispersed. It is impossible to say if that happens
in these observations.

It has been found that NIW play an important role in the mixing in the western channel and as
such would need to be considered for any comprehensive mixing budget for the Samoan Passage. In
addition, NIW should be considered as an additional means of mixing in deep and abyssal topographic

constrictions.
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Summary and conclusions

6.1 Summary

Observations show the presence of NIWs in the Samoan Passage. These waves can be described
using the interference pattern of a downward propagating and an upward propagating, plane wave
solution. The downward propagating wave has a vertical wavenumber of 0.005m~", intrinsic frequency
of 036 day™", and northward propagation. The upward propagating, 1/4 the amplitude, wave has a
vertical wavenumber of 0.007 m~', and intrinsic frequency of 0.33 day™". This plane wave solution is
found to be coherent across all four of the concurrent time series. Wavelet analysis shows seven NIW
events over the course of the 17-month mooring. These events have vertical wavelengths ranging
from 0.005 to 0.01 m~". During periods with NIW activity, the u velocity decreased (-0.0028 m/s), the
v velocity increased (0.0023 m/s), and the 27.876 kg/m? isopycnal was depressed (14 m on average).
From the plane wave solution, it is possible to derive the effective frequency, horizontal wavenum-
ber, and group speeds. When a range of latitudes and N? values are applied and the near-inertial
limit is imposed, it becomes clear that the inclusion of the horizontal Coriolis term is necessary in

regards to the calculation of group speeds and the dispersion relation. The differences in group
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speeds are even more apparent during ray tracing.

One of the short-term moorings is found to have a unique signal in depth-integrated dissipation.

The two other upstream moorings show increased dissipation associated with the hydraulic jump at

the sill. The anomalous mooring has a near-inertial signal in dissipation that is found to be related

to the NIW observed at all moorings. It does not appear that the NIW induces increased mixing

at observation depths. Increased meridional velocity, due to topographic acceleration around the

secondary bump on the sill interacts with the meridional shear and causes enhanced mixing below

the interface. The time-averaged, depth-integrated dissipation rate is comparable to those found at

the two other upstream moorings.

6.2

Research highlights

o NIW are difficult to observe as they are episodic and propagate away from their origin region.

When the difficulties of taking measurements in the deep ocean are taken into account, it
becomes apparent that the Samoan Passage data set with the presence of NIWs is special.
It is unique to be able to observe NIWs in the deep ocean let alone on an array in addition
to a long-term mooring. These observations show a NIWs having propagated downward and
equatorward into the region and the wave's superposition with 1/4 the amplitude upward

propagating wave.

Small scale variations in N2, currents, and topography do make a difference on NIWs over small
scales. Plane wave solutions show the NIW observed at the short-term moorings is coherent
across all of the moorings. Yet there are variations in the depth ranges where the NIW is

observed and the ellipticity of the wave at each mooring.

As more research is done into NIWs in the interior ocean and near the equator, the inclusion of
f will become even more important. Ray tracing is currently one of the key tools for identifying

propagation pathways. As this research has shown, there are distinct differences between
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propagation paths when f is included and when f is not. As more observations become available

and more research into the propagation paths of NIWs is possible, f will need to be included.

Alford et al. (2016) notes a distinct lack of full depth profiles between 30N and 30S; this is a
key latitude range for the inclusion of f. As waves propagate equatorward from storm tracks
and other generation sites, propagation paths will take the NIWs into the low latitude, low
stratification regions, where the inclusion of f will make a difference. Also, as more focus is
placed on other sources of NI energy other than the wind (such as lee waves, wave-wave
interactions and spontaneous generation), NIW research will occur more in regions with low

N?, another key area where f must be included.

NIW observations were not only observed on a single mooring but an array of moorings located
around a sill. The NIW is observed at all moorings at depths corresponding to a peak in N?
immediately above the AABW overflow depths. The moorings are located in various regimes
below the interface (4200 m) at overflow depths: relatively quiescent flow (T12), flow over a
hydraulically controlled sill (M5), downstream of the hydraulically controlled sill (T9 and T10),
and in a meridionally accelerated flow (T11). The best-fit plane wave solution for all moorings
is comprised of the interference pattern of two waves. The upward propagating wave has a
few potential sources: internal reflection due to variations in N?, bottom reflection, or a near-
bottom/bottom source. In all of these situations, NI energy propagates past the interface in the
overflow layer and thus should be observed below the interface at all moorings. It is only the

interaction with the accelerated flow that increases mixing (T11).

As more deep and abyssal ocean observations occur, the spatial and temporal extent of NIWs in

the interior of the ocean will become more apparent. It is also through these future data sets that gen-

eration, propagation, and dissipation of NIWs will be better understood. Although the data collected

during SPAM-Ex is extensive, it is limited in that there are no observations of the corresponding NIW

generation and, beyond the single downstream mooring, no observations of its ultimate dissipation.

It is the author’s hope that this research will inspire increased observations with the focus of NIWs
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in the deep ocean, research on NIW interaction with accelerated flows, and the inclusion of f in the

appropriate circumstances.

