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Abstract

Mesoscale eddies are common in the lee of the Hawaiian Islands. Persistent cyclones

(anticyclones) have been observed downstream of the northern (southern) corner of the

leeward side of the island of Hawai‘i. In addition, smaller submesoscale eddies have been

observed in the lee of other islands, such as Oahu and Lanai. The region has been subject

to numerous model studies of the lee eddies, but the last comprehensive observational study

was completed over twenty years ago. Now, with the increase in available surface drifting

buoys, the coverage of some lee areas by High Frequency Radar (HFR), as well as twenty

years of satellite data an observational study is well timed. Surface drifting buoys were

used to determine the frequency, timing, and characteristics of anticyclones in the lee of

both Hawai‘i and Oahu. The anticyclones in the lee of Hawai‘i are formed most commonly

in summer months, when both the wind and ocean forcing is the steadiest. The outline

of the wake created by the anticyclonic drifting buoys extends westward from the island

over 1500 km and is directed to the southwest. An analysis of wind and ocean forcing

using Empirical Orthogonal Function (EOF) methodology revealed an overlap in spatial

signature with the wind-forced annual sea level anomaly patterns, as well as partial overlap

with a non wind-induced 100-day signature. Due to the overlap, exact forcing cannot be

determined without better quality observations of ocean currents to the south of the island.

The eddies in the lee of Oahu were smaller, had a much shortened leeward extent, and were

observed more often due to the presence of HFR currents. The anticyclones and most of

the cyclones in the lee of Oahu all occurred during steady Northeast Trade winds and can

be explained by wind stress curl induced forcing. Three cyclones formed during trade wind

v



reversals where wind stress curl forcing was zero, leaving a vorticity residual that can only

be explained by ocean stress induced vorticity.
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Chapter 1

Introduction

1.1 Motivation

The Hawaiian Island chain sits in the Pacific subtropical gyre. Centered around 20 �N,

the islands lie directly in the path of the North Equatorial Current (NEC) and the North

East (NE) trade winds. As the westward NEC reaches the islands, it bifurcates, with part

flowing along the windward side of the islands as the Northern Hawaiian Ridge Current

(NHRC), and part travelling past the Southern-most point of the island of Hawai‘i, and

separating from the island (Figure 1.1) (Lumpkin and Flament 2013; Flament et al. 1998).

In the lee of the islands, centered at 19.5 �N is the eastward Hawaii Lee Counter-current

(HLCC) (Lumpkin and Flament 2013) and along with the westward NEC it creates a gyre-

like circulation in the direct lee of the islands.

Persistent vortices are observed in the lee of the islands (Wyrtki 1982). In general,

cyclonic vortices are observed north of, and anticyclonic vortices observed south of 19.5 �N

(Lumpkin 1998; Patzert 1969). The cyclonic vortices are more biologically productive

due to the upwelling of colder, more nutrient dense waters in their core (Vaillancourt

et al. 2003) and have been well studied in the Hawaiian region (Calil et al. 2008). The

cyclonic vortices in the lee of the Hawaiian Islands have been found to be wind-driven

eddies (Jia et al. 2011). Anticyclones, which are characterized by downwelling in the core,

1



depress the thermocline and cut-o↵ nutrient-rich waters from the surface, making them

less biologically productive (Fong et al. 2008) and have been examined in less detail. The

dominant formation mechanism for the anticyclones has also not been successfully resolved

(Lumpkin 1998; Flament et al. 2001).

In the Hawaiian Islands there are two main mechanisms that could create anticyclonic

vortices: 1) Ekman pumping from wind stress curl, and 2) shear instability in the NEC as

it separates from the island of Hawai‘i.

Wind Stress Curl : The large vertical extent of the Hawaiian Islands, created by volcanic

topography, causes the islands to impede the flow of the NE trade winds. This blockage

of the NE trades creates wind stress curl dipoles in the lee, with the largest dipoles in

the lee of Hawai‘i, Maui, and Oahu (Chavanne et al. 2002). In regions of negative wind

stress curl there are convergent Ekman transports, which creates downwelling, spinning up

anticyclonic vortices.

Shear instability in the NEC : The Hawaiian Islands lie in the path of the NEC. As the

NEC hits Hawai‘i, it passes along the southeast side of the Island of Hawai‘i where there is

a relatively narrow and steep shelf (Figure 1.2). As the NEC passes South Point, Hawai‘i, it

separates from the island. There is a shallow underwater promontory that extends o↵ the tip

of South Point, which could impact the location of the separation point. This separation,

or blocking of the current by the island, creates an unstable shear layer (Flament et al.

2001). This addition of clockwise (negative) vorticity caused by the instability, can spin up

anticyclonic vortices.

This leads to the question, which mechanism is the dominant mechanism that spins-up

anticyclonic vortices in the lee of Hawai‘i? In this study, I aim to help answer this question

by examining two related problems:
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• Anticyclones are observed frequently in the lee of Hawai‘i, but there has not been

a comprehensive observational study completed in recent years. What are the size,

duration, characteristics and seasonality of the anticyclones? I intend to use historical

observational data from the last 20 years to build upon previous knowledge of

anticyclones in Hawai‘i. And in addition to just examining the anticyclones that

are persistent near Hawai‘i, I also examine similar lee eddies o↵ Oahu.

• What are the large scale atmospheric and oceanic conditions present as anticyclones

evolve o↵ the southern tip of Hawai‘i? How do these conditions explain the presence

of anticyclones in Hawai‘i?

1.2 Outline

Chapter 2 uses historical drifter data as well as satellite winds and sea surface anomalies

to examine the timing, frequency, and characteristics of the anticyclones formed in the

lee of the island of Hawai‘i. A database of historical anticyclones was built by analyzing

surface drifter data from the Global Drifter Program - Surface Velocity Program (SVP)

database. From this data, 25 anticyclones were identified from surface drifter trajectories.

The characteristics of the anticyclones, including period, radius, date of formation, etc. were

estimated from the drifter trajectories. The anticyclones were shown to be most common

in late summer and early fall. After formation o↵ the southern tip of the island of Hawai‘i,

the anticyclones followed a track very similar to the theoretical anticyclonic sector shown

in Figure 1.1 based o↵ of Lumpkin (1998). The anticyclones persisted for up to several

months, and out to 170 �W. Chapter 2 also examines the atmospheric and oceanic forcing

that creates Hawai‘i’s ocean wake. Using Empirical Orthogonal Function (EOF) analysis,

satellite-derived winds from Quikscat and satellite-derived sea surface height anomalies from

AVISO are analyzed to determine large scale patterns related to island wakes. The primary

EOF modes of the wind data show that the NE trade winds are fairly stable, even after

removing the mean flow. The first three modes demonstrate the annual fluctuations in the

3



trade winds, such as the shift between NE trades and Kona (south-westerly) winds, shifts in

the main zonal jet of the NE trades due to seasonal shifts in the Pacific subtropical gyre, and

the seasonal NE trade wind bursts. These modes comprise most of ( 80%) of the combined

variance in the data. Higher scale fluctuations account for less than 20% of the variance

and are hard to distinguish from noise. The primary modes of the sea surface anomaly data

show a seasonal shift in the Pacific subtropical gyre due to shifts in winds. However, unlike

the wind data, higher frequency patterns are visible in lower modes with sea surface height

anomalies constrained to the lee of the islands occurring every 100 days. These are most

likely related to the eddy shedding by the Hawaiian islands but do not correlate with wind

forcing.

Chapter 3 uses drifter statistics and High Frequency Radar (HFR) to examine flow

properties in the lee of the island of Oahu, in particular it focuses on the development

of lee eddies. Mean currents derived from the drifters show counter-rotating vortices in

the lee of the island. The presence of these vortices was confirmed using HFR, where 5

anticyclones and 8 cyclones were observed by HFR in the lee of Oahu. These vortices are

smaller than the lee eddies that form o↵ of Hawai‘i and did not travel great distances away

from the island, but occurred at a higher frequency. The majority of the drifters appear

to be wind-generated, and this was confirmed by examining the vorticity budget of the

drifters. However, there were three cyclones that formed during a trade-wind reversal and

this eliminated the wind-stress curl forcing, and the vorticity budget was not able to be

closed without allowing for additional forcing from ocean stress.

Chapter 4 provides an estimate of surface drifter leeway. Two drifter varieties, a Davis

type drifter and a Microstar type drifter were used in Chapter 3. The response of the

drifters to di↵erent forces needs to be understood in order to accurately use the data. The

drifters were launched in a gridded cluster with a zonal spacing of 2-km. At each grid point,

one drifter of each variety was launched, approximately 200m apart. The separation rate of

the clusters and the separation rate of the drifter pairs were examined. The drifter pairs at
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each grid point did not respond similarly to the forcing, and for the pairs, they separated up

to 8km in 24 hours. The leeway of each drifter type was estimated. Both drifters exhibited

large crosswind leeway that can be explained by a push from Stokes drift from waves and

surface Ekman currents. However, the Davis drifters crosswind leeway was larger than the

Microstar’s leeway, indicating that wind forcing and vertical shear in the current structure

are greater than the Microstars.

Chapter 5 draws together the main conclusions found in this dissertation and discusses

questions that remain, whether they arose during this research, or were not able to be

answered given this data-set.
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Figure 1.1: The main currents of the Hawaiian islands. After (Lumpkin 1998)
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Figure 1.2: The bathymetry of the Hawaiian Islands. The shallow underwater promontory
o↵ the Southern tip of the island of Hawai‘i is clearly visible. Image from Main Hawaiian
Islands Multibeam Bathymetry and Backscatter Synthesis.
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Chapter 2

Observations of Anticyclones in the Lee of Hawai‘i

Island

Abstract

The lee of the Hawaiian Islands is known for eddy generation. Counter-rotating vortices

have been observed with a cyclonic zone to the north and an anticyclonic zone to the south

of the main island of Hawai‘i. The cyclones have been proven to be wind-driven. Less is

known about the anticyclones in the region. This study updates the observational knowledge

of anticyclones in the lee of Hawai‘i using 25 years of surface drifting buoys. 20 years of

satellite data was used to look for spatial and temporal patterns in wind stress and sea level

anomaly (SLA) that would help explain the vortices. The anticyclones were most common

in summer when the wind forcing was the strongest and a 1500km long anticyclonic sector

is visible downstream of Hawai‘i. EOF results for both the wind and SLA show the most

overlap with the anticyclonic sector in the annual cycle, implying wind-forcing can explain

the vortex formation. There is also some overlap with the 100 day signal seen in the SLA

and there is no similar frequency in the wind data, but without quality data for the NEC

strength and variability south of Hawai‘i, ocean forcing cannot be confirmed.
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2.1 Introduction

The Hawaiian Island chain sits in the Pacific subtropical gyre. Centered around 20 �N,

the islands lie directly in the path of the North Equatorial Current (NEC) and the North

East (NE) trade winds. The islands block the flow of both the NE trade winds and NEC,

creating unique ocean wake patterns in the lee of the islands. The NE trade winds are part

of the dominant global scale wind pattern formed by meridional heat di↵erentials. In theory

the NE trades extend from the equator to 30 �N, however, in reality the latitude band of

the NE trades varies with season due to di↵erential heating caused by the earth’s tilt. The

migration of the Intertropical Convergence Zone (ITCZ; where the NE trade winds meet

the SE trade winds) towards the summer hemisphere dictates the meridional extent of the

NE trades. As the NE trades come in contact with the steep volcanic topography of the

Hawaiian islands, the winds are blocked, creating regions of opposing wind stress curl in

the near vicinity of the lee and a visible atmospheric wake which can be seen up to 3000

km downstream of the islands (Xie et al. 2001; Chavanne et al. 2002).

The NEC is the southern boundary of the Pacific subtropical gyre and flows from east

to west from around 8 �N to 20 �N (Talley et al. 2011). When the westward NEC reaches

the islands it bifurcates, flowing along the windward side of the islands as the Northern

Hawaiian Ridge Curent (NHRC) (Qiu et al. 1997), and travelling past the southern-most

point of the island of Hawai‘i as the NEC and separating from the island (Lumpkin and

Flament 2013; Flament et al. 1998). In the lee of the islands, centered at 19.5 �N is the

eastward Hawaii Lee Countercurrent (HLCC) and along with the westward NEC it creates

a gyre-like circulation in the direct lee of the islands (Flament et al. 1998).

Persistent vortices are observed in the lee of the islands (Patzert 1969; Wyrtki 1982).

These vortices are a significant part of Hawai‘i’s oceanic wake, originating from either the

wind stress curl dipoles caused by the NE trade winds or the shear instability of the NEC

as it separates from island of Hawai‘i. Seasonal shifts or higher frequency patterns in the
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predominant wind and currents could be responsible for the mechanism and timing of the

vortices’ formation in the lee of Hawai‘i, which then impacts the strength and location of

Hawaii‘s wake currents. Mitchum (1995) identified a 90-day signal in tidal gauges near

Johnston Atoll that was back-traced to its origin in the lee of Hawai‘i. Mitchum suggested

this signal was related to eddy shedding by the island of Hawai‘i. Lumpkin (1998) identified

two distinct eddy zones in the lee of Hawai‘i, separated by the HLCC: an elongated cyclonic

zone north of and an elongated anticyclonic zone south of the HLCC. Yoshida et al. (2010)

used satellite sea surface height data to investigate wind-driven eddies in the lee of Hawai‘i,

which they connected to a 60-day signal in sea surface height (SSH) closer to the island of

Hawai‘i. Further to the west, they found a 100-day signal in ssh, but did not correlate the

westernmost signal with patterns in wind stress.

From a mean flow perspective, the Hawaii Lee Counter Current (HLCC) appears to be

associated with the Reynold’s shear stresses induced by these vortices. The conversion from

eddy to mean energy suggests that the anticyclonic vortices induce a meridional transport

of zonal momentum, the convergence of which accelerates the HLCC and maintains the

HLCC/NEC zonal shear (Lumpkin and Flament 2013).

The biologically productive cyclonic eddies have been the subject of many

interdisciplinary studies (Aristegui et al. 1997; Calil et al. 2008). On the contrary, negative

Ekman divergence due to anticyclonic wind-stress curl does not have significant biological

signature other than horizontal advection, and as a result, anticyclones have not been

studied as much as cyclones. While there are substantial modeling studies of eddies in

Hawai‘i (Calil et al. 2008; Jia et al. 2011; Souza et al. 2014), most observational studies

of anticyclones in Hawai‘i are outdated. Patzert (1969) published the first comprehensive

report of eddies in Hawaiian waters in 1969, using shipboard observations. Wyrtki (1982)

followed a decade later describing eddy patterns and signals seen throughout the islands.

The last comprehensive observational account of anticyclones in Hawai‘i was by Lumpkin

(1998) who described the mean path of anticyclones formed in the lee of Hawai‘i using
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drifter statistics. However, since 1998 the number of drifters that have passed through

the Hawaiian islands has doubled. This robust dataset, along with the now 20 years of

satellite altimetry and wind data, is a promising source to update our current knowledge of

anticyclones in Hawai‘i.

Here we utilized the 16 additional years of drifter data to clarify characteristics of the

anticyclones formed in Hawai‘i. What are the size, frequency, seasonal timing, propagation

and duration of the anticyclones in Hawai‘i? Then using EOF analysis of satellite winds

and sea level anomalies we investigate patterns in the large scale circulation in both the

atmosphere and ocean to determine the stability of atmospheric forcing and resulting sea

level anomalies around the Hawaiian Islands. Additionally we investigated annual and

higher frequency patterns in wind and sea level anomaly data and their relationship to the

mesoscale vortices around Hawai‘i.

2.2 Methods

2.2.1 Drifter Data

Drifter trajectories from the Global Drifter Program-Surface Velocity Program (SVP)

were used to identify anticyclones in the lee of Hawai‘i. These drifting buoys consisted

of both the original and mini-SVP drifters. Both types of SVP drifters were designed to

have the same drag ratio, allowing accurate comparison between drifters (Lumpkin and

Pazos 2007). SVP drifters are drogued to 15m in depth and on average transmit for 400

days before expiring. The data is collected via ARGOS, then undergoes a strict quality

control process, and is interpolated to 6-hour intervals (Lumpkin and Pazos 2007). All

SVP drifters passing through the Hawaiian Islands were extracted for analysis. The limits

were set by a box, with boundaries defined by 14 �N-25 �N in the meridional direction, and

180 �W-140 �W in the zonal direction. Over the length of the dataset there were 832 SVP

drifters that entered this region. The number of surface drifting buoys originating or passing
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through the Hawaiian Islands has increased dramatically since 1998. Lumpkin (1998) had

only 356 passing through the Hawaiian Islands, compared to 832 today. Additionally the

number of observations available in each 0.25 � box surrounding the islands has grown from

up to 400 to up to 2000 (Figure 2.1). Figure 2.2 shows the trajectories of all the drifters,

broken down into 20 day segments and color-coded by direction. The main currents of

the islands of Hawai‘i are visible in the drifter data. The dominant red color south of the

islands demonstrates the westward flow of the NEC. The mixture of colors in the direct

lee corresponds to the highly varied flow in Hawai‘i’s wake. Additionally there is a band

of green, eastward flow centered around 19.5N, in line with the center of the HLCC. The

highest number of observations is in the lee of the island of Hawai‘i, which corresponds to

the largest variance, u02 + v02 (m
2

s2 ) in the SVP-based drifter currents.

Mean currents were calculated from the drifting buoys by three di↵erent datasets: 1) All

832 drifters, 2) All drifters except the anticyclonic loopers (779 drifters), and 3) only the

anticyclonic loopers (53 drifters). To calculate the mean currents, the area was binned in

0.25 � boxes and the mean current was calculated in each box from all available observations.

Mean currents were kept if they were significantly di↵erent than zero.

A visual inspection of each drifter’s path was completed to identify anticyclonic looping

trajectories (loopers).1 These loopers were then conditionally sampled to remove any

trajectory which entered the region with pre-existing anticyclonic vorticity. This left 53

drifting buoys with anticyclonic looping trajectories in the lee of the islands. After quality

control procedures, and based on the date time group (DTG) and positions of the drifters,

there were 25 distinct anticyclonic vortices identified from the 37 loopers.

The period and radius of the anticyclonic loopers were calculated using the method

presented in Lumpkin (2016). However, unlike Lumpkin, this method was not used to

identify loopers, but to verify looper status and to quantify known looper statistics. The

1
In this study, only anticyclones were of interest, so cyclonically looping drifters were grouped in with

non-loopers. From this point forward, the term loopers refers only to anticyclonic loopers.
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spin of each of the 37 drifting buoys identified as loopers was calculated using:

⌦ =
< u0dv0 � v0du0 >

(2�tEKE)
(2.1)

EKE =
1

2
(< u0 >2 + < v0 >2) (2.2)

where u0, v0 are the eddy velocities, du0, dv0 are the changes in those velocities over the time

step �t and EKE is the eddy kinetic energy. From the spin, both the period and radius of

the drifter’s rotation can be calculated:

P =
2⇡

|⌦| (2.3)

R =

p
2EKE

|⌦| (2.4)

Time periods of prolonged negative (positive) spin indicated that the drifter may be caught

in an anticyclonic (cyclonic) vortex. Lumpkin (2016) defined the length of these time

periods as persistence. If the persistence was at least twice the theoretical period (the

period calculated using the median value of ⌦ during the corresponding time period), then

the drifter was confirmed as being in an vortex. This meant that the drifter made at least

two complete rotations within the vortex. Drifters which only completed one full rotation

were not identified as individual anticyclones. However, these drifters were kept in the

anticyclonic looping database if the one rotation was within one standard deviation from

the mean period and radius of the 25 quantified anticyclones. The anticyclonic looping

database consisted of the 37 drifters that made up the 25 known anticyclones and 16 others

that only made one loop, but were within the guidelines previously described.

An example of the results from the anticyclone identification and the subsequent

calculation of looper statistics is shown in Figures 2.3 and 2.4. The anticyclone described is

number twenty in Table 2.3. Anticyclone # 20 was identified from buoy number 22936. The

zonal and meridional velocities, as well as sea surface temperature and trajectory are shown
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in Figure 2.3. The strong oscillatory motion induced by the anticyclone is evident in the

zonal and meridional velocities. Drifter 22936 entered the box in January, 2003 and exited

the region in June, 2004. Drifter 22936 approached the islands from the east, and passed

just south of the island of Hawai‘i, entering the lee region in June, 2003. Immediately after

entering the lee region, it became trapped in a long-lasting anticyclone. The anticyclone

formed in the immediate lee of the island of Hawai‘i with an initial orbital period of 3

days (taken from Figure 2.4), corresponding to a Rossby number of Ro = �1. The drifter

remained trapped in the anticyclone for over 200 days, until February, 2004, as seen in

Figure 2.4. Downstream, the mean period of the anticyclone, calculated using Lumpkin

(2016), increased to 5 days, which it maintained for the rest of its life-span. The mean

radius of the anticyclone when the period of was 3 days was 27 km, and the mean radius

of the anticyclone when the period of 5 days was 26 km (Figure 2.4). The mean path of

the anticyclone was consistent over its long life-span, with the anticyclone moving in the

direction 267 �T, or nearly due westward at latitude 18 �N. It travelled a distance of 1456

km downstream, well past 170 �W. This is the second farthest distance travelled by an

anticyclone that was observed in the SVP drifter database.

The method described above worked well for most drifters, however there was evidence

of vortex merging in some of the loopers’ trajectories, including anticyclone #20. This

change in period and radius was not always obvious when plotted using the Eq. 2.4 and Eq.