6.3

Future work

e This research focuses on the southern sill. Future research should be expanded to include the

entirety of data from SPAM-Ex, which includes moorings around two other sills in addition to

other observations.

The currents are known to interact with NIWs. However topographically accelerated flow is
observed at T9, T10, and T11. T11 does observe the highest speed; however, it is the only
mooring in the topographically accelerated flow not directly upstream of the hydraulic jump.
Is it the magnitude of the velocity, the lack of increased mixing from the hydraulic jump, or

something else that induces the increased mixing observed at T11 but not at T9 and T10?

Some mixing occurs above the interface where the NIW is observed. Does this mixing corre-
spond to the presence of the NIWs or is it always present? If it corresponds to the presence
of the NIW, how does the magnitude of that mixing compare to the mixing due to the hydraulic
jumps? As NIWs are known to be coherent over tens of kilometers, this mixing signal could

occur over a large area multiple times a year.

What happens to the NI energy observed at the moorings other than T11?
Is all of the NI energy observed above the interface at T11 dissipated?
What is the origin of the upward propagating wave?

Inclusion of f to other NIW observations.
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Appendix 1

7.1 Error Analysis
7.1.1 fuft
Neglecting f

The error for fo is calculated using error propagation following Taylor (1982) and will be calculated

in components for ease. We start with the numerator:

Then calculate each component of the denominator:

OA = 9|(r? — 1)m?U%cos?(6 — a)] =

o\ 2 2 2 2
oo (2] - () - ()

r m cos(6— a)

72)
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S(IN?rf) = Nzrf\/(zi’\‘)z+ (Zfl"')z (7.3)

where d(cos(6 — a)) = sin(6 — a) *+/(06)? + (0a)?. The error for the denominator is:

\/(BA + (BIN2r7)2

o(denominator) = . (7.4)
\/(||2 —1)m2U2cos2(0 — a) 4+ N2r{
As a result, we get the error for the effective frequency:
B O0(Nw) 2 o(denominator) 2
Ofett = feﬁ\/( Nw ) * ( denominator 73)
Including f
The error is calculated piece by piece:
2 2 o\ 2
S2m2G2(1 —r?)] = 2m2G2(1 — r|2)\/( 2om ) + ( 206G ) + (5") (7.6)
m G I
S[2(2N2 4 F2)] = r(2N? +F2)\/( 20n )2 + ( ANON )2 (77)
! ! r 2N2 +12 '
2 2 2
8[2v2rmGf] = Zﬁanf\/ ( ? ) + ( % ) + ( %G ) (7.8)
I ]
and we get the error for A:
OA = \/ (3[2m2C2(1 — rA))2 + (3[rA(2N2 +F2)])2 + (8[2v/2rmG))2. (7.9)

Next we calculate the error for B:

A 2 2 2
582\61?@116\] ((?f) +(5w) +(5m) —I—((;G) (7.10)
f w m G
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and for C:

2

2 2 )2

w 2N2 +f2

Using these three components we calculate the error for the quadratic formula where the error for

the numerator is calculated using:

2

m\/(2|35|3)2+ (4AC (‘ZA)Z+(5CC)2)

ONumerator = | (0B)2 + 257 AC) (7.12)
 —B+VBZ—-4AC SNumerator | OA\?
9Quadratic = 2A \/( Numerator ) - (A) (7.13)
Finally, we get the equation for the error on the effective frequency:
(2I36I3J2+(4AC (%)2+(%)2)2
sp. _ —BEVBZ4AC (25A ) 2+ (6B)* + TB=IAC) 7.14)
o 27 2A (—B+vB2_4AC) '
7.1.2 Intrinsic frequency
o\’ [ of )’
w = nfeHW") + ( e”) (7.15)
rl feff
7.1.3 ki

Neglecting f

1 m22()) [ {20m\? [26fs\?  [20r\%  [20N)\?
o= D [ ) ) () ) -
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Including f

We find the errors for the components of the quadratic equation:

SA = 2N6N, (7.17)
2 2
0B = ﬁfeﬁfnv ( Ofe ) + (5'“) (7.18)
foff m
and
2 2 o\ 2
5C = m22(1— rlz)wzém) + ( 20%et ) + (25") (7.19)
m feff r

Then we use the the quadratic equation error, Eqn. 7.13 to find the horizontal wavenumber error.