2.3, and could lead to errors. As seen in Figure 2.4, there is variation in the calculations

for radius and period as the vortex orbits. Taking the mean is intended to reduce this

noise. It is also di�cult to specify exactly when a drifter transitioned from one period to

the next. The oscillatory motion in the velocities meant that a simple fourier transform of

the zonal or meridional velocity would pull out dominant frequencies, but it did not yield

any information on when the transitions occurred. In order to see time-frequency data, a

one-dimensional wavelet analysis was used. Wavelet analysis is a means to pull out of a

timeseries data the time intervals where specific spectral components occur. Here we used
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a continuous wavelet transform (CWT) given by:

C(a, b, f(t), (t)) =

Z 1

�1
f(t)

1

a
 ⇤(

t� b

a
)dt (2.5)

where C(a, b) represents the energy of the signal at any scale a (the scale parameter) and

time b (the position parameter).  is the wavelet used in the transform, while  ⇤ is the

complex conjugate of the wavelet. A Morse wavelet was used here. A full discussion of

Morse wavelets and their applicability to these timescales can be found in Olhede and

Walden (2002); Lilly and Olhede (2012). The signal is multiplied by the wavelet and a

transform is completed separately for di↵erent segments of the time domain. The result is

a spectrogram where the various periods of the signal are plotted against the time-domain.

This process allowed the transitions between vortex merges to be easily pulled from the

velocity data of a looping drifter. Returning to the example of Anticyclone # 20, we can

visualize the progression of the anticyclone over time. Figure 2.5 is the magnitude scalogram

of the zonal velocity continuous wavelet transformation. The x-axis shows the time in days.

The 509 days the drifter was active are represented in the length of the x-axis. The y-axis

is a logarithmic scale of period, in days. The dashed line represents the boundary outside

of which edge e↵ects are large and the results are no longer valid. The drifter entered the

anticyclone around day 200 and the initial orbital period of 3 days is visible in the CWT.

The drifter remained in the anticyclone for 200 days, which is verified by the presence of

high magnitude regions on the scalogram. The period also increased from 3 to 6 to 7 to

9 days as shown in Figure 2.5. These periods di↵er slightly from the previous results, but

agree more with the observed behavior of the drifter. The change from the 6 to 7 day

period was not observed in the calculations from the EKE, nor was the presence of the

9 day period near the end of the anticyclone’s life. Also unlike the fourier transform and

the method used in Lumpkin (2016), the timing of the changes are distinct in the CWT

scalogram. For all loopers who exhibited vortex merging, a CWT analysis was conducted

to verify or correct periods and establish the timing of each merger.
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2.2.2 Satellite Data

The mean flow fields in the vicinity of the Hawaiian islands, in both the atmosphere

and ocean, are well known. Here we are interested in the fluctuations about those means.

One way to isolate variations in a flow is to use Empirical Orthogonal Function (EOF)

analysis. EOF analysis provides a mechanism to identify patterns in a data set that explain

the largest percentage of the data’s variance. These patterns can then be compared to

regional geophysics to determine if a link exists between the EOF modes and the theoretical

dynamics. Another useful property of an EOF is that it can be used to reduce noise in a

dataset. After the EOF has been calculated, the data can be re-constructed using only the

dominant modes of variability, eliminating excess noise from the data. In this study, EOF

analysis was conducted using eigenmethods with the following equation:

Ce� �e = 0 (2.6)

where C is the covariance matrix of the detrended data, e is the eigenvectors (EOF modes)

and � is the eigenvalues (EOF principle components). This method was used for standing

wave patterns, which was acceptable for the windstress EOF. However, sea level patterns

are usually propagating features and required the use of a complex EOF. A complex EOF

(CEOF) utilizes a Hilbert transformation to switch into the frequency domain before the

EOF is completed.2 Here Empirical Orthogonal Function (EOF) analysis was used to

determine the dominant patterns in the atmosphere and ocean in the vicinity of Hawai‘i.

The dominant EOF modes were extracted from large scale wind and sea surface height data

to explain seasonal, as well as higher frequency fluctuations. QuikScat wind vectors (1999-

2009) and AVISO sea level anomalies (1992-2012) were used. The gridded data from each

2
A more detailed explanation of EOF mechanics and use is provided in Appendix A
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source was extracted and trimmed to equal spatial dimensions (14 �-25 �N,180 �-140 �W).3

The mean was removed (Figure 2.6) from each data set before the EOF was computed using

either conventional eigenmethods or complex Hilbert transform eigenmethods.

Ten years of satellite wind data from QuikScat with 8-day rolling wind vector composites

were used in the calculation of the EOF modes and principle components. Wind speed

data for each direction was converted into the corresponding wind stress based on methods

demonstrated in Large and Pond (1981). The zonal and meridional components of wind

stress were combined into a complex variable, w, before a vector EOF was used to calculate

the eigenvalues and eigenvectors. The resulting eigenvectors and eigenvalues of a vector

EOF are complex and the EOF vectors are aligned within the EOF frame of reference, not

the geophysical frame of reference. In order to interpret the results of the vector EOF, the

resulting spatial mode vectors needed to be rotated back to the original geophysical frame

of reference. Hodographs of the phase and magnitude of the dominant modes’ principle

components are shown in Figure 2.7 (right column). The hodographs were used to identify

modes that needed to be rotated in order to analyse the results. The hodographs that

showed the vector EOF results were tightly aligned along the EOF mode frame of reference,

regardless of season or year, indicated modes needing to be rotated. To rotate back to the

original geophysical frame of reference, the mode’s complex principle components were

converted to Cartesian coordinates and the angle of the variance ellipse for each mode was

used to rotate the vectors back to zero. These rotated vectors were then used to interpret

the results. The rotated vectors are shown in Figure 2.7 (left column).

Twenty years of weekly composite satellite derived sea surface height from AVISO were

used in the EOF analysis. The AVISO sea surface dataset consisted of the sea level anomalies

plus the long term mean dynamic topography (Ducet et al. 2000), shown in Figure 2.6. Mean

3
Because EOF results can depend on the dimensions of the grid, three separate boxes were tested 1) a

small box just in the lee of the islands, 2) the medium box described here and 3) a large box incorporating

most of the Pacific subtropical gyre. The small and large boxes were eliminated because they did not show

lee dynamics. The small box was not big enough to catch seasonal changes or the origin of disturbances,

and the large box only caught gyre-scale variations, not island induced variability.
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Dynamic Topography (MDT) is required to di↵erentiate the sea level anomalies from the

long term dynamic height in the ocean. MDT is calculated first as a large-scale guess using

4.5 years of GRACE geoid data and spatial filtering, and refined to smaller scales using

in-situ oceanographic measurements, as described in Rio et al. (2013). This MDT was on

the order of 1 meter and was removed when the data was detrended before the EOF was

calculated, leaving only sea level anomaly (on the order of 0.1 meter). A mean of twenty

years of sea level anomaly averages to approximately zero and shows no significant features

(Figure 2.6), as expected.

2.3 Drifter Results

Table 2.1 summarizes the characteristics of the 25 anticyclones, including the month and

year the drifter first started exhibiting anticyclonic vorticity, the period and radius of the

rotation, and the direction and distance the anticyclone travelled. Although the statistics

listed here represent the behavior of the drifter in the anticyclone and not necessarily

the exact characteristics of the anticyclone, they provide an estimate of the variety of

anticyclones seen in Hawaii and are a useful tool to build statistics on these features.

2.3.1 Characteristics of Hawaiian Lee Anticyclones

The 25 anticyclones are spaced out throughout the years that drifter data was available.

The first anticyclone appeared in August of 1989 and the most recent (at the time this

analysis was completed) was May of 2014. The years with anticyclones were 1989, 1990,

1991, 1994 (x4), 1995 (x4), 2000 (x3), 2001 (x2), 2002 (x3), 2003, 2006, 2009, 2011, 2013,

2014. In 1994 and 1995 an intensive oceanographic survey was conducted and many drifting

buoys were released in the lee of Hawai‘i, some directly into anticyclones. This may explain

the higher observed numbers in those years. Figure 2.8 is a map of all 37 looping drifter

trajectories which make up the 25 anticyclones. To reduce clutter, once the drifter exited

the anticyclone, the remaining portion of the drifter tracks were removed. Once in the lee,
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the drifters quickly acquired anticyclonic spin and the trajectories are closely packed in the

direct lee of the island of Hawai‘i.

For a drifter coming from the east of the Hawaiian islands, there are 5 main pathways

into the lee of the islands (shown in Figure 2.9). From south to north, the pathways are 1)

entering south of the southernmost tip of the island of Hawai‘i (South Point), 2)‘Alenuihāhā

channel, which separates the islands of Maui and Hawai‘i, 3) Kaiwi channel separating Oahu

from Moloka‘i, 4) Ka‘ie‘ie channel separating Kaua‘i and Oahu, and 5) north of the island

of Kaua‘i. The drifters that became trapped in anticyclones followed similar pathways into

the lee of the islands. Most of the drifters which became anticyclonic loopers (23) originated

east of the Hawaiian island chain in the latitudinal band 18 �N-20 �N and entered the lee of

the islands south of the island of Hawai‘i. 10 anticyclonic drifters originated in the lee of the

islands, many of which were deployed during the 1994-1995 survey. Four looping drifters

entered the lee of the islands through the ‘Alenuihāhā channel. No drifters that became

anticyclones entered the lee of the islands through the more northern Kaiwi channel or the

Ka‘ie‘ie channel. For comparison, Figure 2.10 shows the path of loopers versus non-loopers

through the two pathways that led to anticyclone creation. The top two maps of Figure

2.10 are maps of drifter pathways through South Point, with a) showing the 23 drifters that

passed South Point and became anticyclonic loopers and b) showing all the drifters which

entered the lee of the islands by passing directly south of the island of Hawai‘i that did

not become anticyclonic loopers. There were 85 drifters that passed through this region

without becoming trapped, as opposed to 23 (27%) that entered anticyclonic vortices. These

85 drifters mostly followed the dominant current patterns after entering the lee, flowing with

the NEC towards the west and some heading along the leeward side of the islands as the

Hawaiian Lee Current (HLC). There were 9 drifters that passed through the narrow, but

deep ‘Alenuihāhā channel without becoming trapped (Fig. 2.10, d), as opposed to 4 (44%)

that did (Fig. 2.10, c).
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Once in an anticyclone, drifters provide a way to measure the characteristics of the

anticyclone and their Lagrangian properties. Although the drifters do not show the exact

size or rotation rate of the eddy, they do provide the best observational estimate of di↵erent

anticyclones. Statistics for the 25 anticyclones are shown in Figure 2.11. The top row in

Figure 2.11 shows the month that the anticyclone was first observed in the drifter data

(a) and the estimated month the anticyclone was formed (b). The blue errorbars show the

mean and standard error bars for 10,000 samples of 25 random data points ranging from 1-12

(corresponding to month). Due to the nature of drifter data, it was necessary to examine

both month first observed and estimated formation month for each anticyclone. Some

drifters followed the anticyclone from birth, while others entered a pre-existing anticyclone.

Month observed is the month the drifter data first started showing anticyclonic looping.

Because some drifters joined anticyclones later in the eddy’s life cycle, this does not correlate

to the month the eddy formed. Based on previous work on anticyclones in Hawai‘i, lee

anticyclones form between 156 � 157 �W, at a latitude just south of the southern tip of

Hawai‘i Island (Lumpkin 1998; Flament et al. 2001). The speed and track of each anticyclone

was calculated using the mean path of the eddy. The mean path of the eddy connected the

center of rotation for each loop. The distance between each center and the time required to

advance from one to the next was used to calculate speed of advance of the eddy, for as long

as the vortex period and radius remained similar. Mean eddy propagation speeds ranged

from 3� 12 cm/s, which agree with previous estimates (Wyrtki 1982; Lumpkin 1998; Calil

et al. 2008). To estimate when individual anticyclones were formed, based on the speed of

advance and track of the mean path of an anticyclone, the vortices could be back-drifted

to the known formation region. The month when the vortices reached their closet point of

approach to the formation region was used as a best-guess estimate of formation date. The

results show a marked di↵erence between the seasonality of month observed versus estimated

formation month. The month that the anticyclones were first observed in drifter data was

not significantly di↵erent than the random data for winter, spring, and summer months.

However, the occurrence of anticyclones in fall months (October through December) was
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significantly higher than the random data. However, when the observations were corrected

to estimated formation month, there was a shift in peak anticyclone appearance. Winter

and spring months remained not significantly di↵erent than random distributions, but the

formation of anticyclones in summer months (July-September) was high, and the formation

of anticyclones in fall was below the expected results for a random distribution. Summer

months in Hawai‘i correspond to stronger and more consistent trade winds, as well as the

peak strength of the NEC, both of which are mechanisms capable of spinning up anticyclonic

vortices in the lee of Hawai‘i (Lumpkin 1998; Wyrtki 1975).

The distribution of observed periods for each of the 25 anticyclones is shown in Figure

2.11 (c). The results are summarized in Table 2.1. The majority of the anticyclone’s periods

were between 6-13 days (the 25� 75% range), however the distribution between 6-13 days

is not even. The highest grouping of periods occurs at 3, 6 and 12 days (Fig. 2.11). This

agrees with the case studies on vortex merging by Flament et al. (2001); Lumpkin et al.

(2000) where anticyclones were found to form near the angular frequency instability limit

of ! = �f/2 (⇠3 days) and merge downstream into 6 (! = �f/4), 12 (! = �f/8), and 24

(! = �f/16) day period vortices, although no observations of 24 hour periods were made

using the drifter data. The distribution of anticyclone periods was fairly narrow. The mean

(10.7 days) and median (11 days) were close, indicating little skew in the distribution. The

shortest period observed by drifting buoys was 3 days, which is where the Rossby number

becomes nearly exactly �1 for the latitude of the southern tip of the island of Hawai‘i.

Flament et al. (2001) found that the vortices formed in the anticyclonic shear layer in the

NEC are nearly immediately limited by centrifugal instability, and do not exhibit a gradual

spin up to the instability limit. If we assume that vortices formed o↵ the southern tip

of the island of Hawai‘i with initial periods at or around 3 days are those formed from

the anticyclonic shear layer in the NEC, and that vortices formed in the same area whose

initial periods are greater than 3 days or exhibit gradual spin-up have been formed by

Ekman pumping from wind stress curl, we can look at an estimate of the ratio of wind
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stress to NEC current shear in anticyclone formation. There were 13 anticyclones that

formed directly o↵ the southern tip of the island of Hawai’i with drifters that followed the

anticyclone from birth. Out of those 13 anticyclones, 9 (69%) had varying periods from 6-13

days upon formation. Of those nine, all but one formed between the months of August to

November. This time-frame corresponds to strong and consistent trade winds. Assuming

that purely wind-driven anticyclones will behave similarly to purely wind-driven cyclones,

we can narrow these nine anticyclones down again. Wind-driven cyclones display gradual

spin-up, generally stay close to the lee of the islands, and are of shorter duration than

anticyclones (Lumpkin 1998; Calil et al. 2008; Jia et al. 2011). Of the nine anticyclones

which displayed gradual spin-up, only two remained near the lee of the islands, and both

were of short duration. The other seven anticyclones, except for a gradual spin-up displayed

properties similar to those anticyclones previously shown to be driven by the shear instability

in the NEC. These anticyclones may have been formed by a combination of wind stress

curl and anticyclonic NEC shear instability, however further research is necessary before

concrete conclusions can be drawn about the role of each forcing mechanism. In contrast,

four anticyclones (31%) had periods of almost exactly 3 days upon formation. These four

anticyclones formed in February, March, April, and June (one in each month), when trade

wind gusts can be greatest, but due to Kona winds bursts, is more sporadic. This would

indicate that the centrifugally-limited half-inertial flow eddies were more common in late

winter and spring, except previous research indicates that the North Equatorial Current is

weakest during this period (Meyers 1975; Wyrtki 1975; Wyrtki and Kilonsky 1984). This

contradiction underlies the need for an updated examination of the current strength and

variability o↵ of South Point, Hawai‘i, an area which has to date, very limited oceanographic

observations.

The mean radius of the observed anticyclones was 63.8km, with the majority of the

anticyclones having radii in the range of 43-83km, consistent with previous observations of

drifters entrained in anticyclonic vortices (Lumpkin 1998; Flament et al. 2001). Flament

22



Median Mean Standard Deviation

Period (d) 11 10.7 ±5.2
Radius (km) 52.5 46.9 ±22.1
Month 8 7.4 ±3
Track (�T) 264 260 ±19.2
Distance (km) 350 556 ±434.3
Persistence (d) 63.3 75.5 ±49.9

Table 2.1: Statistics for the 25 anticyclones

et al. (2001) found that radii estimated from drifting buoys was smaller than radii estimated

from satellite altimetry, indicating the drifters were entrained in the center of the vortex. In

general, both period and radius increased away from the islands, as the anticyclone moved

downstream (Figure 2.13). There were a few exceptions where anticyclones started with

long periods and large radii during initial spin-up, and eventually increased in strength until

they were fully developed with periods around 6 days, consistent with wind-forcing.

The anticyclones followed a defined path away from the lee of Hawai‘i. The mean track

was 260.7 �T with the 9 � 91% ranging from just 235-281 �T, which defines a very narrow

anticyclonic sector originating in the lee of Hawai‘i and extending out in the south-west

direction to 170 �W, a distance of ⇠ 1500km. The size and shape of the pack of loopers is

in remarkable agreement with the theoretical anticyclonic sector of Hawai‘i’s wake described

in Lumpkin (1998), however the orientation of the anticyclonic zone is not even with the

island of Hawai‘i, as referenced in Lumpkin (1998) and Yoshida et al. (2010). As seen in

Figure 2.8, the anticyclonic zone orients more to the south west, below the 19.5�N HLCC

belt, with the far western tip almost dipping down to 16�N.

2.4 EOF Results

2.4.1 Wind Stress Results

The NE trade winds dominant the surface wind patterns around the Hawaiian Islands,

as seen in Figure 2.6 (top), which shows the 10-year mean surface wind stress magnitude

23



and direction. Wind direction is primarily from the ENE at around 0.05 to 0.08 N/m2 in

the vicinity of the islands, consistent with findings in Sasaki et al. (2010). Figure 2.14 is

the monthly mean wind stress magnitude and direction. The color bar scale for all months

is identical. Monthly means show a slight seasonal fluctuation in the magnitude of the

NE trades around Hawai‘i, although magnitudes remain fairly steady, ranging from 0.044

N/m2 to 0.056 N/m2 (Table 2.2 outlines the mean, maximum, and standard deviation for

each month). Figure 2.15 is the spatial mean for each month and shows that peak mean

winds occur in April, dropping quickly to minimum winds in May, strengthening again for

a relative maximum in July, and dropping again for a relative minimum in September.

Some of the variability in the mean monthly winds can be explained by seasonal changes

in wind direction. Although the dominant wind direction is from the northeast, there can

be large variability in wind direction during winter months, when the NE trade winds can

occur as low as 50% of the time (Sanderson 1993; Garza et al. 2012). In winter months,

Hawai‘i can be influenced by Kona winds. Kona winds are winds from the south-west or

south-south-west, opposite the direction of the NE trade winds. Kona winds were first

explained by Daingerfield (1921). Kona winds occur when low pressure systems are within

500 miles northwest of the islands. Due to the counterclockwise and inward flow around

atmospheric low pressure systems, this creates winds from the south-west in the vicinity of

Hawai‘i. The presence of Kona winds in wind data from the Honolulu airport is shown in

Figure 2.16. These are daily mean winds at the Honolulu airport. Most of the time the

wind is coming from the northeast, however, there are episodes when the wind reverses and

becomes southwest. These Kona wind systems occur mostly in December-February and can

persist for weeks at a time. However, shorter events may not be visible in the Quikscat

data, due to the 8 day rolling vector composites.

Opposing wind stress curl dipoles are observed in the lee of the major islands, as previously

shown in Chavanne et al. (2002), but are confined relatively near to the islands. These wind

stress curl dipoles create regions of Ekman pumping (downward velocities) and suction
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Table 2.2: Monthly statistics (maximum, mean, and standard deviation) from 10 years of
Quikscat wind stress (N/m2)

Month Max Mean stddev.
Jan 0.072 0.045 ±0.012
Feb 0.075 0.047 ±0.013
Mar 0.079 0.049 ±0.011
Apr 0.099 0.057 ±0.011
May 0.077 0.044 ±0.011
Jun 0.098 0.049 ±0.009
Jul 0.113 0.052 ±0.008
Aug 0.105 0.051 ±0.009
Sep 0.093 0.044 ±0.008
Oct 0.084 0.048 ±0.009
Nov 0.080 0.048 ±0.011
Dec 0.084 0.052 ±0.014

(upward velocities) from:

we = curl
⌧

⇢f
(2.7)

Mean Ekman pumping rates (in m/day) are shown in Figure 2.17, with a strong area of

Ekman pumping on the south side of the island of Hawai‘i and a strong region of Ekman

suction on the north side of the island of Hawai‘i, regions know to create anticyclonic and

cyclonic eddies, respectively (Jia et al. 2011; Calil et al. 2008; Lumpkin 1998). Ekman

pumping is consistent throughout the year, however summer months exhibit the longest

westward extent of Ekman pumping o↵ the southern tip of the island of Hawai‘i.

In order to look at spatial fluctuations in the flow field, the mean was removed from

the wind stress data. The application of EOF methods to the detrended data yielded

spatial EOF modes and their accompanying principle components. Based on the cumulative

variance represented by each mode (Figure 2.18), the first three modes were kept for analysis.

After the third mode, the percent variance became small, the separation between modes

decreased, and the slope of the line was near constant. These modes were eliminated to

reduce noise in the dataset in order to focus on the dominant modes. The first three
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modes represented 81% variance in the wind stress. Modes 1 and 3, whose spatial patterns

can be seen in Figure 2.7 (left column) both have a distinct seasonal cycle. The spatial

pattern of Mode 1 mimics the dominant NE trade winds. This mode in itself represents

53.7% of the variance in the winds around Hawai‘i. These fluctuations are mostly like the

time modulation of the strength of the trade winds throughout the year. The mean monthly

principle components for Mode 1 (shown in Figure 2.19,top) show the strongest fluctuations

in the strength of the trade winds occurs in winter, consistent with the standard deviations

listed in Table 2.2. The NE trade winds are steadier in the summer, which is reflected in

the principle components. The spatial pattern in Mode 2 (which has a dominant period

of 50 days), represents 19.7% of the variance, is an west-east oscillation between NE trade

winds and SW winds. This mode is strongest in the winter (February), and weakest in

the summer (Figure 2.19, middle). This pattern resembles the development of Kona winds

from low pressure systems during winter in Hawai‘i. Additionally, the phase of Mode 2 is

most variable in winter and relatively similar for all other seasons (Figure 2.7, right column,

middle). The spatial pattern of Mode 3, which represents 7.6% of the variance, is a north-

south oscillation of the trade wind magnitude, with strongest magnitudes in winter, and

weaker magnitudes in summer (Figure 2.19,bottom). The rotary spectra of each mode’s

principle components is Figure 2.7 (center column). The dashed line marks a period of 365

days for modes 1 and 3. The dashed line on mode 2 is 50 days. Modes 1 and 3 show strong

annual cycles, while mode 2 is missing a yearly component. The right column in Figure

2.7 are hodographs of the complex principle components’ angles and magnitudes for each

mode, color coded by season. Regardless of season, modes 1 and 3 were tightly aligned in

the hodograph. These angles were used to rotate the vectors back to geophysical space,

as described in the methods. The dominant wind modes range from 10% to 20% of the

magnitude of the mean wind stress and the spatial patterns of that relationship are shown

in Figure 2.20. The top plot shows the magnitude of the mean wind stress, and the bottom

three show the magnitudes of the modes normalized by the mean wind stress (units are

dimensionless).
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2.4.2 Sea Surface Height Results

Once the long term mean dynamic height was removed, the sea level anomalies in the

region of Hawai‘i were evaluated. Although the mean sea level anomalies over the 20 year

period did not reveal any patterns (Figure 2.6), monthly means reveal seasonal patterns

in sea level anomalies in the lee of Hawai‘i (Figure 2.21). Patterns in the monthly mean

sea level anomalies show minimal disturbances in the lee of the islands from February

through June. Eddy activity peaks August until December, with positive anomalies in

excess of 10 cm in the lee of the island, and slows down as the end of the year approaches.

The positive anomalies in the lee of the island of Hawai‘i generally follow the anticyclonic

sector south of the HLCC. Eddy kinetic energy (EKE) was calculated using the associated

AVISO geostrophic currents using the same definition provided earlier in Eq. 2.2. Figure

2.22 shows the spatial EKE patterns derived from the AVISO geostrophic currents. The

satellite-derived geostrophic currents are highly variable in the vicinity of Hawai‘i. In order

to examine the lee region of Hawai‘i, data was extracted for an area encompassing the direct

lee of Hawai‘i, from (18 �-21 �N,180 �-155 �W). The mean spatial average for each month is

shown in Figure 2.23. The highest EKE occurs in August and September, while the lowest

value of EKE occurs in January and April.

EOF analysis was applied to the SLA data first using conventional EOF methods, and

second using a complex EOF. The conventional EOF results, unlike the wind stress EOF

results, spanned more than three modes. In order to represent the major patterns in sea

level anomaly in the lee of Hawai‘i, 7 modes were needed. Because the modes in SLA appear

to be propagating features, a complex EOF was performed on the data as well, bringing

the number of modes needed to explain the variance down to 4. This brought together

the di↵erent phases (modes) of a propagating feature seen in a conventional EOF into one

mode. The first mode and its accompanying principle components from the CEOF of sea

level anomaly is shown in Figure 2.24. As mentioned earlier, the spatial patterns of EOFs

can be summed using:
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where the squares of EOF modes i through N are summed, and normalized by their percent

variance, vari. The resulting spatial pattern and magnitude of the sum of conventional SLA

EOF modes 1-3 is nearly identical to the first complex SLA EOF mode shown in Figure

2.24 (top). This complex EOF represents the seasonal fluctuations in SLA in the Hawaiian

region, the timeseries of the principle components for CEOF mode 1 is shown in Figure

2.24 (bottom), which has a distinct annual peak in its spectra (Figure 2.25). SLA CEOF

modes 2 and 3 had interannual timescales and were not included here for analysis. However,

CEOF mode 4 (shown in Figure 2.26) depicts a persistent zonal sea level anomaly feature in

the lee of the island of Hawai‘i, centered at 19.5 �N, very similar to the sum of conventional

EOF modes 6 and 7. Additionally, the principle component timeseries has a distinct peak

at 100 days (Figure 2.27). These two complex modes, 1 and 4, represent the annual and

100 day fluctuations in sea level in the vicinity of Hawai‘i, respectively.

At first glance, the low percentage of explained variance, even in the leading modes, could

be considered suspicious. However, unlike the wind stress EOF, the sea surface height

data does not have a true mean removed before conducting the EOF. The mean wind

stress removed from the Quikscat data clearly showed the NE trade winds, as expected.

The remainder of the data is variations from this expected mean flow. The mean sea

surface height removed from the data here is the MDT described in the methods, which is

unrelated to SLA. Removing the mean sea level anomaly before calculating the EOF does

not impact the results due to the negligible values of the mean anomalies. This could be

one reason why the percentage of variance explained is low, it resembles an EOF calculated

without removing the mean first. Additionally, in order to see spatial patterns, the EOF

was calculated using the gridded sea surface height data, meaning that the gridded data

is interpolated from the spatially and temporally sparser along-track data, adding to noise

in the EOF results. One method to verify EOF results was to analyze time-series of sea
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level anomalies at specific locations directly from along-track data. The time-series of sea

level anomaly from specific locations in the Hawaiian region confirmed the results of the

gridded sea level anomaly EOF results. Transformation of 8 di↵erent locations (two to the

east of the islands, and 6 to the west of the islands) into the frequency domain revealed

matching periods with the gridded EOF results. All locations showed a strong seasonal

cycle. The two locations upstream to the east of the islands did not have a 100 day period

in their spectra. However, the six locations to the west showed a 100 day signal in their

spectra, with stronger 100 day peaks in the HLCC zone and the anticyclonic zone south of

the HLCC (Figure 2.28).

2.5 Discussion

There was mostly good agreement between the anticyclone results gathered from the

surface drifting buoys and the eddy activity results inferred from the satellite sea level

anomaly and seasonal wind forcing data. The drifter results showed that anticyclone

formation was most common in summer months (July-September) when both the NEC

and wind forcing are thought to be the strongest. However, the seasonal strength of the

NEC is still unclear. Results from the monthly mean sea level anomalies concur with the

drifter results. The strongest anticyclonic eddy activity (highest positive sea level anomalies)

occurred in August through December. The associated EKE in the lee of Hawai‘i also peaks

in August and September, matching the peak anticyclone activity noted in the drifter data.

So how does this correlate with wind signals? Peak NE trade winds occur in April (but

quickly diminish to a minimum in May) and peak again July through September. The

strongest and most consistent NE trade winds occur in the summer months. In winter, the

winds may be gustier, leading to high averages, but the proportion of Kona days increases,

making the forcing less reliable. Winter months also have the shortest westward extent

of Ekman pumping, meaning the ocean is less conditioned for anticyclone development.

Where the results disagree some is the formation rate of anticyclones in the fall. According
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to the drifter observations, formation in the fall (October-December) was statistically low.

This does not match the observed monthly mean sea level anomalies or EKE. The sea

level anomalies and EKE are a minimum February-May. During these months, anticyclone

formation observed in the drifter data was average. Whether the discrepancy is a sampling

bias in the drifter observations, or related to NEC forcing, which is still undetermined, is

unknown at this time.

The results from the EOF analysis show distinct annual cycles in wind forcing and the

sea level anomalies. There is also a 50 day signal in the second mode of the wind stress

EOF and a 100 day signal in the 4th mode of the CEOF for sea surface anomalies. From

here, two questions arise. Is the 50 day signal seen the in the wind stress related to or in

phase with the 100 day signal seen in the sea level anomalies? And secondly, are either of

these signals related to the presence of the large anticyclonic zone in the lee of Hawai‘i?

If the 50 and 100 day signals are related, then potentially the 50-day cycle observed

in the wind stress EOF mode 2 could be forcing the 100-day signal seen in the sea level

anomaly CEOF mode 4. Figure 2.29 is a comparison of the respective wind mode 2 and SLA

mode 4 EOF temporal amplitudes. In order to determine a cross correlation, the higher

temporal frequency wind data was interpreted onto the same sampling frequency as the

lower resolution SLA data. A lag correlation, shown in the bottom of Figure 2.29, shows

low correlation values (< 15%) at all potential time lags. This indicates that there is little

correlation between the strengths of the two signals and that these modes are not related.

If the 100 day signal seen in sea level anomalies was caused by the presence of anticyclones,

it is expected that the spatial phases of the CEOF mode would line up with the anticyclonic

zone detected in the drifter data. The shape of the anticyclonic sector seen in Figure 2.8

was outlined by taking the outermost limits of the cluster of rotating vortices. Two outlines

are shown. The smaller one is the outline of the tightly packed anticyclones. The larger one

is the outline including a few outlying anticyclones at the western edge. These shapes were
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then overlaid on to the SLA CEOF modes 1 and 4 (Figure 2.30). At first glance it appears

that neither mode lines up well perfectly with the anticyclonic sector. The anticyclonic

sector in the drifters extends all the way to the island of Hawai‘i at 155�W. Neither mode

extends that far west. However, the near lee sea level anomalies (using satellite data) have

been shown by Yoshida et al. (2010) to have periods of 60 days. This frequency does

not match the frequency of either mode, meaning its signal would not be visible in these

representations. Yoshida et al. (2010) found that the near lee had a period of 60 days

and that anticyclones formed in this region were wind-driven, as the signal matched a 60

day wind signal. However, the 100 day period they noted further downstream could not be

explained by wind. The area they noted as Region-W had a 100 day period and was located

along a zonal line centered at 19.5�N and extended from 162�166�W. This location and the

100-day period matches what is seen in SLA CEOF mode 4. The analysis here extended

beyond 170�W to 180�W, and a second region, an extension of Region-W exists out to

that longitude. However, this region, does not align well with the observed anticyclonic

sector from the drifters. The anticyclonic sector tilts to the southwest, heading of ⇠ 260�T.

Region-W extends almost purely zonally at heading 270�T, this most closely matches the

core of the HLCC, not the anticyclonic sector. However, there is a weaker signal in CEOF

mode 4 that aligns well with the anticyclonic sector, indicating that the anticyclones could

be related to a portion of the 100 day signal. Additionally, if we allow for the fact that

drifter lifespans may have reduced the number of drifters to make it west through the life

of the anticyclone, the spatial pattern in mode 1 is the closest to the anticyclonic sector.

Knowing that the 60-day signal near the immediate lee of Hawai‘i is not visible in mode

one due to the annual pattern, and looking at the extent of the drifters in Figure 2.8, the

anticyclonic zone could extend out, weakly, to 180�W. If the sea level anomaly mode 1 does

match with the anticyclonic sector, given those assumptions, then the annual seasonal cycle

in the ocean, caused by the annual seasonal variations in wind forcing, could be forcing the

anticyclonic zone. If so, the time series of the EOF modes would align. Figure 2.31 shows

the mode 1 SLA (blue) compared to the combined annual signal seen in wind modes 1 and
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3. There is a 6 month periodic lag between the signals. Considering the distance from the

formation zone to the edge of the anticyclonic sector, 1500km, and the mean speed of the

anticyclones (⇠ 10 cm/s), this makes sense.

Although anticyclones were observed during every season, there was only one season where

anticyclones formed at significantly di↵erent than random values, the summer months. This

also corresponds with decreased disturbances in the wind stress annual EOF modes, and

the peak monthly averages of wind speed calculated earlier. In order to determine if the

anticyclones are caused by shear instability in the NEC, high resolution spatial and temporal

current measurements are necessary. In an attempt to gauge the potential of ocean stresses

as a cause of vorticity for the anticyclones, we looked at both the satellite derived geostrophic

currents and OSCAR currents.

Since SLA is known, geostrophic currents can be inferred from the changes in sea surface

height due to the geostrophic balance, where the pressure gradient force is balanced by the

Coriolis force:

fv =
1

⇢

@P

@x
� fu =

1

⇢

@P

@y
(2.9)

where u and v are the zonal and meridional geostrophic velocities, ⇢ is the density, and P is

the pressure. Since pressure is di�cult to measure, the geostrophic balance equations can

be re-written in terms of sea surface height ⌘ using the hydrostatic balance, P = ⇢og(⌘� z)

fv = g
@⌘

@x
� fu = g

@⌘

@y
(2.10)

Geostrophic currents were available from AVISO using the same merged-satellite database

from 1992 until 2014. AVISO uses a 9-pt stencil width to calculate the geostrophic currents,

where stencil width is the number of grid points used to estimate the derivative on a grid

using finite di↵erencing (Arbic et al. 2012). The mean geostrophic currents (Figure 2.32,

top) do not reflect the mean large-scale wind-driven geostrophic currents, but instead show

the mesoscale fluctuations in the Hawaiian region. This can also been seen the variance of
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the geostrophic currents, which is strongest directly in the lee where eddy activity is high

(Figure 2.32, bottom). In addition to the geostrophic velocities measured from sea level

anomalies, another satellite-derived surface current measurement is available: NOAA’s

OSCAR (Ocean Surface Current Analyses-Real time) measurements. OSCAR currents

di↵er from the base-level geostrophic currents because it also includes the local wind-driven

Ekman currents into the analysis. The Ekman momentum balance represents a balance

between the Coriolis force and the windstress:

fve = �1

⇢
(
@

@z
⌧zy) fue =

1

⇢
(
@

@z
⌧zy) (2.11)

where ue and ve are the Ekman currents in the zonal and meridional direction, f is the

Coriolis parameter, ⇢ is the density, and ⌧zx and ⌧zy are the zonal and meridional wind

stress. NOAA uses a linear combination of geostrophic and Ekman currents to calculate

OSCAR currents, however the MDT (discussed in above) is removed in favor of the mean

annual 0-1000 dbar dynamic height from Levitus (ESR 2009; Bonjean and Lagerloef 2002).

The OSCAR currents are available at 1 � and 1/3 � degree resolution. The mean currents

are shown in Figure 2.33. The 1/3 � degree resolution surface currents were used for this

research. The EKE in the mean OSCAR currents is highest in the NEC region in the

southern section on the area of interest (Figure 2.34, top). The variance, however is highest

in the direct lee of the island of Hawai‘i.

While both ocean current sources confirmed the presence of persistent vortices, neither

the AVISO based geostrophic currents or the OSCAR currents had a high enough resolution

to detect fluctuations in current velocity near South Point, Hawai‘i. Also, as both estimates

of currents are derived from the very satellite data used to conduct the EOF analysis, their

results would not explain anything outside of what is already known with these data sets.

Without the necessary data on current structure as the NEC separates from Hawai‘i, shear

instability cannot be ruled out as a forcing mechanism for the anticyclones. This means

that until further high resolution data is available for the velocity o↵ of South Hawai‘i, the
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null hypothesis cannot be ignored: wind stress curl is forcing the anticyclones in the island’s

lee. This is shown by the overlap between the annual mode EOF in wind stress and the

structure of the anticyclonic sector.

Regardless of their forcing mechanism, the anticyclones play a large part in the island

lee dynamics. The anticyclonic sector extends over 1500km downstream from Hawai‘i. It

is worth noting that of the 832 drifters, there were only three cyclones discovered, one of

which passed south of the anticyclonic sector, leaving only two observed cyclones in the

theoretical cyclonic sector. This is compared to the 25 anticyclones in the dataset. The

anticyclonic sector shown in Figure 1.1 is reasonable in size, but the cyclonic sector shown

was not visible in this dataset. This could be due to interactions with the wakes of other

islands (Chapter 3). The anticyclones, on the other hand impact the flow patterns not only

in the wake of the island, but downstream. Figure 2.36 shows the mean currents calculated

from all non-looping drifters. The westward NEC is clearly visible upstream of the Hawaiian

Island chain. Reaching the islands it bifurcates, with part heading along the windward side

as the Northern Hawaiian Ridge Current, part passing south of Hawaii and turning north to

flow along the leeward side of the island chain as the Hawaii Lee Current, and then finally,

a portion passing south of Hawai‘i undisturbed. This is the expected circulation described

earlier. Mean drifter-derived speeds south of the island of Hawai‘i average 10 cm/s. When

mean currents are calculated using only the anticyclonic loopers, the flow in the vicinity of

Hawai‘i changes (Figure 2.35). The northward flowing Hawaii Lee Current is reversed on the

leeward side of Hawai‘i with the flow moving from North to South along the Kona coastline.

Also, the presence of the anticyclones intensifies the separation o↵ of South Point, Hawai‘i.

Mean speeds along the southwest oriented convergence zone average 20 cm/s, double what

is present without the anticyclones. The flow is also more southerly, as seen in Figure 2.37.

The zonally averaged meridional velocity calculated from near the island out to 160�W adds

negative, southward flow to the normally zonal NEC. This could mean that anticyclones

are forming when the NEC is stronger, or the anticyclones are actually helping to create
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the strength in the NEC. So preexisting vortices are priming the region for further shear

instability and preconditioning the ocean for vortex development.

2.6 Conclusion

The anticyclonic zone in the lee of Hawai‘i is well defined by drifter observations. These

anticyclones are most likely to form during summer months when the wind stress forcing

is at its strongest. However, anticyclones have been observed in every month of the year.

An examination of the wind stress forcing and the sea level anomalies showed an annual

cycle in both forcing mechanisms. The windstress induced annual cycle represents seasonal

variability in the trade winds. The sea level anomaly annual cycle shares similar spatial

properties to the anticyclonic sector shown by the drifters when higher frequency cycles

are removed. The 100 day signal seen in higher order SLA modes has a weaker segment

that resembles the drifter’s anticyclonic sector, but the main signal is too zonal and does

not align with the vortices. Instead, this signal sits at the latitude band of the HLCC.

If the weaker portion of the signal is indeed the anticyclones, it could indicate there is a

strong connection between the HLCC and the anticyclones at this frequency. Due to a

lack of reliable and high resolution data on current structure and variability to the south

of the island chain, the null hypothesis that these anticyclones are wind-driven cannot be

disproved.
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AC# Start Date Period (d) Radius (km) Track (�T) Distance (km)

1 08/89 6,16 17,51 254 343
2 08/90 3 26 277 105
3 11/91 12.5 58.5 259 748
4 02/94 3 11.5 300 266
5 03/94 3,6,12 11,48,76 246,277 1363
6 10/94 6,11 58 290,259 1182
7 11/94 11,14 44,49 262 402
8 08/95 6 56 226 260
9 10/95 12 66 237 808
10 10/95 12 53 270 414
11 11/95 7,12 28,56 215,281 234
12 07/00 13 38 260 350
13 09/00 13 48 268 284
14 10/00 27,21 78,53 270 254
15 04/01 3 11 249,279 427
16 08/01 10,13 64 261 1614
17 06/02 6,11 63,53 S,S 157
18 10/02 13,12 66,105 244 291
19 11/02 14 53 268 284
20 06/03 3,6,7,9 27,26 267 1456
21 06/06 6 18 270 887
22 10/09 18 41 238 210
23 01/11 7 22 267 781
24 03/13 10 27 270 501
25 05/14 12,6 58,27 235 282