7.1.4 Group speed

Neglecting f

We can calculate the error on the group speeds using:

5 ( 2+ Nzkz‘)

kN2 26m )\ 2 o(numerator) 2 m?
OCq = A B 7.20
“ mzm ( m ) +( numerator ) + fezﬁ-f—N;l;E' ( )
where:
o [ 8k\7 [26N)?
O(numerator) = kN (k) + (N ) (7.21)
and
N2k [ 2oN2 L [ 20k \ P (28m)2
N2k2 (2fefr Ofefr)? + mZH\/(N) + (THH) + (20m) )
5 (\[+—2 | = = | (7.22)
; B+ S
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The error for cgy is the same as Eqn. 7.20 with ol and | instead of 0k and k. The error on the vertical

group speed is calculated using:

> N2k,
s _ N2kZ, (25N ) s N (25|<H )2+ (35m ) 2 [0 ( féfr + =2 ) 023
gz = - .
/ N2k, N k N2k
m? fezﬁ + mZH : " fezf‘f + mZH
using Eqn. 7.22.
Including f
The error for the group speeds are calculated using the following equations:
2
kN2 —@?) | [ok)? 2NSN)Z + (200 w)? ow\®  (26m)\’
. el N L3 VENONE + (2006)7 ) - (07 (20m ) * (7.24)
wm? k NZ — @? @ m
Seq, — [(N? 42 - d);) —I—feﬁfm\/( onumerator ) s N ( 5~&) ) 2 N ( 20m ) 2 725
@wm numerator @ m
where:
onumerator =
2 poarap 2 2 (7.20)
. 2NON)2 + (2 2 x fe
N2 —an| (2 VIZNONY” + [20:0d) e [ (2} (2
t N2+ 72— for m
and
numerator = [(N? + 2 — &%) + ferfm (7.27)
and finally:
Seg — Ffeprl + I?(%H — &JZ)\/( dnumerator ) 2 N ( 5~d) ) 2 N ( 20m ) 2 7.28)
@m numerator @ m
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where:
2 2 . ) 2
- om(f%, — @?
onumerator = ferrfl Ofe + o + M (7.29)
fesf L m(fezff — @?)
and
numerator = ffogl + m(fZ — @?). (7.30)
7.1.5 Water properties errors

The error for N and r; are one standard deviation of all the observed values. The errors for w and m

are found using t-score. The errors for U and a were calculated using error propagation as follows:

v/ (2udu)? + (2vov)?

uv ou '\’ ov\?

where [U| = Vu?+vZ and a = arctan (Y).

oU = (7.31)

and

7.1.6 Ray Tracing

dx
dt

5\, 2
0 (j)t() = | (0cg)? + <Ucos(a)\/(5oztan(0())2+ (%J) > (7.33)

dy
dt

2
o (C!I%) = _|(0cqy)? + \U\cos(a)\/(éatan(a))2+ (%J) ) (7.34)
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dz

dt
dz
0 (dt) = 0Cqy, (7.35)
dl
dt

A\ o St \ 2 [ dwi\?
5(4) - oy (%) '+ (22) 730
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Appendix 2

8.1 Derivations

8.1.1 Ay

w

Following Guiles (2004) we calculate the general percent difference for the dispersion relation as a
function of f and N. We start by converting the dispersion relation:
N? K7, + (L fm)?

= 22 : (8.)

into independent variables using the following conversions:

kp - K
= e (82)

[kn K]

and

QK
a=——-—, (8.3)

QK]
where 6 (—Z < 0 < J) is the angle the wavenumber vector makes with the local horizontal and
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Figure 8.1: Schematic of the our independent variable conversion. 0 is the angle between the wavevector and
the local horizon, ¢ is the latitude and a is the angle between the wave vector and the rotation vector.
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a (0 < a < ) is the angle the wavenumber vector makes with the rotation vector (Fig. 8.1). The

resulting dispersion relations (neglecting f and including f respectively):

w? = N?cos?6 + f’sin’6 (8.4)

> = N?cos?6 + (2Q)*cos’a (8.5)

are plugged into the equation for the percent difference:

~2 2
W — w
A= —a (8.0)
to get:
. .
_ f +2fftan€l 67)
N2 4 f2tan?@

We diverge from Guiles (2004) as apply the inertial limit as 6 approaches 7 to Eqn. 8.7 to get the
percent difference for near-inertial waves (Fig. 4.14). Guiles (2004) assesses for the entire spectrum

of internal waves while we are only concerned with NIW near the inertial limit.

8.1.2 Egy
We expand the techniques used in Guiles (2004) to calculate the general equation for the percent

difference of ¢y, as we approach the inertial limit, as a function of only f and N. The equations for

Cqy (Egn. 4.17) and ¢gy (Eqn. 4.14) are substituted into the equation for the percent difference:

A= gy — gy (8.8)
Cay

and are converted to independent variables:

(N? +f2 — N2cos?6 — f2cos?6 — 2ffcosBsin6 — f2sin? 6 + v/2fftan 6)(f2 + N2cot?6)!/?

A= = Z
N2(N2cos20 +f2cos20 + 2ffcosOsinO + f2sin20)1/2

(89)
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Then, we apply the limit as 6 approaches 3 to find the percent difference for NIW:

f2 f2 V2V 2fftan@

AN — 1 —
NN TN

(8.10)

We use tanf = 705 as that is the value calculated from our ratio of m and ky. Increasing/decreasing
this translates the percentages to the right/left about 0.001N. Unless the ratio of m to ky varies
dramatically from that used here, the authors expect a similar percent difference for other NIW
observations.

We limit our calculations of the potential difference as a function of the latitude and N to the

dispersion relation and the group speeds.
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