Table 2.3: Characteristics of the 25 Anticyclones identified via drifting buoys. Anticyclones
that displayed multiple distinct radii, periods, or tracks are noted as multiple entries for
the same Anticyclone. S means stationary.
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Figure 2.1: Number of SVP drifter observations in each 0.25� box.
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Figure 2.2: Surface Velocity Program drifter data from 1979-2016, broken down into 20-day
drift segments.
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Figure 2.3: Anticyclone 20. Top: zonal (red) and meridional (blue) velocities of the drifter
with time (mmyy). Middle: Sea surface temperature of drifter with time (mmyy). Bottom:
Drifter track.
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Figure 2.4: Anticyclone 20. The x-axis for all is time in mmyy. Top: Spin (s�1) of the
drifter over time. Middle (top): Persistence (days) of drifter. Middle (bottom): Radius
(km) of anticyclone only when persistence meets cut-o↵ criteria. Bottom: Period (days) of
anticyclone only when persistence meets cut-o↵ criteria.
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Figure 2.5: Continuous Wavelet Transform analysis of Anticyclone # 20 showing the time-
frequency analysis of the drifter’s zonal velocity
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Figure 2.6: Mean wind and sea surface fields calculated from satellite-derived data. (a)
Mean wind stress (N/m2) and wind direction from 10 year QuikScat record. (b) Mean sea
surface height (m) in AVISO sea surface height data. This is the long term mean dynamic
height which needed to be removed in order to examine sea surface height anomalies. (c)
After the mean dynamic height was removed, only sea surface anomalies remained. A 20
year mean of sea surface anomalies averages to zero.
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Figure 2.7: The first three wind stress EOF modes, accounting for 81% of the variance in the
wind. (Left Column) The spatial EOF patterns for modes 1-3, in N/m2. (Center Column)
Spectra of EOF modes 1-3 principle components. Blue is clockwise, Red is anticlockwise.
Dashed lines in mode 1 and 3 show the annual frequency. The dashed line in mode 2 shows
a 50 day period. (Right Column) Hodographs of EOF modes 1-3 amplitude timeseries,
color coded by season (Blue=winter, Magenta=Spring, Green=Summer, Red=Fall. The
superposition of all the colors by season indicates good alignment in the EOF space)
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Figure 2.8: All 37 anticyclonic looping drifting buoy tracks. For clarity, the path of drifters
after exiting anticyclones was removed.
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Figure 2.9: The 5 main channels or pathways into Hawaiian waters for a drifting buoy
coming from the east. 1) South of the southernmost tip of the island of Hawai‘i (South
Point), 2) ‘Alenuihāhā channel, 3) Kaiwi channel, 4) Ka‘ie‘ie channel, and 5) North of the
island of Kaua‘i. Background image from Main Hawaiian Islands Multibeam Bathymetry
and Backscatter Synthesis.
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Figure 2.10: a) Anticyclonic loopers that entered the lee of the islands by passing south
of the island of Hawai‘i. b) All non-loopers that entered the lee of the islands by passing
south of the island of Hawai‘i. c) Anticyclonic loopers that entered the lee of the islands by
passing through ‘Alenuihāhā channel. d) All non-loopers that entered the lee of the islands
by passing through ‘Alenuihāhā channel.
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Figure 2.11: Histograms of Anticyclone characteristics. a) Month anticyclone was first
observed in the data. Red circles are the observed values from the anticyclonic drifters.
Blue circle and triangles represent mean and 95% confidence intervals for 10,000 random
samples of 25 months. b) same as a), except this is estimated month the anticyclone was
formed. c) Period (in days) of the 25 anticyclones d) Radius (in km), e) Track (in degrees
True), and f) Duration (in days)
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Figure 2.12: Anticyclone locations color coded by season.
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Figure 2.13: Top: Anticyclone locations color coded by radius. Bottom: Anticyclone
locations color coded by period. Blue: Periods <10 days, Red: Periods>10 but <20 days,
Black: Periods >20 days.
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Figure 2.14: Mean wind stress (N/m2) and direction over 10 year QuikScat record broken
down by month.
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Figure 2.15: Spatially averaged mean wind stress (N/m2) over 10 year QuikScat record for
each month.
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Figure 2.16: Daily Mean Wind Speed and Direction from Honolulu airport 2010-2015. The
x-axis is the numbered day of the year.
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Figure 2.17: 10 year mean Ekman Pumping velocity in meters per day.
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Figure 2.18: Cumulative varaince plot for the Windstress EOF. The x-axis is logarithmic
in scale. The y-axis is cumulative variance.
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Figure 2.19: Mean monthly windstress EOF timeseries amplitudes for mode 1 (top), mode
2 (middle), and mode 3 (bottom).
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Figure 2.20: (a) Mean wind stress (N/m2), (b) EOF mode 1 normalized by the mean wind
stress shown in (a) above, (c) same as (b) but for Mode 2, (d) same as (b) but for Mode 3.
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Figure 2.21: Mean sea surface height anomalies (m) for each month.
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Figure 2.22: Mean monthly EKE from AVISO geostrophic Currents in m2/s2 in the lee of
Hawai‘i.
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Figure 2.23: Mean monthly EKE from AVISO geostrophic currents in m2/s2 in the HLCC
region
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Figure 2.24: Complex EOF Mode 1 from SLA data. This mode is a match to the sum of
EOF modes 1,2 and 3 from SLA.
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Figure 2.25: Spectrum of sea surface height CEOF mode 1. The dashed line represents a
period of one year.
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Figure 2.26: Complex EOF Mode 4 from SLA data. This mode is a match to EOF mode
6 and 7 from SLA.
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Figure 2.27: Spectrum of sea surface height CEOF mode 4. The two dashed lines represent
periods of one year, and 100 days.
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Figure 2.28: Fourier analysis of 8 di↵erent along-track SLA time-series. The order of the
plots matches geographic position. The left two spectra are from positions east of the
islands, the right six are downstream of the islands. The top row are positions at 19 �N,
the bottom row are 17 �N.
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Figure 2.29: Top: Plot of temporal amplitudes of sea level anomaly mode 4 (blue) and wind
stress mode 2(red). Bottom: positive and negative time lag coe�cients for each time series.
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Figure 2.30: Top: Complex EOF mode 1 from SLA data. Overlaid in black is the outline
of the anticyclonic zone created by the 25 years of drifter data. Bottom: Same as top, but
for SLA CEOF mode 4.
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Figure 2.31: Plot of temporal amplitudes of sea level anomaly mode 1 (blue) and combined
wind stress modes 1 and 3(red)
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Figure 2.32: Top: Mean AVISO geostrophic currents from 1992-1012. Middle: EKE for
mean AVISO geostrophic currents (m2/s2, 1/4 degree resolution) from 1992-2012. Bottom:
AVISO geostrophic currents variance (m2/s2, 1/3 degree resolution) from 1992-2012.
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Figure 2.33: Top: Mean OSCAR currents (m/s, 1 degree resolution) from 1992-2016.
Bottom: Mean OSCAR currents at 1/3 degree resolution, every other vector plotted.
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Figure 2.34: Top: EKE for mean OSCAR currents (m2/s2, 1/3 degree resolution) from
1992-2016. Bottom: OSCAR currents variance (m2/s2, 1/3 degree resolution) from 1992-
2016.
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Figure 2.35: Top: Number of independent observations calculated using only anticyclonic
looping drifting buoy tracks. Bottom: Mean currents calculated from only anticyclonic
looping drifting buoys.
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Figure 2.36: Top: Number of independent observations calculated using only non-looping
drifting buoy tracks. Bottom: Mean currents calculated from non-looping drifting buoys.
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Figure 2.37: Top Row: Zonally averaged zonal (U) currents in m/s in the longitude band
170-165�W, left,165-160�W,middle, and 160-155�W, right. The solid blue line is the zonally
averaged current from all 832 drifting buoys. The solid black line is the zonally averaged
current from only anticyclonic looping drifting buoys. The solid red line is the zonally
averaged current from all drifting buoys except anticyclonic loopers. The correspondingly
colored dashed lines are the 95% confidence intervals. Bottom row: same as top row, but
for zonally averaged meridional (V) currents in m/s
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Chapter 3

Drifter Statistics in West Oahu Coastal Waters:

Observations of Island Lee Dynamics

Abstract

Ocean island lees have been well studied in many regions, including the Hawaiian Islands

and Canary Islands. However, in the Hawaiian Islands, most of the research has been on

the lee created by the largest island, the island of Hawai‘i. The smaller islands have lee

regions that can be hard to detect with satellite data due to low spatial resolutions. Here,

using drifter data and high frequency radar, a year long observational study was conducted

in order to investigate the island lee created by Oahu, a smaller, but regionally important

island. A distinct cyclonic zone was observed o↵ the northwestern corner of Oahu, with a

distinct anticyclonic zone observed o↵ the southwestern corner of Oahu, matching theoretical

predictions from wind-stress curl dipoles in the island’s lee. The zones could be observed

in both the HFR currents and the mean currents derived from the drifting buoys. Vorticity

balance analysis indicates that vortices, both cyclonic and anticyclonic, that formed during

normal northeast trade wind conditions are primarily wind-induced. However, cyclonic

vortices formed in Oahu’s western waters even when the trade winds reversed, indicating

these vortices were not wind-induced, and least one cyclonic vortex formed during both Kona

wind events during the study period.
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3.1 Introduction

The center of the island of Oahu is at approximately 21.5�N, 158�W , in the southern

portion of the Pacific subtropical gyre in the path of the NEC. The island is characterized

by narrow continental shelves and steep slopes on the western and southern sides, with

wider shelves and shallower slopes to the north. South of Oahu there is an 800m-deep

channel, the Kaiwi channel, that separates Oahu from the long shallow shelf (Penguin

Bank) extending from the island of Moloka‘i. The large-scale flow pattern established by

the dominant geostrophic currents includes the Northern Hawaiian Ridge Current that

flows along the windward side of the island chain and a weaker northerly current along

the leeward side of the island chain (Hawaii Lee Current), both caused by the NEC as it

bifurcates at the island chain (Lumpkin 1998). The predominantly westward flow south

of the island indicates that some of the westward NEC passes through the Kaiwi channel

(Castillo-Trujillo et al. 2019), but this channel separating Moloka‘i and Oahu is notoriously

fickle and is regarded as extremely dangerous.

The development of cyclonic and anticyclonic vortices are common in the Hawaiian Island

region (Lumpkin 1998; Calil et al. 2008). In particular, as discussed in Chapter 2 the

southern tip of the island of Hawai‘i can create anticyclones through wind stress curl caused

by the island’s topography, as well as shear instability in the North Equatorial Current

(NEC) as it separates from the southern tip of the island (Flament et al. 2001; Jia et al.

2011). Vortices of both rotations have also been previously observed in other locations in

the Hawaiian Island chain’s lee, such as wind stress curl driven cyclones downstream of the

northwestern corner of the island of Hawai‘i (Lumpkin 1998) and anticyclones in the south-

western waters of Oahu (Chavanne et al. 2010b). However, unlike the vortices that form

downstream of the island of Hawai‘i, there are fewer direct observations of these smaller lee

eddies downstream of Oahu, and therefore less is known about the timing, frequency, and

cause of these submesoscale features. Previous observations of vortices in the lee of Oahu

were observed o↵ the island’s western side. In particular, an anticyclone was observed by
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Chavanne et al. (2010b) which was similar in diameter to the size of the island, and had a

maximum central vorticity close to -f, indicating it was limited by centrifugal instability.

The initial orbital periods of the vortices were ⇠ one pendulum day at this latitude;

therefore the initial Rossby numbers (ratio of local to planetary vorticity f) were nearly

exactly �1. These observations were interpreted as a case of centrifugally-limited half-

inertial flow (Chew and Busnell 1990). The strongest relative vorticity for a stable vortex is

�f , i.e. the minimum Rossby number is �1. This limit corresponds to an angular frequency

! = �f/2. Vortices with Ro < �1 are destroyed by centrifugal instability and re-form at

a Ro in the stable range (Rayleigh 1916; Kloosterziel and van Heijst 1991; Bidokhti and

Tritton 1992; Carnevale et al. 1997). Such half-inertial vortices have also been observed at

lower latitudes (Flament et al. 1996; Kennan and Flament 2000; Menkes et al. 2012) and

in the arctic (D’asaro 1988).

Negative (positive) wind stress curl associated with the wind shear lines in the lee of

the islands (Chavanne et al. 2002, 2010a) can also generate anticyclonic (cyclonic) vorticity

in the ocean: the Ekman transport converges towards (diverges away from) the shear line,

resulting in downwelling (upwelling) (Barton 2001) and could be leading to the development

of the vortices seen o↵ Western Oahu. Cyclonic eddies spun up by cyclonic wind-stress curl

and positive Ekman divergence result in upwelling. They share many biophysical properties

with coastal upwelling systems, including increased primary production, and have therefore

been the subject of many interdisciplinary studies (Calil et al. 2008; Aristegui et al. 1997).

They are not limited by centrifugal instability, and can therefore have cyclonic vorticity

exceeding f without being unstable. On the contrary, negative Ekman divergence due

to anticyclonic wind-stress curl does not have significant biological signature other than

horizontal advection, and have not been studied much. The Western waters o↵ Oahu are

popular for fishing and the productivity in the region could be impacted by the recurrence

of submesoscale vortices formed in the island’s lee.
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Here we attempt to use observational data from surface drifters and high frequency radar

to investigate the flow characteristics in the lee of Oahu. In addition we quantify the

frequency and timing of the vortices’ appearances o↵ Oahu, as well as their significance to

the area’s biological productivity.

3.2 Data

In order to investigate the flow properties in the lee of Oahu, a year-long observational

study utilizing High Frequency Doppler Radars (HFR) was completed on the western side

of the island of Oahu in 2016 (a map detailing HFR coverage is shown in Figure 3.1).

During the observational period five HFR were active on Oahu. Total coverage of the

southern and western coastal Oahu waters was available 337 out of 366 days during the

study, however there were no days without at least partial coverage. Figure 3.2 displays the

temporal coverage of each of the five HFR during 2016. HFR radial currents were combined

from overlapping HFR units to create vector currents at a 2km resolution which were then

averaged hourly. The HFR vector currents from all five instruments provided full coverage

of the southern and western coastal waters o↵ Oahu, from near-shore out to 100 km. For the

year-long observational period, hourly currents were averaged daily to produce a 24-hour

mean map of surface vector currents in the coverage area, reducing high-frequency noise in

the signals. Cohesive vortices were identified using criteria similar to those set by Chavanne

et al. (2010b) where the center of the vortex was defined as the location within the rotating

feature that reached a minimum velocity, the maximum velocity of the vortex determined

by averaging the azimuthal velocities from the center outwards, and the radius being the

distance from the center of the vortex to the maximum velocity. In addition, the vortex

needed to be present in the HFR data for two consecutive days where at least 2/3 of the

vortex was visible in the HFR vector currents.

In addition to the HFR, 75 surface drifters were used during the observational period

with data collection beginning in September, 2015. There were two variations of surface
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drifters deployed during this study. Of the 75 drifters, 66 of them were Coastal Ocean

Dynamics Experiment (CODE) type drifters that measure flow in the top meter. The

CODE drifters were equipped with Argos GPS transmitter and recorded position and sea

surface temperature every 30 minutes. The average lifespan of the CODE drifters was

45 days. The last nine surface drifters were a Microstar surface drifter with a diamond

shaped drogue centered at 1-m depth (but extending to 1.3m) that had lifespans up to six

months. The Microstar drifters were programmed to record and transmit via Iridium their

geographic position every thirty minutes.

Drifter deployments were conducted in two nearby locations in the lee of Oahu. Seven

repeated deployments of 2-4 CODE drifters occurred around 5nm o↵shore of Barber’s

Point, Oahu (shown in Figure 3.1 by the yellow circle) at Station Kahe. Six of these

deployments were conducted via the Hawaii Ocean Time Series (HOT) cruises, while one

of the deployments was conducted by a vessel of opportunity. An eighth deployment of

4 CODE drifters was conducted 4nm o↵shore of Honolulu Harbor approximately 18nm to

the ESE of Station Kahe by a second vessel of opportunity. This location was used due to

inaccessibility of Station Kahe due to heavy seas. The deployments ran from September

2015 until May 2016. In addition to the small deployments at Station Kahe, one gridded

cluster deployment consisting of 9 Microstars was conducted on May 17, 2016 in position

21�13.90N, 158�14.40W (shown in Figure 3.1 by the green circle). The location of the cluster

deployment was chosen based o↵ of a center of anticyclonic vorticity detected in the HFR.

The drifters used in the cluster were placed in a gridded pattern with 2km spacing. However,

initial positions were o↵set based on the on-scene currents, resulting in a grid pattern at the

time the last drifter was placed in the water (cluster deployment lasted 1.2 hours). Nine

CODE drifters were deployed at each cluster grid point approximately 200m o↵set from their

Microstar pair. However, due to small di↵erences in their responses to the surface forcing

and the successful activation of only seven of the nine, only the Microstar were used to look

at flow features from the cluster deployment and those CODE drifters were removed from
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the data set (leaving the 66 used here). However, since all of the Station Kahe deployments

were the same drifter type (CODE) their use is acceptable for this analysis as there is

no conflict in performance. A full description of the di↵erences in the drifter’s behavior

is provided in Chapter 4. In addition to the Station Kahe deployments, CODE drifters

deployed in support of operational oceanographic activities such as search and rescue were

also included if they passed through the region outlined in Figure 3.1. This brought the

total to 75 CODE style drifters and 84 in total between both types.

For each drifter, the geographical position and sea surface temperature recorded every 30

minutes were extrapolated from the data sets. Missing or bad position data were linearly

interpolated for the bottom and top of each hour throughout data gaps. Repeat exact

geographical positions that resulted in a speed of zero were ignored and linearly interpolated

as if the position was missing. From the clean data, vortices were isolated in the surface

drifter data when a single drifter made at least two complete loops in a vortex, or when a

drifter completed only one loop it was used if other drifters existed in the same vortex at

the same time and multiple loops could be established. Vortex center, radius and velocity

were calculated from the drifter data after the mean translational speed was removed.

3.3 Flow statistics using drifters

From the 84 drifters, there are just over 2000 drifter days coverage in the lee region.

Between all three sources of surface drifters, there are su�cient observations to be able to

investigate flow dynamics in the near lee of Oahu. Outside of the Oahu region, the statistics

become less robust due to smaller number of observations. The number of independent

observations for each 0.25� grid is shown in Figure 3.3. The highest concentration of

observations is in the direct lee of Oahu’s western shore where both the Station Kahe

and cluster deployments were conducted. This area of high drifter observations coincides

with coverage of the western Oahu HFR. Although the drifters traveled well outside the
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direct lee of Oahu, the number of observations diminishes rapidly away from the deployment

locations as they disperse in space and time.

The initial behavior, represented by the first 48 hours after launch, of the Station Kahe

deployments is shown in Figure 3.4. The deployments depicted are shown in order of first

to last deployments. The first launch occurred in September, 2015 (Figure 3.4a, top-left)

and the last launch was in May, 2016 (Figure 3.4h, bottom-center). The drop position of

the first drifter launched in the group is represented by a black x. For reference, the one

launch that occurred away from Station Kahe was the sixth deployment, shown in Figure

3.4f and will be referenced from this point forward as Station Aux. All others occurred near

Station Kahe. The second launch at Station Kahe was completed in two parts, two of the

four CODE drifters were deployed on the beginning of the cruise and two CODE drifters

were deployed on the return to port, explaining the apparent divergence of the drifters.

Of the eight launches, there were four occurrences of the drifters heading northwest

towards the island of Kauai. This movement would appear to follow the Hawaii Lee Current,

but it is only apparent in half of the deployments. During the other half of the deployments,

the Hawaii Lee Current was absent and the drifters moved in dissimilar directions. When

the Hawaii Lee Current was absent, the drifters covered less distance and remained closer

to the drop site for a longer period of time, resulting in a slower dispersion.

The results of the cluster deployment are shown in Figure 3.5 and their dispersion over

the first 21 days is shown in Figure 3.6. Even as the cluster deformed, the drifters remained

in their relative positions for the first two days. A detailed discussion of the initial drift

is provided in Chapter 4. During the first three weeks, the drifters separation increased

exponentially when three of the drifters became trapped in the anticyclone. The rest of

the cluster continued to the west. Thus the primary feature driving the cluster’s movement

was the presence of a large anticyclone o↵ the southwest corner of Oahu. The anticyclone

persisted in the vicinity for 16 days, keeping the drifters in the HFR coverage region longer
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than when anticyclones were not present. The development and characteristics of the

anticyclone are discussed in detail in section 3.4, below.

Another interesting feature observable in the cluster deployment is the eastward

movement of four drifters near latitude band 19.5�N. This latitude band coincides with

the center of the Hawaiian Lee Countercurrent (HLCC). The HLCC is an eastward current

with mean speeds ⇠10 cm/s that is centered at 19.5�N (Flament et al. 1998). It was shown

by Chavanne et al. (2002) that the HLCC can be forced by Sverdrup transport induced

by wind stress anomalies in the lee of the islands. Lumpkin and Flament (2013) followed

this by examining the role of lee vortices in maintaining the HLCC. They found that the

anticyclonic vortices to the south of the HLCC played a key role by providing eddy to mean

barotropic kinetic energy conversion in the HLCC. Lumpkin and Flament (2013) also found

that the HLCC strength was weakest in April/May and peaked in August-January. The

cluster was deployed in May 2016, but the drifters entering the HLCC did not reach that

point until late June, as the HLCC was building. The drifters had a mean speed of 11 cm/s

during their eastward zonal movement through the HLCC.

Spaghetti diagrams of all the 84 drifter’s trajectories in the vicinity of Oahu show some

key features of island’s lee dynamics. Figure 3.7 shows all the drifter trajectories, broken

down into 1-day segments, and color coded by mean direction. The large amount of purple

color o↵ the western coast of Oahu and some near the western coast of the island of Hawai‘i

follow the Hawaii Lee Current. There is very little purple, or northwestward movement

between the island of Hawai‘i and Oahu. Most of the drifters that passed through this

region were actually moving to the southeast. However, the flow to the northwest is strong

between the islands of Oahu and Kauai. The drifters follow the Hawaii Lee Current past

Oahu with most joining the Northern Hawaiian Ridge Current on the windward side of

Kauai. Other persistent features are the presence of anticyclones o↵ the southwest corner

of Oahu and cyclones o↵ the Kona coast, on the island of Hawai‘i. These recurring vortices

block the dominant geostrophic flow. To see the background flow not under the influence
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of these vortices, any drifter that was trapped in vortices in these regions were removed (13

drifters in total). The trajectories of the non-rotating drifters are now shown in Figure 3.8.

With the rotating drifters removed, the presence of the Hawaii Lee Current, the Northern

Hawaiian Ridge Current, their intersection and then later bifurcation around Kauai are

exaggerated.

Mean currents were calculated from the drifter trajectories in the vicinity of Oahu. The

calculations were confined to the region near Oahu with the greatest number of observations.

Mean currents were calculated for a region outlined by 21�N to 22�N and 159�W to 157.5�W.

The box was broken down into a 0.05� grid with 0.1� smoothing. The mean zonal and

meridional currents and their variance was calculated for each box in the grid if it contained

at least two full days of drifter data. All boxes with less than two drifter’s days observations

were discarded. The drifter derived mean currents show weak and variable flow on the south

shore and west shores of Oahu (Figure 3.9). Strong northwestward flow is apparent in the

Ka‘ie‘iewaho channel separating Oahu and Kauai. The drifters’ mean flow through the

Kaiwi channel separating Oahu and Maui is predominantly eastward. This disagrees with

previous observations where the mean flow through the channel parallels the island chain

and is thought to be caused by the Northern Hawaiian Ridge Current bifurcating around the

island (Burks 1967; Lumpkin 1998; Costa et al. 2016). The drifters that did pass through the

Kaiwi channel tended to stay close to shore and the flow could be tidally driven. However,

no drifters passed through the Kaiwi in the westward direction. Also of note is the counter-

rotating flow patterns seen between 159�W and 158.5�W. In that longitudinal band, the

southern region between 21�N and 21.4�N is rotating anticyclonically, whereas the flow in

the northern region from 21.4�N to 21.8�N is cyclonic.

The mean currents from the drifters come from 9 months of drifter tracks, from

September-May. For comparison, Figure 3.10 shows the monthly mean currents calculated

from the Oahu HFR. The vectors are uniform in length, but color coded by velocity. The

fastest currents occur o↵ the western coast of Oahu with generally weaker currents o↵ the
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south shore of the island. Temporally, the strongest currents occur in March and May with

monthly mean currents at 16 and 20 cm/s, respectively. The weakest currents occur in

January, with a monthly mean of just 9 cm/s. Unlike the drifter-derived mean currents,

the counter-rotating flow pattern is not immediately apparent in the HFR mean currents.

However, anticyclonic rotation is visible in the monthly mean currents o↵ Barber’s Point

in January and November. Cyclonic rotation is visible o↵ Kaena in March and September.

With the monthly means, both types of vortices are not visible in the data at the same

time. To visualize the lee vortices, the HFR data is broken down into daily means where

more frequent vortices become apparent.

3.4 Observations of Lee Eddies

During the study period both anticyclones and cyclones were observed in the region

of interest. There were five anticyclones observed in the southern and western coastal

waters of Oahu by the HFR (Table 1). All five anticyclones formed below latitude 21.15�N ,

approximately level with the south corner of Oahu. Of the five anticyclones, three were

fairly weak vortices with central vorticity values near �0.5f that were visible in the HFR

data for only 3-5 days, and two were strong (near �f vorticity), persistent (in the area

of coverage) anticyclones that were visible in the HFR data for 16 days each. The two

stronger anticyclones formed in nearly the same location, around 21.1�N, 158.35�W and

both propagated slowly westward at 4� 4.5cm/s. The first strong anticyclone appeared at

the end of May and the second strong anticyclone became visible in the HFR surface current

field on the first of August. Both of these vortices approached the centrifugal instability

limit of Ro = �1. The weaker anticyclones remained fairly stationary until they were broken

down and no longer visible in the surface currents. Oahu anticyclones remained noticeably

closer to the island for longer period of times than the anticyclones formed in the lee of

the island of Hawai‘i (Chapter 2). Even two anticyclones that had entrained drifters, and
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therefore could be monitored after leaving the HFR area, did not extend past 159�W during

their observed lifespan.

There were eight cyclones observed in the HFR data during 2016. The majority of the

cyclones formed north of the anticyclones, above latitude line 21.4�N , while three out of

the 8 cyclones formed just to the south of the anticyclonic region at a latitude line of

20.9�N . Unlike the anticyclones, cyclones are not constrained by centrifugal instability

and on four occasions sustained core vorticity values in excess of +f , with the strongest

cyclone achieving +1.4f for two days while in the HFR area. This particular cyclone moved

north out of the coverage area after the second day at peak strength, with a mean forward

speed of 8cm/s . This is contradictory to the anticyclones, which stayed relatively near

to the island. Unfortunately, no drifters were trapped in any of Oahu’s cyclones and their

progression outside of the HFR area was not directly observed.

The presence of each type of vortex throughout the HFR time coverage is shown in Figure

3.11 (top). The five anticyclones (blue stars in Figure 3.11) and the eight cyclones (red stars

in Figure 3.11) do not overlap, except for a two day period in June, as an anticyclone exited

the coverage to the west, and a cyclone formed in the close lee on the same day. Counter-

rotating vortices on the north and south side of the island were not observed to occur at

the same time. Vortices occurred in every month except October and December, with an

average spacing of 19 days, but irregularly with a standard deviation of ±15.8 days.

The daily mean wind velocity and direction, as measured at the Honolulu airport is shown

in Figure 3.11 (middle). The Hawaiian Islands, located between 19�25�N , lie in the portion

of the global wind belt dominated by the Northeast Trade winds. The locations of the wind

belts shift with season, bringing the Hawaiian Islands closer to the mid-latitude storm belt

during winter as the Intertropical Convergence Zone dips below the equator (Xian and

Miller 2008). This can disrupt the Northeast Trade winds, causing them to reverse. This

reversal is known as a ”Kona” wind in Hawaii (since the winds now come from the west, it
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can bring with it volcanic smog from the Kona area, decreasing air quality) (Morrison and

Businger 2001). Overall, the winds during the observational study were predominately from

the northeast (306/366 days, 84%), however, there were two main Kona events during this

time. The first lasted from the beginning of January until February 10th (40 days) and the

second lasted from mid-August until the beginning of September (20 days). During a Kona

event, the wind is reversed, which would eliminate the wind-shear region normally located

on the Western side of Oahu. If the vortices were purely forced by Ekman pumping caused

by wind stress curl in the island’s lee, no eddies would be found in their typical regions

during a Kona event. No anticyclones were observed during Kona wind events, however,

three cyclones were observed during the two Kona events. This implies that another forcing

mechanism was involved in these three cyclones.

3.4.1 An Anticyclone case study

The presence of multiple drifters in the May 2016 anticyclone, along with coverage from

the HFR, make it a good case study to examine the dynamics of Oahu’s lee eddies. All

drifters caught in the May anticyclone were extracted from the data set. Just from the

cluster deployment, there were three Microstars in the anticyclone. Due to their increased

lifespans and decreased leeway (refer to chapter 4) the Microstars were used to study the

anticyclone. During the drift period of the cluster, the mean translational speed of the buoys

remained both zonally and meridionally negative. Removing the mean translational speed

of each drifter revealed the residual movement of the drifter due to shorter timescale features

such as these submesoscale vortices. Anticyclonic rotation is evident in three of the buoys

in both the total and residual currents and was caused by one anticyclonic vortex. Two

drifters completed one loop and one drifter completed three loops inside the anticyclone.

The beginning of the first anticyclonic loop was observed in the drifters motion on May 24,

2016 at 0530Z and was last observed on June 6, 2016 at 0330Z, giving a duration of just

under 14 days. Vortex characteristics estimated from the drifting buoys yielded a mean

period of 3.7 days and a mean radius of 20km (Figure 3.12). The anticyclone was also
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visible in the HFR data during May and into June. In contrast to the drifter data, a fully

formed anticyclone was not evident until May 25th, with anticyclonic rotation beginning to

develop two days later on May 23rd, 2016. The anticyclone was visible in the HFR data for

16 days, until June 8th. The anticyclone formed with its center near 20.9�N, 158.3�W . Over

the course of the 16 days it was visible in the HFR data, it drifted slowly west with a mean

speed of 4.5 cm/s until its center fully exited the HFR coverage by June 9th, 2016. The

daily mean HFR surface currents and their associated vorticity for May 28, 2016 is shown

in Figure 3.12, along with the trajectory of the longest looping drifter. The maximum

daily mean anticyclonic vorticity achieved in the core of the vortex during its lifespan was

�0.8f , calculated from the HFR surface currents. For an anticyclone at latitude 20.8�N to

be at the centrifugal instability limit with a Rossby number of �1, or vorticity of �f , the

corresponding period is 2.8 days. For the observed anticyclone with its associated strongest

mean vorticity of �0.8f , the anticipated period is 3.56 days, which corresponds well to the

observed period of 3.7 days calculated from drifter data.

There are multiple ways to measure separation rates using HFR data. Here, two were

used to examine the characteristics of particle distribution in and around the anticyclone.

The first parameter calculated was the Okubo-Weiss parameter (W) which compares the

magnitude of strain to vorticity:

W = �2n + �2s � ⇣2 (3.1)

where �n is the normal component of strain, �s is the shear component of strain, and

⇣ is vorticity, which are derived from the velocity gradient tensor. Another method to

investigate separation is the Instantaneous Rate of Separation (IRoS) (Futch 2009). Also

derived from the velocity gradient tensor, the IRoS is similar to a Finite Time Lyapunov

Exponent (FTLE) but does not require time integration, and is useful in examining mean

statistics in a region.

IRoS = �o + Tr(⌘) (3.2)
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where �o =
p
(�2n+�

2
s) is the full shear component of the flow and Tr(⌘) is the divergence.

These parameters were calculated for the anticyclonic feature seen in the HFR data starting

on May 24, 2016. The Okubo-Weiss parameter is as expected for a vortex, with strong

vorticity in the center region and higher strain along the edges. Drifters located in the

blue vorticity dominated regions stay inside the vortex until reaching the red outer limits at

which point they are ejected quickly (Figure 3.13). The IRoS shows convergence of particles

in the center, to be expected from an anticyclone, and strong dispersion along the outer

edges, but especially on the eastern edge. This indicates that the anticyclone is trapping

particles and heat at its center, and dispersing them on its periphery. Looking at the satellite

sea surface temperature for the peak of the anticyclone, on May 27, shows a strong, warm

core vortex, with core temperatures in excess of 3�C warmer than surrounding waters. As

anticyclonic vortices rotate, they reach geostrophic balance with an inward Coriolis Force

and an outward Pressure Gradient Force. This happens due to convergence at the sea

surface creating a dome of water, which then leads to downwelling and a deepening of the

thermocline. This creates a warm core to the vortex. These warm cores are not only less

biologically productive, but can impact air-sea interactions and heat transport between the

ocean and the atmosphere. Di↵erences in air-sea temperatures can influence sensible heat

transfer as well as latent heat fluxes caused by evaporation of sea water and subsequent

condensation in the atmosphere. A recent study in the southern ocean found that mesoscale

eddies are responsible for 20% of the variance in surface heat fluxes and that anticyclonic

eddies warmed the marine atmosphere (Villas Bôas et al. 2015).

3.4.2 Forcing

Yang (2008) mapped the trade wind wakes created by both Kauai and Oahu, the first

direct observations of these islands’ wind wakes. One of the main results from their work

was the measurement and mapping of the strong shear lines created in the wake of those

islands. For Oahu, Yang (2008) measured the shear line at the flanks of the island to be

approximately a change in velocity of 10 m/s over an equivalent distance of 2-5km, with a
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downstream distance greater than 100km. The latitude bands of these observed shear lines

match the latitude bands associated with the cyclonic and anticyclone vortex formation

regions in this study (Figure 3.15). The positive wind stress curl created by the trade wind

wake on Oahu’s northern corner seen by Yang (2008) matches the region of cyclonic eddy

formation observed in this study, as expected. The negative wind stress curl region found

by Yang (2008) aligns with the southwest corner of the island during day and the center

of the southern coast during night. The diurnal variations were caused by development of

westerly sea breezes during day hours. Although the diurnal variations are not visible in

the daily averaged HFR data, the anticyclonic vortices form in the region covered by these

observed shear lines in Oahu’s wake.

Vorticity Balance

The surface vorticity (⇣ = @v/@x � @u/@y) balance, shown below in equation 3.3, can be

used to determine if the eddies are primarily wind-driven.
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The total derivative of vorticity (term a, also known as the Lagrangian derivative) is

comprised of the local rate of change in vorticity (term b) and the advective rate of change of

vorticity (term c). These changes in vorticity can be due to Beta changes (term d), vortex

stretching (term e) or stress curl from the wind or ocean (term f). Here the change in

latitude on the spatial scale of a lee vortex o↵ Oahu is small and term d can be considered

negligible. This means changes in vorticity can be explained by vortex stretching and forcing

stresses. Following Chavanne et al. (2010b), the wind stress curl induced vorticity can be

approximated by:

F =
1

⇢HE
curlz⌧ (3.4)

88



using ⇢ = 1023kg/m3 for a seawater temperature of 25�C and an Ekman depth of 30m.

The terms in the vorticity balance were calculated for Anticyclone 2 that formed in May

and Cyclone 7 that formed in August (Table 3.1). The total derivative of vorticity and

vortex stretching were calculated from the HFR currents at the location of the center of

the vortex over time. The di↵erence between the two terms resulted in a residual, which

if wind driven, would be similar in magnitude to the approximation of the wind stress curl

vorticity, given by equation 3.4. If the terms are not of the same magnitude, then other

forcing, such as shear instability in the currents could be at play.

The spatial results of the vorticity balance terms are shown in Figure 3.16. In the core

of the anticyclone, the stretching is weakly positive, the total derivative is weakly negative

and the residual is positive. The estimation of the impact of wind stress curl on vorticity is

also shown in the bottom right. The negative wind stress curl expected from a wind-driven

vortex is present. The mean values averaged of the core of the vortex over a seven day

period are shown in Figure 3.17. This makes is a bit easier to see the relationship between

the terms. The terms are not in balance over the first four days of the anticyclones life,

indicating that the wind stress curl induced vorticity is not enough to generate the vortex,

however as the vortex moves into its later stages of life, the residual term is small, and

therefore the vortex could be sustained by the wind stress curl in the lee of the island.

The large residual early on in the anticyclones life could indicate that ocean stresses helped

spin-up the eddy. Unfortunately the early days of the anticyclone’s development May 20-22,

were missing in the West Oahu radars. The first day of full coverage was the 23rd, when

the anticyclone was small, but formed, and therefore its vorticity budget as it was forming

is missing. This anticyclone formed during average NE trade winds. During this study,

there were three cyclones that formed during Kona wind events. The last cyclone, #7,

not only formed in strong Kona winds, but formed in the normally anticyclonic region of

the island’s lee. Looking at the vorticity balance terms for the cyclone (Figure 3.18), the

stretching is strong negative (⇠ �10�9), the total derivative is weakly positive(⇠ 10�10) ,
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and the residual is strong positive (⇠ 10�9). The wind stress curl vorticity is almost zero

(⇠ �10�13). This cyclone lasted 17 days and experienced Kona winds for the first half of its

lifespan. In fact, looking at the wind stress curl induced vorticity in Figure 3.18, the lee side

of the island has completely reversed, with the lee-induced wind stress curl dipole located

on what is normally the windward side. This means the the cyclone was not wind-induced,

but ocean stress induced during the Kona wind event.

3.5 Discussion

One interesting result from this study is the direct observation of the cyclonic, quiet

zone, and anticyclonic sectors in the lee of Oahu. These zones have been studied on Island

of Hawai‘i, the southernmost and largest island in the chain. Direct observations through

surface drifters (Lumpkin 1998) and sea surface height anomalies (Yoshida et al. 2010)

reveal the far-reaching impacts of the oceanic island wake created by the > 4000m tall

Hawai‘i Island. In addition, several model studies reveal the impact of wind wake forcing

on the generation of mesoscale cyclones (anticyclones) on the northern (southern) lee sides

of the island (Calil et al. 2008; Jia et al. 2011). However, except for the direct observation

via surface drifters, these studies are limited by the spatial resolution of the satellite derived

data and/or the model parameters. The models and satellites have high enough resolution to

capture the island wake created by Hawai‘i Island, but not all have the resolution necessary

yet to capture the smaller scale island wakes created by islands such as Oahu and Kauai.

The oceanic wake created by Hawai‘i Island is visible in satellite sea surface anomaly data

out to 170�W (for reference Hawai‘i Island has a central longitude of 155�W ), a distance

of 1600 km (Yoshida et al. 2010). Local measurements of sea surface anomaly data by

Mitchum (1995) revealed 90-day oscillations at Wake Island (4000 km from Hawai‘i) that

have been attributed to the anticyclones created by Hawai‘i. The wakes created by the

smaller, interior islands do not have such reach and are closely confined to the islands’ lee

sides (Souza et al. 2014). The implementation of HFR on Oahu has enabled visualization of
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these smaller lee vortices created by the island, that otherwise would have been washed out

in coarser resolution data sets. During the year-long observational period, Oahu’s lee was

divided into three zones: a cyclonic zone to the north, an anticyclonic zone to the south,

and a quiet zone in the middle of the island lee. Figure 3.15 shows the initial positions

of the centers of the vortices captured by the HFR along the southern and western coasts

of Oahu. The cyclonic zone occurred at the northern edge of the island lee, starting at

21.4�N , while the anticyclone zone occurred at the southern edge of the island lee, below

21.15�N . The quiet zone, in between the two, was marked by no vortex formation during

2016. However, this does not mean vortices did not enter the region during the year, but

they did not initially form in the quiet zone. The vortices were primarily wind-induced,

with the wind-stress curl dipole created by the island inputting vorticity into the lee region.

However, for the anticyclone in May, wind stress alone was not enough to explain all of

the residual vorticity, indicating ocean shear stresses played a role in the spin-up, but wind

stress maintained the vorticity. There were three cyclones that formed in the anticyclonic

sector of the lee. Two of these formed during Kona wind events, where the lee side of the

island was completely reversed and wind stress curl could not explain their formation. One

of the cyclones (cyclone # 4) formed in the anticyclonic sector during normal NE trade

winds. However, this cyclone was weak, formed on the western edge of the HFR radar

coverage and dissipated after three days.

Distinct cyclonic, quiet, and anticyclonic zones in the direct lee of the island can have

implications beyond current direction and magnitude. As discussed earlier in Figure 3.14,

the anticyclones can have significant impacts on ocean temperature as they depress the

thermocline. The 3�C increase in temperature in the core of the vortex from surrounding

water can increase heat flux from the ocean to the atmosphere. These fluxes are used in

ocean and atmospheric models. If heat fluxes from eddies are not included, this could lead to

errors in the model results. If these anticyclonic and cyclonic sectors are persistent, as they

were in 2016, the heat fluxes would also be persistent. Another implication is the change in

91



biologic productivity associated with persistent vortices. Hawaiian waters are oligotrophic

(Figure 3.19) and in general have low productivity o↵shore due to its position in the Pacific

subtropical gyre (Morel et al. 2010). However, the western near-o↵shore (3-10nm) waters

of Oahu are popular fishing grounds due to the proximity of the steep drop o↵ just three

miles o↵shore and the large numbers of sport fish. During an anticyclone event, such as the

one in May, the chlorophyll a concentrations are lower than the surrounding waters, shown

by the dark blue (almost zero) area o↵ the southwest corner of Oahu (Figure 3.20). This

would decrease fisheries over these time periods. This is opposite when a cyclone forms in

the cyclonic sector. During a cyclone there is increased cholorphyll a concentrations. For

comparison, Figure 3.21 shows the chlorophyll concentration during a cyclone in early May.

This cyclone occurred in the same month as the anticylone and therefore negates seasonal

influences on chlorophyll concentrations. The chlorophyll is much higher in the cyclonic

sector during the vortex, indicating a higher productivity.

3.6 Conclusion

Although Oahu is smaller than the island of Hawai‘i, it still displays a persistent island

wake, with a cyclonic zone to the north, a quiet zone in the middle and an anticyclonic zone

to the south. The vortices formed in the wake do not travel great distances from the island,

instead remaining in the near lee and therefore in the HFR coverage for up to 17 days,

making some of the vortices near stationary. During normal NE trade winds, the vortices

are primarily wind-induced from the wind stress curl dipole forming in the lee. However,

cyclonic vortices do form in the western waters of Oahu during Kona wind events. During

Kona events, the leeward side becomes the windward side and the wind-stress curl dipole

disappears in the western coastal waters. These cyclones formed during Kona wind events

all formed in the normally anticyclonic zone in the southern section of the island lee and

without wind-forcing must therefore be caused by ocean stress induced vorticity changes.
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Table 3.1: Top – Anticyclone characteristics observed from High Frequency Radar. Bottom
– Cyclone characteristics observed from High Frequency Radar.

Anticyclone DOB Duration(days) Radius(km) V orticity Period

1 29FEB 3 47 �0.50f 5.6
2 23MAY 16 20 �0.80f 3.5
3 14JUL 4 32 �0.59f 4.7
4 01AUG 16 21 �0.96f 2.8
5 02NOV 5 21 �0.44f 6.2

Cyclone DOB Duration(days) Radius(km) V orticity Period

1 23JAN 3 27 0.52f 5.1
2 06FEB 4 31 0.80f 3.4
3 13MAR 14 22 1.1f 2.5
4 13APR 4 47 0.47f 6
5 09MAY 5 36 1.3f 2.1
6 05JUN 8 36 0.5f 5
7 18AUG 13 42 1.4f 2
8 03SEP 17 37 1.3f 2.1
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       HFR site 

        Drifter cluster 

        Drifter HOT

Figure 3.1: Experiment set-up. The red boxes represent the 5 High Frequency Radar sites.
The yellow circle marks the location of two surface drifter cluster deployments. The green
circle represents the location of the monthly deployments of three drifters via the Hawaii
Ocean Time Series (HOT) cruises. Bathymetry from Main Hawaii Islands Multibeam
Bathymetry and Backscatter Synthesis.
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Figure 3.2: Temporal coverage of each radar during 2016. The x-axis is the day of
the year. The y-axis is each individual radar. KOK (Koko Head, 21.26�N, 157.7�W ),
KAP (Kapolei, 21.31�N, 158.11�W ), KAL (Kalaeloa, 21.29�N, 158.08�W ), KAK (Kaka’ako,
21.29�N, 157.85�W ), KNA (Kaena, 21.56�N, 158.25�W )
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Figure 3.3: Number of observations in each 0.25� grid in Oahu waters.
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Figure 3.4: All 6 HOT cruise deployments and two deployments by the CG auxiliary.
Deployments started in September 2015 (top left) and ended in May 2016 (bottom right).
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Figure 3.5: Cluster deployment trajectories from May 2016 deployment of 18 drifting buoys.
Tracks are 30 days.
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Figure 3.6: Cluster separation over the first three weeks. The cluster was deployed in May
2016.
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Figure 3.7: All drifters west of Oahu, broken down into 24 hour segments and color coded
by direction
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Figure 3.8: All non-rotating drifters west of Oahu, broken down into 24 hour segments and
color coded by direction
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Figure 3.9: Mean currents calculated from surface drifter observations in 2015-2016 in the
vicinity of Oahu
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Figure 3.10: Monthly mean currents calculated from HFR o↵ Oahu
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Figure 3.11: Top - The presence of anticyclones (blue stars) and cyclones (red stars) as
observed in the HFR data for 2016. The x-axis is the day of the year (366 days, a leap
year). Middle - Daily mean wind direction (in degrees clockwise from true North) and daily
mean wind speed (in m/s). Bottom - Daily mean atmospheric pressure (in millibars). Both
wind and atmospheric pressure were recorded at Honolulu International Airport, on Oahu.
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Figure 3.12: An overview of the May 2016 anticyclone located by both the High Frequency
Radar surface currents (black vectors) and the surface drifters (only one buoy trajectory
shown for clarity). Overlaid is the normalized relative vorticity (!/f) calculated from the
High Frequency Radar surface currents over 24 hours.
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Figure 3.13: Top - Okubo Weiss Paramater normalized by f2. Bottom - IRoS normalized
by f .
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Figure 3.14: Mean sea surface temperature in degrees Celsius during the lifespan of the
May 2016 anticyclone
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Figure 3.15: Travel patterns for both cyclones (red) and anticyclones (blue) observed from
the High Frequency Radar surface currents in 2016. Boxes represent the initial position of
the center of the vortices and the lines show the path of the center of the vortices during
their lifespan in the High Frequency Radar coverage.
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Figure 3.16: A snapshot of the vorticity balance terms for anticyclone # 2 in May, 2016.
Units are s�2. Show is the stretching term (top left), the Lagrangian Derivative (top right),
the Residual (bottom left) and an estimate of Vorticity from Wind stress curl (bottom
right).
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Figure 3.17: A timeseries of the vorticity balance terms for anticyclone # 2 in May, 2016.
The terms are unbalanced are unbalanced for the first four days of the anticyclones life, but
near balance for the next 3 days.
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Figure 3.18: A snapshot of the vorticity balance terms for Cyclone # 7 in August, 2016.
Units are s�2. Show is the stretching term (top left), the Lagrangian Derivative (top right),
the Residual (bottom left) and an estimate of Vorticity from Wind stress curl (bottom
right).
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Figure 3.19: Mean chlorophyll a concentration for 2016
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Figure 3.20: Mean Chla during duration of May 2016 anticyclone
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Figure 3.21: Mean Chla during duration of May 2016 cyclone located o↵ northwest corner
of Oahu
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Chapter 4

An Estimation of Surface Drifter Leeway using

Indirect Methods

Abstract

Assumed non-slip surface drifters are often used in ocean studies to verify model-based

currents and as the basis for indirect leeway estimates of search objects. However, no

drifter is purely non-slip and quantifying the drifter’s response to leeway forces is important

in order to fully and accurately utilize the drifter’s data. Here two surface drifter varieties,

a Pacific Gyre Microstar and MetOcean Davis SLDMB were deployed in a gridded cluster

formation o↵ Oahu as part of a separate investigation into submesoscale flows. However,

the deployment of the two varieties of surface drifters provided a nice data set to compare

drifter behavior. The separation rate of the drifters over the initial drift period was noticeably

di↵erent, with the Davis drifters having pair separation up to 8 km in 24 hours, exceeding

the background noise separation rate of 1-2 km modelled in simulated drifters. In addition,

indirect leeway estimates of each drifter revealed the Davis drifter had significant crosswind

leeway (1.2% of the wind speed) that exceeded previous measurements. The crosswind

leeway movement matched both the direction of the surface Ekman layer and the dominant

direction of wave-induced Stokes drift. These results indicate a need for further studies

using accelerometers and current profilers to determine which leeway forces contribute to

the drifters’ large crosswind leeway.
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4.1 Introduction

Surface drifters are often used to measure or validate ocean currents. These drifters

usually have a minimal profile above the waterline to reduce wind impacts and are designed

to drift with the top 1-2 meters of ocean current. One important use for surface drifters

in operational oceanography is the validation of ocean current predictions from numerical

models during search and rescue (SAR) evolutions. During a SAR evolution, surface drifters

are deployed at the last known position (LKP) of the search object, and the magnitude and

direction of the drifters movement is compared to output from various available numerical

models. This information is then used to place a search pattern in a location with the

highest probability of success. This use assumes that the leeway coe�cients for the surface

drifter are either known, or zero (meaning the surface drifter is only impacted by ocean

currents, not wind forcing). Leeway, as defined by Allen (2005) is the movement of an

object on the ocean’s surface relative to the wind. Leeway can be broken down into a

leeway rate (the speed of the object’s drift through the water caused by the wind, usually

measured in a percent of the wind speed) and leeway divergence (the angle of drift relative

to the downwind direction). A diagram demonstrating each component of leeway is shown

in Figure 4.1. Each object has di↵erent leeway coe�cients due to size, freeboard, and sail

area above and below the waterline. Leeway is calculated using either the direct method

by measuring drift through water using attached current meters or the indirect method of

subtracting an estimate of current drift from the total drift (Allen and Plourde 1999).

E↵ective surface drifters are designed to minimize slippage. Slip is unwanted motion in

a drifter, defined as the di↵erence between the movement of the drifter and the equivalent

depth-averaged current velocity. Rockewell Geyer (1989) investigated the causes of slip in

order to determine the water-following properties of drogued drifters. The causes of slip

discussed included drag induced by shear currents (a di↵erence in current velocity at the

surface compared to the current velocity at the mean depth of the drogue), wind drag

(referred to earlier here as leeway), and wave rectification. Davis (1985) discussed in more
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detail the action of wave motion on a surface drifter. Their drifter design (discussed below,

and used in this experiment) was created to minimize oscillatory motion caused by waves

by averaging out the wave-induced drag coe�cient over the depth of the drifter. They

showed that to do this it required either a spherical shape, or a drifter that did not tilt

in wave motion. While resolving all three causes of slip are ideal, it is often di�cult to

do. To investigate the slippage of surface drifting buoys we evaluated two main designs of

surface drifters commonly used in SAR evolutions. Both designs are known as Self-Locating

Datum Marker Buoys (SLDMBs). The first design is the Davis Drifter (Davis 1985; Davis

et al. 1982), also often referred to as a CODE (Coastal Ocean Dynamics Experiment) -style

drifter produced by MetOcean. This design has four underwater drag producing vanes at

right angles from one another that catch the top 1-m currents. The vanes meet at a center

metal rod that runs the length of the drifter. The vanes are attached to small floats using

flexible line that keep the drifter buoyant and the instrument package above water. The

floats are attached at the outermost limits of the vanes to reduce tilting motion. The second

design is a Microstar drifter produced by PacificGyre that has a diamond shaped drogue

centered at 1-m depth. Unlike the Davis Drifter, the Microstar has only a singular spherical

8 in. float above the surface. Detailed dimensions are shown in Figure 4.2.

Earlier works looked into the water-following properties of surface drifters. Kirwan et al.

(1975) parameterized the drag forces acting a drogued drifter to estimate the e↵ect of wind.

They theorized the di↵erence between water velocities and drifter velocities could be up to a

50% di↵erence and as much as a 45� o↵set in angle. Results from a field experiment agreed

with their predicted drag values. Rockewell Geyer (1989) obtained precise measurements

of slip for mixed-layer drifters with 5-m long holey-sock drogues. The slip velocities ranged

from 1 � 4cm/s in the downwind direction. This was followed by Niiler et al. (1995)

who compiled results from multiple drifter studies looking at the slip of 15-m holey-sock

and TRISTAR drogues. These were direct measurements of slip that compared well with

previous theoretical estimates, however they were limited to less than 10m/s winds. Drogues
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attached to surface drifters are often lost before the drifter electronics die out. Once the

drogue is lost, the wind and shear-drag forces are altered. Poulain and Warn-Varnas (1996)

found that undrogued drifters tended to move 12� to the right of the wind and with a speed

of 1.6% of the wind speed. This was followed by Pazan and Niiler (2001) who investigated

the di↵erence in the leeway of drogued drifters to undrogued drifters. However it wasn’t

until Poulain et al. (2009) that the first direct measurements of a Davis type drifter was

conducted. Due to the size of SLDMB drifters, direct measurements of leeway are di�cult.

Direct leeway measurement requires a current meter to be attached to the drifter, which

can alter its drift characteristics if not placed properly, also most available current meters

are large and hard to attach to the small SLDMBs. One previous study, presented at

the 2002 LAPCOD meeting (Poulain et al. 2000) found that Davis-type drifters had no

significant leeway in the downwind direction, but had measurable leeway in the cross-wind

direction (0.1 � 0.2% of the wind speed) as well as significant leeway to the right of the

wind caused by vertical velocity shear (0.3� 0.5% of the wind speed). Because the leeway

of SLMDB drifters is assumed to be zero, these are often used as the baseline for indirect

measurements of leeway. This allows leeway to be estimated for objects without a current

meter, if the object is near an SLDMB field, as discussed in Morris et al. (2008). However,

if there is leeway inherent in the SLMDB design, this can lead to errors in the other object’s

leeway measurements if calculated indirectly from SLMDB drift. Here we use data from a

drifter deployment conducted o↵shore of Oahu, Hawaii to investigate the leeway and drift

properties of two types of SLMDB drifters.

4.2 Methods

Two di↵erent drifting buoy makes were used in this study. The first, representing the

Davis Drifter was the SLDMB made by metOcean. These were second generation SLDMB

drifters that transmit their data via the Argos network. They were programmed for SAR

mode, meaning that for the first 24 hours after deployment they transmitted every 10

118



minutes, then they transmitted for their remaining lifespan at 30 minute intervals. Their

expected operating life at 10�C is a minimum of 15 days (metOcean 2016). The second

buoy make was the PacificGyre Microstar drifter, also configured for SAR. These Microstar

drifters transmitted via Iridium and were programmed to record and transmit every 30

minutes, giving them expected lifespans of 1-3 months.

The SLDMBs were deployed in a cluster formation in the coastal waters o↵ Southwestern

Oahu in May, 2016. A 3x3 gridded pattern, with 2 km cross (2.8 km diagonal) spacing was

used in the deployment with the center grid point at 21�13.90N, 158�14.40W . One Microstar

drifter was deployed at each grid point (nine locations, grid positions referenced by number

from top left as 1, moving left to right, then top to bottom with position 9 in the bottom

right). One Davis Drifter was deployed alongside each Microstar with approximate 200m

spacing. The initial positions of the grid points were o↵set based on the on-scene currents,

resulting in a square grid at the time the last drifter was placed in the water. The cluster

deployment lasted 1.2 hours. Warm sea surface temperatures (> 24�C) in the region meant

the drifters battery lives were not reduced due to cold temperatures. Lifespans for the

metOcean SLDMBs for this deployment were between 30-65 days, while the PacificGyre

Microstars lasted upwards of 6 months. Of the eighteen surface drifters deployed in the

cluster, all nine Microstars successfully deployed, but only 7 Davis Drifters successfully

deployed. Two Davis drifters tested positive before the deployment (grid positions 5 and

8), but did not activate once in the water. Two Microstar drifters were picked up by fishing

vessels on days 3 and 18 of the deployment. Given the availability of surface drifter data,

emphasis in this study was placed primarily on the first 48 hours (when all nine of the

Microstars and all of the seven Davis that activated upon deployment were available) and

secondary analysis was the first 30 days. After 30 days, the Davis drifter batteries began to

die, making analysis of drift characteristics less robust due to a sharp decrease in available

data points.
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For this comparison, the geographical position and sea surface temperature recorded every

30 minutes were extrapolated from each drifter, starting with the bottom of the hour after

deployment concluded (0430Z). Missing or bad position data were linearly interpolated for

the bottom and top of each hour throughout data gaps. Repeat exact geographical positions

that resulted in a speed of zero were ignored and linearly interpolated as if the position was

missing.

4.3 Drifter Dispersion

The first ten hours of the drift were dominated by westward flow, after which the mean

velocity shifted to the southwest (Figure 4.3a). Tidal currents at the time of launch were

slack and then building to maximum flood until 1100Z. According to NOAA National Ocean

Service (2018), average flood direction in southwestern Oahu coastal waters is 122�T at a

speed of 0.9kts. The drift of the cluster during the first 10 hours was west northwestward, as

opposed to the southeastward flood, indicating the initial movement of the drifters was not

tidally dominated. The flow patterns shown in Figure 4.3b-d indicate the buoys remained

in the same flow regime for the first 2 days.

An estimate of dispersion was calculated by finding the average root mean square

separation of each drifter from the center of the cluster over the first 24 hours for each

drifter type (Figure 4.5). As discussed above, for the first ten hours the drifters moved

westward and the shape of the cluster was maintained, with an average root mean square

separation of 3km. However, after 10 hours, the cluster was stretched in the meridional

direction with a North-South limit of 17km at 24 hours of drift. The spaghetti diagram

showing the first 48 hour trajectories and resultant cluster stretching is shown in Figure

4.4. Both the Davis and Microstar drifters maintained similar cluster deformation, ending

the 24 hour drift with an average root mean square separation from the center position of

8.5 and 7 km respectively. However, just looking at the deformation of each cluster’s shape

does not highlight the di↵erences in drift patterns between each buoy type.
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A second estimate of dispersion was calculated by finding the average root mean square

separation of each drifter pair over the first 24 hours. In contrast to the previous estimate,

which looked at how the shape of the cluster distorted, this estimate focused on how each

neighboring pair of drifters separated. The calculation was run for each Microstar pair, each

Davis pair, and each Microstar to Davis pair. For the Microstar to Microstar separation

(Figure 4.6, top, with blue shaded regions indicating standard errorbars), the initial mean

separation (2.2 km) is set by the grid spacing (2km horizontal and 2.8km diagonal) of

the initial positions. The cluster then moved in a cohesive fashion, with pair separation

remaining fairly stable, ending 24 hours later with a mean separation of just 2.3km. The

Microstar to Microstar pairs had a separation rate of < 0.1 cm/s. This indicates that even

as the cluster was being stretched, the relative positions of the drifters to each other in

the cluster remained the same (i.e. the drifters that started in the southern part of the

grid moved south, and the northern positions stretched to the north). This is in contrast

to the behavior of the Davis drifter pairs. The separation of each Davis-Davis drifter pair

was calculated over the first 24 hours in the same manner described above. The mean

separation (in km) with standard errorbars (blue shaded region) is shown in Figure 4.6,

bottom. The initial mean separation (2.7 km) was set by the grid spacing (2km horizontal

and 2.8km diagonal) of the initial positions, as was the case for the Microstar. The Davis

cluster appeared to follow the same flow pattern as the Microstar cluster (Figure 4.4), but

each pair separated in a near linear fashion at a much faster rate than the Microstar drifter

pairs. A linear regression of the separation over time resulted in a slope of 0.15 km/h,

r2 of 0.92, ending with a mean separation of slightly over 10 km in 24 hours, or an 8-km

disengagement when the initial spacing is removed. A large increase in pair separation

would indicate that the relative positions of the drifters in the cluster did not stay the

same over the first 24 hours of drift. This can be confirmed by looking at the separation

between each Microstar and Davis drifter pair. At the initial positions of the cluster

grid, these drifter pairs started 200m apart. If both types of drifters maintained their

relative positions in the cluster, this average separation should not substantially increase.
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However, that is not the case. As shown in Figure 4.6, middle, the separation after 24

hours reached a mean of 4.1 km. A linear regression of the separation revealed a slope of

0.084 km/h, r2 of 0.95. Looking at the individual tracks, Davis drifters tended to detach

from their Microstar pairs, and in multiple cases moved in opposite directions from their

pair, changing their relative position in the cluster. The Davis drifters tended to creep to

the northwest as their Microstar pair moved to the westsouthwest. So even though the

clusters deformed in the same manner, the behavior of each drifter types in the clusters did

not match. This indicates that there is a significant di↵erence in the resultant movement

of each drifter type, even when subjected to the same forces. So what is the cause of this

di↵erence? Is it a di↵erence in leeway due to drifter design or is it an artifact of the errors

caused by di↵erent quality positioning sources? And secondly, which drifter separation rate

and behavior more closely resembles the background flow? For the first question, if the

separation is caused by varying leeway, the motion of the drifters could be explained by

examining leeway forcing. This was completed by indirectly measuring the leeway of each

drifter type. For the second question, in order to investigate how drifter separation compares

to background flow, simulated cluster deployments were drifted using two ocean models:

Hybrid Coordinate Ocean Model (HYCOM) surface currents and Hawaii Regional Ocean

Model (HROMS) surface currents and compared to the actual trajectories and separation

behavior.

4.3.1 Predicted drift of a zero leeway surface drifter

In the U.S., the Search and Rescue Optimal Planning System (SAROPS) program is

used to predict the drift of search objects. SAROPS uses a Monte Carlo simulation to

drift up to 10,000 particles and produce a probability map. There are two forces acting on

a particle in SAROPS: ocean currents and wind, which it applies to the particle through

the leeway coe�cients specific to that search object (information on the determination of

leeway coe�cients can be found in Allen 2005 and Allen and Plourde 1999). For each time

step, the simulation takes the closest three zonal and meridional velocity points and uses
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a weighted average to drift the particle. In addition, at every time step uncertainty is

added to the drift. The simulation perturbs the speeds by using a random draw from a

normal distribution, however random draws for each particle for increasing time steps are

correlated:

⇢(�t) = e�↵�t (4.1)

where ↵ is chosen so that e�↵60 = 1/2. At the end of the simulation, SAROPS generates

a probability map for that time using the density of the particle distributions at the end

of the simulation. For SLMDBs, the leeway is assumed to be zero in SAROPS and these

particles are drifted using only the surface currents, wind is ignored. A simulation of zero

leeway SLMDB drift over the time period of the cluster deployment was conducted using

the same drift algorithm described above. Two sources of ocean surface currents were used

to force the drift model, current predictions from HYCOM and HROMS. Surface zonal and

meridional ocean currents were extracted from both HYCOM and HROMS once every three

hours for a rectangular area defined by the limits 19� � 25�N and 164� � 155�W . This box

was chosen based on the outer limits of the trajectories of the surface drifters after 30 days.

Horizontal grid spacing for HYCOM was 0.08� or approximately 9km, while it was 4km for

HROMS.

The simulations were run for the first 48 hours, and for the full 30 days. Figure 4.7

shows the actual trajectories of the Microstar drifters after 48 hours compared to the drift

predictions from Hycom (red lines) and HROMS (blue lines). Over the first 10 hours while

the drifters moved west-northward with an average speed of 25 cm/s, HYCOM recreated

a similar pattern. However, after 10 hours, the paths of the drifters diverged from the

predictions. The actual drifters moved in the southwest direction and remained relatively

coherent. HYCOM moved the cluster northward, and HROMS back to the east, towards

Oahu. Looking at the 30 day predictions (Figure 4.8) highlights a major di↵erence between

actual and predicted. The drifters encountered a persistent anticyclone located to the

southwest of the island of Oahu that was not resolved in either HYCOM or HROMS
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models. However, even though both models did not replicate the actual trajectories of

the drifters, the output can be still be used to simulate clusters. The dispersion of these

simulated clusters can be used to validate or invalidate the behavior of the actual drifter

clusters. For each data source (HYCOM and HROMS) a simulated cluster deployment

was run with zero leeway and using the 9 initial cluster grid positions. Start time of the

simulation matched the start time of the actual cluster deployment (0430Z17MAY2016

when the final drifter in the grid was deployed). The average root mean square separation

of each simulated drifter pair over the first 24 hours is shown in Figure 4.9. The separation

of the simulated drifter pairs mirrored the behavior observed by the Microstar pairs, when

separation between neighboring pairs remained nearly fixed at the initial grid spacing over

the first 24 hours. This indicates that given the flow conditions, the drifters in the cluster

should have maintained their relative positions and the behavior of the Microstar drifters

is what should have been expected from both sets of buoys, assuming zero leeway.

4.3.2 Comparison of Drifter Speeds

The speed of the drifters was calculated for every time step by taking the distance between

the previous and current geographical position, calculated using the haversine formula for

the great circle distance between two points, and dividing through by the time interval (30

minutes). The daily mean speed of each drifter type was calculated for the full 30 days.

Neither drifter type had daily mean speeds consistently outside the 95% confidence intervals

during the 30 day period. The mean daily speeds ranged from 15 cm/s to 45 cm/s over the

30 day period. During the first three days, while both drifters remained in the same flow

pattern, mean drift speeds were nearly identical, as seen in Figure 4.10 however, after three

days the drifters separated and their mean speeds diverged. While the mean speeds of each

drifter type were similar, the speeds of individual drifters and the distribution of speeds for

each drifter type was di↵erent, even during the initial drift period when the drifters remained

in the same flow regime. Histograms of drifter velocities over the first 48 hours are shown in

Figure 4.11. Only the first 48 hours of drift was used for this comparison because the drifters
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remained together, in the same flow pattern, and all drifters that activated upon deployment

were still active. After three days one drifter was no longer transmitting and the comparison

of drifter speeds after three days would more likely reveal changes due to di↵erences in ocean

currents, rather than di↵erences in buoy performance. The mean speed of the Microstar

drifters over the first 48 hours was 21.2± 12.6 cm/s. The mean speed of Davis drifters was

slightly higher but had much higher standard deviation, 22.9± 26.0 cm/s. This is shown in

Figure 4.11: bottom right, the Davis drifters had an uneven distribution with a much higher

occurrence of slow speeds (from 0 � 5 cm/s) and a larger number of drifters that showed

increased speed (> 40 cm/s; up to 95 cm/s). The high occurrence of extremely low speeds

remained even after the repeat geographical positions were interpolated. For comparison,

histograms of simulated drifter speeds are shown in Figure 4.11:top left (HROMS) and

top right (HYCOM), for the first 48 hours of the simulation. HROMS simulated drifters

recorded the lowest mean speed at 13.2±6.1cm/s, which is 8cm/s slower than the observed

drifter’s mean speeds. HYCOM drifters recorded an average speed of 17.3±7.3cm/s, which

is 3.9 cm/s slower than observed.

4.4 Leeway of Surface Drifters

One explanation for the disparity in drifter dispersion and speed could be due to di↵erences

in the leeway drift of each drifter type. The addition of motion induced by wind forces

could increase the speed, or change the direction of a drifter’s movement. However, in order

to estimate leeway from these drifters, it must be calculated indirectly.

4.4.1 Estimating Leeway indirectly

The leeway of an object does not just represent the result of wind on a drifting object. As

detailed in Brushett et al. (2014a), the total drift of an object is the sum of the drift caused

by the currents and the drift caused by leeway. However, inside both of these sources of drift

are subcategories. The drift caused by currents can be thought of as the superposition of the
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drift caused by surface currents and the drift caused by stokes drift (small scale currents

caused by both local sea waves and swell). The drift caused by leeway can similarly be

broken down into the drift caused by wind upon the surface of the ocean and the impact of

waves. Without instrumentation measuring pitch and roll, the impact of waves cannot be

di↵erentiated from wind-driven leeway. In addition, without direct measurement of speed

through the water, the leeway must be calculated indirectly.

Direct calculations of leeway require measuring speed and direction through the water,

as well as local wind velocities. Linear regressions to compare the speed through water

to the wind speed (using 10m winds as standard) allow an estimate of leeway drift to be

calculated, often measured in a percent of the wind speed, represented by the slope of

the linear regression. In this method ocean currents have been negated due to the use of

speed through the water as opposed to speed over ground. For indirect estimates of leeway,

surface current velocities must be removed from the velocity of the drifter before leeway

is calculated. In both methods, these leeway estimates include impacts from stokes drift,

waves, and wind. It has been shown by Breivik and Allen (2008) that leeway impacts caused

by wave motion can be ignored for objects smaller than one half of the wavelength of the

average wave. The mean peak wave period obtained from the Wave Watch III model for

the first 48 hours in the deployment region is around 10s. Assuming deep water waves due

to a depth exceeding 1000m, a 10s wave corresponds to ⇠ 156m wavelength. These small

drifters easily meet that criteria. This means that measurements of leeway for the surface

drifters will comprise motion caused by winds, stokes drift caused by sea waves and stokes

drift caused by swell. The leeway caused by the stokes drift from local wind driven sea waves

will predominantly be in the downwind direction. Leeway caused by stokes drift from swell

could occur in any direction and would therefore be wrapped into both the downwind and

crosswind leeway estimates.

In order to remove the surface currents from the drifter’s motion, the surface velocities

must be known. In most calculations of indirect leeway on small objects, these
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measurements of surface currents come from drifters deployed alongside the object. The

drifter is assumed to have zero leeway and acts as a proxy for measurements of surface

current speed. However, in this case, the drifter is the object of interest and zero leeway

cannot be assumed. Estimates of surface current velocity could be gained from using

available observations, such as High Frequency Radar (HFR), or modelled current data

(such as HYCOM and HROMS). However, HFR available in the region does not cover the

entire domain of the drift and the poor performance of HYCOM and HROMS in predicting

the drift direction and magnitude, as well as the discrepancies in mean velocities exclude

them from consideration. Instead the mean behavior of the drifters themselves were used to

adjust the individual drifter speeds at each time step. In order to do this, the drifter speed

data for the leeway calculation was confined to the first 48 hours, when the drifters remained

in a cohesive grouping. The 48 hour window was broken down into two periods: the first

10 hours when the drifters moved to the west, and the next 38 hours when the drifters

moved to the southwest. For each window, the mean zonal and meridional velocities of all

the drifters over that period was subtracted from the drifter’s movement, leaving behind

the residual. This residual does not necessarily correspond directly to speed through the

water, but instead represents the movement of the drifters caused by smaller scale processes

such as surface Ekman forcing, wind leeway, stokes drift and waves. Since these are all of

interest in leeway calculations, this residual can be used an estimate of the speed through

the water for leeway calculations. Hourly wind data for the leeway estimate was retrieved

from the Weather Research and Forecasting (WRF) regional model for Maui-Oahu at 2-km

resolution. For each drifter position at each time step, the wind speed and direction was

interpolated from the neighboring four gridded WRF data points. The estimated drifter

speed through the water was then matched with the 10m wind speed and direction for the

position over the 48 hour period.
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4.4.2 Leeway Results

Results showed that both drifters had measurable leeway. Leeway results are detailed in

Table 4.1 for the Microstar drifter and in Table 4.2 for the Davis drifter. Leeway speed was

calculated by regressing the drifter’s speed through the water to the wind speed. The slope

of the line represents the leeway speed of the drifter, units are normally represented as a

percent of the wind speed. The leeway regression of each drifter is shown in Figure 4.12.

The red line (and associated 95% confidence intervals, red dashed lines) are the best fit

linear regression of the wind speed compared to drifter speed through the water. The green

line (and associated 95% confidence intervals, green dashed lines) forces the y-intercept to

zero. If leeway drift were due purely to wind forcing (i.e. discounting waves/stokes drift) if

the wind is zero, the leeway should also be zero. The convention for leeway measurements

in operational oceanography is to use the constrained value (Brushett et al. 2014a; Allen

2005) as it is applied to the wind values to calculate drift, therefore, the same process

will be applied here in order to the values to be comparable. For the Microstar drifters,

the unconstrained linear regression had a slope of less than 1% of the wind speed, but

when constrained to a zero y-intercept had and leeway speed of 1.6% of the wind speed.

The Davis drifters had similar results, with an unconstrained leeway speed of 1% and a

constrained leeway speed of 1.6% of the wind speed. However, when the leeway was broken

down into downwind and crosswind components, di↵erences between the two drifter types

was observed (Figure 4.13). The Microstar drifters had downwind leeway regressions, both

constrained and unconstrained with negative slopes, indicating that the drifters tended

to move in the upwind direction. This is opposite of the Davis drifters, which displayed

0.4% downwind leeway. Both drifter types showed the greatest leeway impacts in the

crosswind direction. The Microstar drifters had a crosswind leeway of 1.4% of the wind

speed unconstrained, and 0.7% when the regression was constrained through zero. The

Davis drifters were even more impacted in the crosswind direction with an unconstrained

crosswind leeway of 2% of the wind speed, and a constrained crosswind leeway of 1.2% of

the wind speed. The angle of the crosswind component from the wind ranged from 10-50
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degrees to the right of the wind. For comparison, other objects with similar crosswind

leeway include objects with notably more freeboard, such as a 5.3m Panga boat with 2

people on board (1.5%), a 4.2m empty sunfish (0.48%), and a person in the water, face

down, deceased (0.46%) (Allen et al. 2010; Brushett et al. 2014a).

4.5 Discussion

Since the leeway was calculated indirectly by removing the mean drifter velocities, the

resultant leeway coe�cients could contain drift from wind forcing, Stokes drift, or from

residual motion in the surface currents such as those caused by local winds. In direct leeway

measurements, both wind forcing and Stokes drift are captured in the leeway estimates

making previous leeway coe�cients comparable. However in this indirect method, the

residual surface current flow is an additional force on the drifters and must be investigated.

Surface Ekman drift caused by local winds could contribute to the residual motion of the

drifters. (Poulain et al. 2000) found that Davis-type drifters leeway to the right of the

wind caused by vertical velocity shear (0.3�0.5% of the wind speed). Di↵erences in Ekman

velocities at the surface compared to the mean depth of the drifter’s drogue could contribute

to vertical velocity shear.

Ekman (1905) quantitatively described the results of wind forcing on the surface layer

of an ocean on a rotating earth. Assuming a steady, homogeneous flow with friction on a

rotating Earth, the balance of forces reduces to the Coriolis and friction1:

�fv = Az
@2u

@z2
and fu = Az

@2v

@z2
(4.2)

with surface boundary conditions

⌧x = ⇢Az
@u

@z
|z=0 = 0 and ⌧y = ⇢Az

@v

@z
|z=0 = 0 (4.3)

1
Assuming the only movement is caused by wind. If the wind driven layer is sitting on a lower geostrophic

layer, then U = ue + ug and the pressure gradient force is included
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Using complex variables so that V = u + iv, this system of equations can be reduced to

second order homogeneous di↵erential equation:

@2V

@z2
� a2V = 0 where a =

r
if

Az
(4.4)

where f is the Coriolis parameter and Az is the vertical eddy, or kinematic, viscosity.

Assuming a solution in the form of V = Aeaz+Be�az and applying the boundary condition

that as z ! �1, velocity goes to zero, the solution becomes:

V = Âe
z

De [cos(
z

De
+ �) + isin(

z

De
+ �)] (4.5)

Here, De is the Ekman depth, defined as De =
q

2Az
f and � is the angle of current to the

wind. Applying the surface boundary conditions, equation 4.3, and for simplicity making

the assumption that the wind is only zonal, the solution reduces to

u = Voe
z

De cos(
z

De
+
⇡

4
) (4.6)

v = Voe
z

De sin(
z

De
+
⇡

4
) (4.7)

where the complex velocity has been broken down into its real component (u) and imaginary

component (v). The amplitude constant, Vo is ⌧x
⇢
p
Azf

. This result is the classical Ekman

spiral with a surface velocity that is 45� to the right of the wind in the northern hemisphere,

and a depth averaged transport that is 90� to the right. This result depends on the

assumption that the vertical eddy viscosity is constant with depth. Although a somewhat

unrealistic assumption, there have been observations of Ekman spirals in coastal regions

(Chereskin 1995). However, we can use this relationship to estimate the vertical shear

caused by the wind-driven layer on the drifters. The surface current caused by Ekman flow

can be found by setting z = 0 in equations 4.6 and 4.7:

u(0) = Vocos(
⇡

4
) and v(0) = Vosin(

⇡

4
) (4.8)
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The profile of the Ekman layer currents will decay exponentially at a rate given by:

p
u2(z) + v2(z) = Voe

z
De (4.9)

Using a value of Az = 2e�2m2/s and the mean wind velocity from WRF of 7.4m/s yields an

8.4cm/s surface Ekman current2. Using Eq. 4.9, the current at 2m depth is 7.6cm/s, giving

a vertical shear, @V
@z = 0.004s�1. A vertical current shear could cause the Davis drifter to tilt

in the direction of the surface Ekman flow, which would cause the heavy GPS unit on the

top of the drifter to be o↵-center, increasing the angle of tilt. Once skewed, the drifter would

have increased leeway due to increased freeboard. The Microstar drifter appears to be less

influenced by shear due to the design, due to the large drogue being completely centered

well below the waterline and the lack of a central inflexible rod. Vertical shear caused by the

surface Ekman layer could explain some of the di↵erences in the behavior of the two drifter

types. The mean WRF 10-m wind stress and the resulting surface Ekman currents over

the first 48 hours of the drift is shown in Figure 4.14. The red vectors represent the mean

wind stress (N/m2) over the first two days of the drift. The dominant direction is to the

ENE, representing the Northeast Trade winds. The resulting Ekman surface current (black

vectors) direction is to the northwest. This direction matches the anomalous movement

of some of the Davis drifters, where drifters initially in the southern portion of the grid

moved northwest, while their Microstar counterparts moved southwest. The surface Ekman

transport to the northwest could also contribute to the large crosswind component of both

drifter’s leeway estimates.

Another possible cause for the large crosswind leeway could be from Stokes drift. Stokes

drift is the net movement caused by a surface wave field in the direction of wave propagation

(Stokes 1847) and can be thought of as the di↵erence between the average wave-induced

Lagrangian velocity from an Eulerian velocity (van den Bremer and Breivik 2018). Wave

2
The vertical eddy viscosity was estimated using relationship between wind speed and latitude as

described in Ekman (1905) and Pond and Pickard (1983)
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induced Stokes drift can transport mass in the upper layer of the ocean, and has been

observed both in the ocean (Smith 2006) and in the laboratory (Huang et al. 2011). Wave

data for the timeframe of the drifter deployment was available from the Hawaiian Regional

Wave Watch 3 (WW3) model (Chawla et al. 2013), as well as NOAA buoy 51002 to the

southwest of the Island of Hawai‘i. Significant wave height (in meters), wave period (in

seconds), and wave direction (coming from - colors, going towards - vectors) for the dominant

waves is shown in Figure 4.15. In the area of the drifter’s release and subsequent travel, the

dominant wave direction estimated from WW3 is generally to the northwest. A 48 hour

time series comparison between WW3 in the vicinity of the NOAA buoy with observations

taken from 51002 concur, flow direction is to the northwest. The net Stokes drift flow in

the direction of wave travel can be estimated from

A2k2Cse
2kz (4.10)

where A is the wave amplitude, k is the radian wavenumber (2⇡� ) and Cs is the phase

speed (Pond and Pickard 1983). Using a mean Significant wave height of 2m, a mean peak

period of 10s (taken from WW3 for the first 48 hours of the cluster) yields a net Stokes

drift of approximately 2.5 cm/s. The direction of the Stokes drift matches the wind-driven

surface Ekman current direction over the same time period. The combined sum of these two

residual movements could have contributed to the large crosswind leeway component seen

in both drifter types. However, the crosswind leeway of the Davis drifters exceeds that of

the Mircostar drifters by 0.6% unconstrained and 0.5% constrained. The Davis drifters have

been shown to be sensitive to vertical shear at a magnitude of up to 0.5% of the wind speed

(Poulain et al. 2000) while the Microstars do not. While both appear to be susceptible to

Stokes drift and Ekman currents, the shear over the surface Ekman layer could explain the

increased crosswind leeway exhibited by the Davis drifters.

Given the estimates of downwind/crosswind leeway and the wind speed values recorded

from WRF over the 48 hour period, the additional velocity imparted to the drifters from

132



the leeway forces can be estimated. By comparing these values which include wind forcing,

Stokes drift and Ekman to the values calculated for Stokes drift and Ekman, the magnitude

of wind-forced leeway can be estimated. The mean wind speed recorded by WRF over

the 48 hour period was 7.4 ± 1.8m/s. For the Davis drifters, the downwind leeway (both

unconstrained and constrained through zero) was 0.4% of the wind speed, or 2.9 cm/s. The

dominant wind direction was the standard NE trade winds during the drift period. However,

both Stokes drift from the dominant waves and surface Ekman forcing do not align with the

downwind direction. This means that the additional velocity in the downwind direction most

likely came from wind-induced leeway or from small impacts of sea wave induced Stokes drift.

However, the crosswind leeway was 2.0% unconstrained, or 14.8 cm/s and 1.2% constrained

through zero or 8.8 cm/s. Both Stokes drift and Ekman align with the crosswind direction

and their estimated sum (10.9 cm/s) could explain the constrained crosswind leeway, and

73% of the unconstrained crosswind leeway. If you add in the estimated leeway caused

by shear found earlier by Poulain et al. (2000) then this could completely explain the

crosswind leeway of the unconstrained Davis drifter regression. This additional velocity

could account for some of the di↵erence between the modeled surface currents and the

observed velocities measured from the drifters. The Microstar drifter’s speeds appear to be

less impacted by the wind. The crosswind leeway for the Microstars was the largest wind

impact, with a crosswind leeway of 0.7% (constrained) which is equivalent to 5.2 cm/s and

1.4% (unconstrained) or 10.4 cm/s. Both of these velocities could be explained by both

Stokes drift and the surface Ekman current. However, their downwind leeway was negative,

indicating an upwind direction of movement. The di↵erence in designs above and below the

water could result in the variation between the two drifter’s downwind leeway. The Davis

drifters have a larger above water signature and a mean drogue depth that is shallower than

the Microstar design. In the second generation Davis drifter used in this study, the metal

rod running through the middle of the drifter (including the GPS package attached to the

top) extends 15cm above the waterline. There are also four foam floats attached to the

end of each drogue’s wing. The wings of the drogue extend down to 1 m depth from the
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surface. This is contrary to the Microstar design where the drogue is centered at 1m depth

but extends to 1.3m, with their above surface profile limited to one 8-in diameter sphere

that sits directly on the surface. For the Microstar, an upwind movement indicates that the

current velocity at the depth of the drogue is driving the drifter movement, as opposed to

the near surface wind driven layer or wind forcing on the above water sphere.

Given the discussion above the large crosswind leeway seen in the drifters, particularly

the Davis drifter, could be due to a push from the surface Ekman current, vertical shear

caused by Ekman profile Stokes drift, or even a combination of all three. The strong

crosswind leeway estimated in the Davis drifters may have led to the observed di↵erence in

the separation of the drifter pairs. However, due to a lack of direct measurements of drift

through the water and tilt, the cause cannot be specified, only hypothesized. In addition,

the error in the leeway measurements is large due to the indirect method of estimating speed

through the water. However, the rate of separation of the pairs during the initial drift period

does indicate that the buoys do not respond in the same manner to the net forces acting

on the drifters. With such a large pair separation, the Davis drifters do not seem to act

as non-slip drifters, which would follow a pattern created by the simulated drifters (Figure

4.9) and that was observed in the Microstar’s pair separation (Figure 4.6). In addition, the

Microstar’s downwind leeway component was small (0.4%) and the direction was actually

upwind, indicating that they are not driven by wind-induced leeway. The Davis drifter’s

downwind leeway does not align with the other forces and is most likely wind-induced.

Another source of error could be from the di↵erent positioning sources and associated

latency. The Microstars were Iridium based, where the Davis drifters used Argos positioning.

Both drifter types had bad/missing position data during the initial run that needed to be

interpolated, however, the Microstars had less than 0.5% of the data that needed to be

interpolated. The Davis drifters on the other hand had as much as 9.8% of the data that

needed to be interpolated. In addition, Davis drifter positions would repeat if a new fix

was not received, resulting in a zero velocity for that time block, then jump to the correct
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position and the resulting velocity would jump to unrealistically large values (any value

greater than 1.5 m/s was removed). The velocity values that were exactly equal to zero

were also removed from the leeway regressions in the Davis drifters because of that reason,

as well as the histogram of drifter velocities (Figure 4.11).

Since this experiment was conducted, the Davis drifters used in SAR have been updated,

from a generation II to a generation III, iSLDMB, with iridium positioning. The newer

Davis designs also sit lower in the water, with the instrument package just resting on

the undisturbed sea surface. This will most likely change their drift characteristics. One

recommendation from this study would be to repeat the cluster deployment with the new

GenIII Davis drifters. Outfitting at least one drifter with a doppler current meter and

accelerometer would allow for direct measurements of leeway to be obtained, as well as the

tilt of the unit under the influence of vertical current shear in the surface Ekman layer. The

switch to Iridium in the GenIII would also remove the discrepancies caused by the di↵erent

positioning sources.

4.6 Conclusion

The cluster deployment conducted here showed that in this scenario, the Microstar and

Davis drifters did not behave in the same way when subjected to the same forces. The

Microstar drifter behaved more like a typical non-slip drifter, while the Davis drifter had

large crosswind leeway that resulted in increased pair separation over the initial drift period.

However, due to the indirect method of determining both drifter type’s leeway and the lack

of any measure of tilt on the drifters, the specific cause of the di↵erence cannot be determined

and further field testing is recommended to narrow the cause of the slip in the Davis drifters.

The use of these drifters in operational oceanography and emergency response necessitates

that they are non-slip, or the leeway is known. If the Davis drifter is being used as a non-slip

drifter, a correction for the large crosswind leeway should be applied.
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Microstar Unconstrained Linear Regression
Slope (%) Y (cm/s) Syx (cm/s)

Leeway Speed 0.9 5.3 17.8
DWL -0.7 1.6 25
CWL 1.4 -5.7 25

Microstar Constrained Linear Regression
Slope (%) Syx (cm/s)

Leeway Speed 1.6 17.8
DWL -0.5 25
CWL 0.7 25

Table 4.1: Linear Regression of Leeway Speed, Downwind Leeway, and Crosswind Leeway
for Microstar Drifters. For each component of leeway, the slope (in % of wind speed), the
Y-intercept (in cm/s) and the Standard error (Syx, in cm/s) is listed.
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Davis Unconstrained Linear Regression
Slope (%) Y (cm/s) Syx (cm/s)

Leeway Speed 1.0 3.9 21.8
DWL 0.4 0 27
CWL 2.0 -5.6 25

Davis Constrained Linear Regression
Slope (%) Syx (cm/s)

Leeway Speed 1.6 21.8
DWL 0.4 27
CWL 1.2 25

Table 4.2: Linear Regression of Leeway Speed, Downwind Leeway, and Crosswind Leeway
for the Davis Drifters. For each component of leeway, the slope (in % of wind speed), the
Y-intercept (in cm/s) and the Standard error (Syx, in cm/s) is listed.
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Figure 4.1: Schematic showing the components of leeway, from Allen (2005)
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Figure 4.2: Microstar drifter design (left) compared to Davis drifter design (right)
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Figure 4.3: Initial deployment locations of the surface drifters, and the trajectory of each
drifter 12, 24, and 48 hours after release. The drifter in the center of the cluster grid
(position 5) was used as a reference for the dispersion of the group.
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Figure 4.4: Trajectories of all drifters, both Microstars (blue lines) and Davis (red lines).
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Figure 4.5: Average root mean square separation of of the cluster from the center position.
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Figure 4.6: Average root mean square separation of drifter pairs in the cluster for each
drifter type.
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Figure 4.7: Predicted trajectories of the cluster for the first 48 hours using HYCOM (red)
and Hawaii ROMS (blue) compared to the actual paths (black)
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Figure 4.8: Predicted trajectories of the cluster for 30 days using HYCOM (red), Hawaii
ROMS (blue) compared to the actual paths of the Microstar (black) drifters
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Figure 4.9: Separation of a predicted cluster using HROMS and HYCOM models

146



Figure 4.10: Mean daily speeds for each drifter over the first 30 days, Microstars (blue lines)
and Davis (red lines) with standard errorbars.
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Figure 4.11: Histogram of drifter speeds over the first 48 hours
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Figure 4.12: Leeway speed (m/s) compared with wind speeds at 10m (m/s) for both
Microstars (top) and Davis (bottom) drifters. Green is the best fit linear regression, and red
is the linear regression forced with a zero y-intercept. Dashed lines represent 95% confidence
intervals
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Figure 4.13: Downwind (left) and Crosswind (right) Leeway speed (m/s) compared with
wind speeds at 10m (m/s) for both Microstars (top) and Davis (bottom) drifters. Green is
the best fit linear regression, and red is the linear regression forced with a zero y-intercept.
Dashed lines represent 95% confidence intervals
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Figure 4.14: 48 hour Mean Ekman Surface currents (black vectors, in cm/s) calculated from
WRF 10m surface wind stress (red vectors in N/m2)
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Figure 4.15: 48 hour mean wave height, period and direction for Peak waves
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Figure 4.16: Top: Hourly wave direction taken from Wave Watch 3 in vicinity of buoy
51002. Bottom: Hourly wave direction from buoy 51002. Vectors are scaled by significant
wave height.
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Chapter 5

Discussion

The Hawaiian island chain is an ideal place to study lee eddies. Due to is unique position

in the path of the North Equatorial Current and the Northeast trade winds, vortex formation

downstream of the islands is common. So it is surprising that there are few, and no recent,

comprehensive observational studies of these eddies. The last comprehensive study was in

1998, by Lumpkin. Since then, there has been a dramatic increase in available drifter data,

now with > 800 drifters having passed through the lee region of the islands. There are

also long time records (20 years) of satellite data and the placement of high resolution High

Frequency Radars on some of the islands.

There were 25 anticyclones found in the 27 years of drifter data, averaging out to just

less than one anticyclone observed per year. The greatest number of anticyclones in one

year was four, which happened in both 1994 and 1995. These years coincided with a large

observational study, which could account for the increased numbers. Drifter coverage was

not continuous in time and it is probable that many anticyclones passed quietly through

without a drifter hitching a ride, meaning the anticyclones are most likely under sampled.

The anticyclones observed with drifters were most likely to form in the summer months

(July, August, September), and were least likely to form in the fall months (October,

November, December). They had an average lifespan in the lee of the islands of 75 days,

and the anticyclonic sector formed by the looping drifters extended past 170�W, a distance
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of 1500 km downstream. The anticyclones followed a very narrow path centered to the

south-southwest at 260�T. This lays out a clearly defined anticyclonic sector in the lee of

the island of Hawai‘i. It is interesting to note that a similar cyclonic zone to the north of

the islands was not visible in the drifter data, as was predicted by Lumpkin (1998). There

were only three cyclones observed in the drifter data in the lee of the islands, and none of

them travelled past 160�W. If this is truly representative of the dual vorticity zones created

by the wake of Hawai‘i, then the anticyclonic zone is substantially stronger and dominates

the lee dynamics.

One of the questions raised by Lumpkin (1998) after the last observational study was

what the dominant forcing mechanism was for the anticyclones in the lee of Hawai‘i. An

attempt was made to answer that question here by examining temporal and spatial patterns

in the wind and sea level surrounding the island. Empirical Orthogonal Functions (EOFs)

were used to pull out the dominant modes of variability in both the wind stress using

QuikScat satellite data, and sea level anomalies, using AVISO satellite data. The dominant

mode of variability in the wind stress was the annual fluctuations of the north east trade

winds due to seasonal patterns. There was also a 50-day signal observable in the second

wind stress EOF mode. The dominant mode of variability for the sea level anomaly was

also a seasonal pattern with an annual signal. This signal was mostly confined to the

lee of islands and had significant overlap with the observed anticyclonic sector from the

drifters. With the annual peak in wind stress, this could indicate a potential for wind

forcing of the anticyclones. The mean wind stress curl in the lee of Hawai‘i can spin up

anticyclones and it has been shown by Yoshida et al. (2010) that anticyclones in the direct

lee of Hawai‘i can be wind-induced at a 60-day frequency, but that it did not explain the

anticyclones further to the west. In addition to the annual signal, there was also a 100-day

signal observable in the sea level anomaly data. This signal was strongest downstream of

the islands, and had two main sections. One area where the 100 day signal was strong was

in a zonal path centered at 19.5�N, extending from 160� to 180�W. This area matches the
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known location of the Hawaiian Lee Countercurrent (HLCC), that separates the cyclonic

sector on the north, form the anticyclonic sector to the south. A second region where

the signal was strong was a south-southwest region running from 160� to 175�W, angled

at 260�T. This section of the 100 day signal matches the anticyclonic sector very well.

The 100-day signal was found to be uncorrelated to the 50-day signal in the wind stress.

With the anticyclonic signature in the both the annual and 100-day signals, there could be

multiple forcing mechanisms at play. The wind stress would explain the annual signature,

but it cannot explain the 100-day signal. Unfortunately, there is very little observational

data for ocean current structure and variability o↵ of the southern region of Hawai‘i. In

order to investigate the potential of shear instability from the NEC separation’s o↵ of the

island as a potential forcing mechanism, better quality data is needed. The whole region

surrounding the island of Hawai‘i is observationally sparse. This is unfortunate because

the island is subject to interesting dynamics. The current flow along the leeward coast

often reverses direction (Chapter 2) and when speaking with local boaters and fisherman

near South Point, Hawai‘i, they describe the regional waters as di�cult and unpredictable.

One recommendation from this dissertation would be to complete an observational study

along the southern and leeward coasts of the island of Hawai‘i. This is an important region

economically, for fishing and tourism, but our knowledge of the coastal dynamics is lacking.

What is the current structure o↵ of South Point? Is the current fast enough, and is the

shear line strong enough to generate this anticyclonic eddies? And what happens to the

Hawaii Lee Current along the western shores of Hawai‘i? Mean currents from the drifters

show that it disappears during anticyclones. This would mean it is most likely stronger

during cyclones. And does it exist when there are no vortices?

Most of the research on lee eddies has been conducted on the vortices of the largest

island. But we know that these eddies also form in the lee of the smaller islands. Due to

the presence of high frequency radar (HFR) installed along the leeward coast of the island,

Oahu presented an opportunity to study the lee wakes in more detail. A year long drifter and
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HFR study was conducted in the western waters of Oahu. There were 75 drifters deployed

o↵ the western coast of Oahu and the HFR provided almost near-continuous high resolution

spatial current vectors at hourly intervals. During the course of the year, there were eight

cyclones and five anticyclones observed in Oahu’s lee. Looking at the eddies formed only

during the NE trade winds, the cyclones and anticyclones split into distinct sectors, with a

cyclonic zone to the north, and an anticyclonic zone to the south, as observed in Chapter

2, for Hawai‘i. Although previously modeled, this study is the first to map out these dual

zones using observations for Oahu. By looking at the vorticity balance in the ocean during

these events, these vortices are most likely wind-driven. However, not all of the vortices in

the lee of Oahu were wind-induced. Three of the cyclones formed during Kona winds (trade

wind reversals) when the wind forcing was removed. These cyclones must have been formed

by another source of vorticity into the ocean, such from changes in topography (only for

very coastal regions) or input of relative vorticity by shear or curvature. This breakdown

of vorticity inputs using the HFR currents is what was lacking in the previous study on the

island of Hawai‘i.

There were three varieties of drifters used in this dissertation research. The first type,

used to investigate the anticyclones in the lee of Hawai‘i were from the Global Drifter

Program-Surface Velocity Program (SVP) database. The errors in these buoys have been

well studied and the data was validated in Lumpkin and Pazos (2007). However, the two

drifters used to study the smaller vortices in the lee of Oahu were a Davis-style drifter

by MetOcean, and a Microstar drifter by PacificGyre. Deployed together in a cluster,

di↵erences in their behavior were noted. A detailed comparison of their behavior was

completed in Chapter 4. Over the course of the initial drift, both drifters moved with the

mean flow. However, looking at the separation in the cluster revealed that the Davis drifters

quickly separated from their Microstar pair were bumped to the northwest. A estimate of

each drifter’s leeway revealed di↵erences in their response to wind and ocean forcing. While

the Microstars behaved more closely to a non-slip drifter, the Davis drifters had downwind
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leeway that was around 0.4% of the wind speed, and had a crosswind leeway that was 0.5%

larger than the Microstars. The Microstar drifter’s crosswind leeway could be explained

by the local Ekman surface currents and Stokes drift from the dominant waves, both relics

of the indirect leeway estimation method. However, the Davis drifters additional leeway

meant a larger response to those forces, or additional input from wind or current shear.

With recent updates to the Davis drifter used in search and rescue, this study should be

repeated with the newer generation drifters. If possible, outfitting with an accelerometer or

pitch/roll meter would allow wave impacts to be removed.

One of the di�culties in conducting operational studies in the Hawaiian region is the

low density of oceanographic observations due to the small land to water ratio. This has

implications outside of academic interests. In particular, search and rescue operations

rely on accurate wind and ocean data/forecasts in order to plan search responses. After

observing the lack of data available for parts of this study, I wanted to know what that

data availability was for search and rescue and if it had an impact on search probability

size. This lead to Appendix A, a look at the data available for search and rescue in Pacific

waters. It turns out that most of the search and rescue cases in the last 16 years are

not covered by anything more than the global scale wind and ocean models. Not only

would increased observations improve our scientific understanding of Hawaiian waters, but

strategically placed observations could improve search and rescue.
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Appendix A

EOF Analysis Review

A.1 Definition

The Empirical Orthogonal Function (EOF), also called Principal Component Analysis

(PCA) is a statistical tool used to explain the variance in a data set. This method can be

used to find both temporal and spatial patterns that represent variance in a field, such as

sea surface height, winds, etc. EOF analysis can be used only to find standing wave patterns

in spatially gridded data sets (Emery and Thomson 2004). In order to find propagating

modes, a complex EOF should be used in the frequency domain (Emery and Thomson

2004).

A.2 Background

Although used earlier, Principle Component Analysis was brought into mainstream use by

Hotelling (1933), however it wasn’t until 1956 that the term EOF was coined by Lorenz

(1956) and first used in geophysical sciences for statistical weather prediction (Emery and

Thomson 2004). Since then, it has grown in use as a tool to analyze variation in spatially

gridded data sets. Even though there is no direct relationship between the EOF modes

and scientific processes, it can be a useful way analyze the variance in a data set. For this

reason, EOF analysis is particularly useful with the recent addition of gridded satellite time

series data sets.
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A.3 Methodology

Here, two di↵erent EOF methodologies will be discussed. The first is the calculation of

EOFs and principle components by calculation of the eigenvector and eigenvalues of the

covariance matrix. The second method discussed is singular value decomposition (SVD) of

the data matrix.

Since the EOF is used on spatially gridded time-series of a variable (such as temperature,

sea surface height, etc.) it can be represented as a function:

A(�, ✓, t) (A.1)

where A is the variable or data, � is the longitude, ✓ is the latitude, and t is the time.

The first step is to prepare the data for computation of the EOF. To reduce computational

stress, it is e�cient to combine the latitude and longitude dependence into one variable

representing spatial coordinates, and transform from a three dimensional matrix to a two

dimensional matrix. This creates a variable that is a function of space and time, A(s, t).

Next, the mean must be removed from the spatial data set. This can be done by removing

the time average of the data at each spatial grid point, leaving the anomaly field:

A0(s, t) = A(s, t)�A(s) (A.2)

where A0(s, t) is the anomaly field, A(s, t) is the original 2D data set, and A(s) is the time

averaged data at each grid point. If the data field is not a scalar, but a vector, such as wind

speeds, or ocean currents, the same preparatory methods can be used:

U 0(s, t) = U(s, t)� U(s) and V 0(s, t) = V (s, t)� V (s) (A.3)

where U 0(s, t) is the anomaly field of zonal wind, U(s, t) is the original 2D zonal wind data

set, and U(s) is the time averaged data at each grid point. The same is true for meridional

wind, V . These can then be combined into a complex number W = u0 + iv0.
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A.3.1 Eigenspace Method

The computation of the EOF begins with the calculation of the covariance matrix of the

data. Covariance represents how much two variables change together about a common

mean (Emery and Thomson 2004). A positive covariance demonstrates that two variables

increase or decrease together, where a negative covariance represents one variable increasing

and the other decreasing.

C =
1

n� 1
A0TA0 or C =

1

n� 1
W 0TW 0 (A.4)

For a square matrix, we can now solve the eigenvalue problem, Ce = �e where C is the

covariance matrix, e is the eigenvectors and � are the eigenvalues as follows:

Ce� �e = 0 (A.5)

CIe� �Ie = 0 (A.6)

(C � �I)e = 0 (A.7)

which is the characteristic equation and I is the unity matrix. A non-trivial solution requires

that

det(C � �I)e = 0 (A.8)

We can then solve for e, the eigenvectors (the EOFs) and for �, the eigenvalues (the principle

components or time-series amplitudes of each EOF). The percentage variance represented

by each mode is

Vi =
�iPn
i=1 �i

⇤ 100 (A.9)

Note: If a complex dataset, W is used it will create a covariance matrix of dimension NxN

that is Hermitian. A Hermitian matrix is defined as a matrix that is equal to its conjugate

transpose. The eigenvalues of a Hermitian matrix are real and N orthogonal eigenvectors
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exist (Hardy and Walton 1978). Solving the eigenvalue problem yields real eigenvalues and

complex eigenvectors. The eigenvectors of each mode are of dimension N, complex, with

the magnitude detailing speed (such as wind speed or current magnitude) and the argument

detailing direction or phase, which create a set of vectors for each geographic position.

A.3.2 SVD Method

Singular Value Decomposition is a method of breaking down a matrix into the product of

three matrices, and therefore picking a di↵erent coordinate system in terms of maximum

variance. If we begin with a mxn matrix, A, where m is time and n is space, we can factor

A using SVD into:

A = USV T (A.10)

Here, U is an orthogonal mxm matrix, V is an orthogonal nxn matrix, and S is an mxn

diagonal matrix (Williams 2014). Matrix S is the weighting for each mode, from greatest

to least, along the diagonal. This can also be thought of as the variance represented by

each mode. For each mode Si, the associated components of U and V are column i of U

and row i of V T or column i of V . U is m points in time, so column i of U is the amplitude

of mode i and are the Principle Components (PCs) for that mode. V is n points in space

for each column, and this is the EOF for that mode.

A.4 Complex EOF

EOF analysis can only detect standing waves or oscillations. Because of this, propagating

features in a data set show up as two modes, with each mode representing a phase of the

propagation. In order to represent propagating features in one mode, a complex EOF is

used. A complex EOF uses a Hilbert transformation to represent the data in the frequency

domain before computation of the covariance matrix and eigenvalues and eigenvectors.
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Mathematically, a propagating feature can be represented as:

Ax,t =
X

!

[bx(!)cos(!t) + cx(!)sin(!t)| {z } ax,k] + i[cx(!)cos(!t)� bx(!)sin(!t)| {z } âx,k] (A.11)

where Ax,t = ax,k + iâx,k is the representation of the data using a Hilbert transformation.

Here, ax,k is the original data and âx,k is the Hilbert transform. The Hilbert transform does

not filter the data, the amplitudes are the same, but it advances the phase by ⇡/2. From

here, the procedure is nearly identical to the normal EOF calculation. With the complex

data Ax,t, find the covariance matrix, C, and then find the eigenvalues �i, and the complex

eigenvectors, e. From these three variables, distinct modes can be defined as Bi(x) with

principle components Pi(t), where i is the mode number.

A.5 Reconstruction of Data

One of the primary benefits of using EOF analysis is that can remove noise from a data

set. After breaking down a data set into its EOF modes and Principle Components and

identifying the dominant modes, the data can be ”reconstructed” using only those modes.

This eliminates noise in the data from higher order modes. The data can be reconstructed

with:

Data =
nX

i=1

PCi ⇤ EOFi (A.12)

where there are n EOF modes and PC is the principle components for each mode. If after

analysis of the EOF results, the main dynamics can be represented from the first three

modes, the cleaned data can be represented by the sum of the first three modes:

NewData = PC1 ⇤ EOF1 + PC2 ⇤ EOF2 + PC3 ⇤ EOF3 (A.13)
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Appendix A

Search and Rescue Applications: On the Need to

Improve Ocean Observing Data Systems in

O↵shore or Remote Locations

Abstract

Search and rescue (SAR) in remote maritime locations is a di�cult mission. One of the

limitations in these isolated regions is the low density of available oceanographic data for

model validation. In order to examine the state of remote search and rescue a review

of maritime search theory and advances was conducted. This included basic drift theory,

leeway, available environmental data, and the current methods used by the United States

Coast Guard for SAR operations. In particular the U.S. Coast Guard’s fourteenth district’s

SAR case history was examined and it was found that 60% of SAR cases fall outside of

areas that have high-resolution wind and current data, with only global scale model forecasts

available. In addition, 2% of cases occurred in o↵shore waters (> 12nm from land) and

exceeded 36 hours in asset response time. Three SAR simulations were run o↵ the coast

of Oahu, Hawaii using the same wind data, but di↵erent surface current models. These

simulations had extremely large (up to 12,000 km2) search areas, highlighting the need for

solutions that narrow these expected areas.
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A.1 Introduction

The United States Coast Guard (USCG) is responsible for more than 21.3 million square

nautical miles of ocean and oversees 11 mission areas including aids to navigation, living

marine resources, law enforcement and search and rescue. In 2017, the USCG responded to

16,000 search and rescue (SAR) cases and saved over 4,000 lives. Although most SAR cases

are short lived and do not require an extensive search, the cases that do extend over multiple

days and necessitate extensive asset allocations are quite expensive. These cases generally

have a low probability of successfully finding missing persons alive. During a typical SAR

case, nowcast and forecasted oceanographic and meteorological data from numerical models

are used to predict the drift pattern of the lost object or person using leeway calculations.

In many areas there are limited observational oceanographic datasets available to verify

drift prediction from the fields, which can reduce the probability of success. A prime

example is the Coast Guard’s fourteenth district, which is responsible for the Hawaiian

Islands, America Samoa, Guam, the Northern Mariana Islands, and the Republic of the

Marshall Islands as well as the high seas in between. Many of these regions are isolated and

lack observational current data for model validation. In addition, the island regime creates

unique issues that are not common in mainland region cases such as the large ocean distance

between population centers, crossing between islands can cover deep, exposed waters and

may be done in small craft (Brushett et al. 2014b). Here, we review the literature on SAR

in maritime environments and examine SAR statistics in the USCG’s fourteenth district

to identify gaps in our current oceanographic data coverage. Then, using current methods

and datasets available to USCG SAR, we run three example case studies in the Hawaiian

Islands.

A.2 Search and Rescue Fundamentals

Objects lost at sea are subject to forcing from ocean currents, winds and waves. For SAR

purposes, an object drifting in the ocean subject only to a current Vc is expected to drift
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at the same speed as and in the direction of Vc. However, the addition of wind complicates

the equations. Due to the complex nature of wind forcing on the ocean surface and that

the area exposed to the wind is di↵erent for each search object, a drift prediction requires

more than just knowledge of the surface current speed. Total drift is predicted from leeway,

defined as the motion of the object induced by the 10-m reference height wind and surface

waves relative to the ocean current in Breivik et al. (2013) as well as Allen and Plourde

(1999). Using the definitions put forth in Allen (2005), wind forcing is treated as a vector

with a direction and magnitude. Leeway speed is the velocity given to a drifting object

from the wind, relative to the ambient currents. It is usually noted as a percentage of the

wind speed. Leeway angle represents the angular o↵set from the downwind direction. This

angle, when combined with the downwind component leeway, and the crosswind component,

creates the full leeway vector. A thorough discussion of these principles is given in many

previous key publications (Allen 2005; Hackett et al. 2006; Breivik et al. 2013; Breivik and

Allen 2008).

The leeway of an object does not just represent wind forcing on a drifting object. As

detailed in Brushett et al. (2014b); Hodgins and Hodgins (1998), the total drift of an object

is the sum of the drift caused by the currents and the drift caused by leeway. However,

inside both of these sources of drift are subcategories. The drift caused by currents can be

thought of as the superposition of the drift caused by surface currents and the drift caused

by Stokes drift. The drift caused by leeway can similarly be broken down into a component

caused by wind upon the surface of the ocean and the impact of waves. Leeway estimates

therefore include impacts from stokes drift, waves, and wind. It has been shown by Hodgins

and Hodgins (1998); Breivik and Allen (2008) that leeway impacts caused by wave motion

can be ignored for objects smaller than one half of the wavelength of the average wave. The

leeway caused by the stokes drift from local wind driven sea waves will predominantly be

in the downwind direction. Leeway caused by stokes drift from swell could occur in any

direction and would therefore be wrapped into both the downwind and crosswind leeway

estimates.
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Leeway is normally calculated using either the direct method by measuring drift through

water using attached current meters and anemometers or the indirect method of subtracting

the estimate of current drift from the total drift (Allen and Plourde 1999). For di↵erent

drift objects such as a person in the water, a liferaft, or a 36’ sailboat, leeway parameters

specific to each object need to be measured and recorded for use during SAR operations. As

of this publication date there are 89 di↵erent leeway categories available with more being

tested every year. New advancements in leeway calculation have shown that it is possible

to create a model of leeway drift using the balance of hydrodynamic and aerodynamic

forces. This was conducted by Di Maio et al. (2016) on a person in the water, with the

modeled leeway performing better than the statistical approach described above. If this

model proves accurate with other objects, it could reduce the need for direct measurement

of leeway parameters.

A.3 Oceanographic Data

Observational data can be used during search and rescue operations in three main ways: a)

validation of numerical model output, b) used directly or through a short term predictive

model to predict drift, or c) through assimilation into ocean models that are then used to

predict drift.

A.3.1 Surface drifting buoys

Surface drifting buoys are commonly used to validate ocean currents during SAR operations

(Breivik et al. 2013). These units are deployed in the area of interest and their drift is

compared to available numerical model outputs, which aide in the placement of search

patterns used by response assets. A thorough discussion of the use of surface drifting buoys

for SAR is provided in Berkson et al. (2019); Wilkin et al. (2017); Roarty et al. (2018) and

Roarty et al. (2016).
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A.3.2 High Frequency Radar

The availability of High Frequency (HF) Radar surface current data has expanded over

the last twenty years. Integrated HF radar networks are available for operational

oceanographic use in the United States (IOOS, discussed below), Austrailia (Austrailian

Coastal Ocean Radar Network, ACORN), the Mediterranean Sea (Tracking Oil Spill and

Coastal Awareness, TOSCA) and since 2017, as a global HF radar network (http://global-

hfradar.org/). The U.S. Integrated Ocean Observing System (IOOS), through its academic

and state partners, is one of the main providers of HF radar data for SAR operations

(Harlan et al. 2011) in the United States. Work by Bellomo et al. (2015) showed that the

use of HF radar data in SAR and oil tracking operations reduced position error and search

range by up to a factor of 5. In addition to the real-time surface currents which can be

used for model validation, in some regions the data is used to produce forecast fields from a

program called the Short Term Predictive System (STPS) (Harlan et al. 2011). As discussed

by Ullman et al. (2003), the STPS, developed and run by the University of Connecticut

with support from US IOOS, predicts the surface currents up to 25 hours in advance by

breaking them down into two components: a tidal-driven flow, and a non-tidal driven flow

(2003). The tidal driven flow is predicted using harmonic analysis of one month of HF radar

data, the non-tidal flow is predicted using Gauss-Markov estimation (Ullman et al. 2003).

This STPS is presently available for SAR use for the entire West Coast where there is HF

radar coverage and on East Coast in the Mid-Atlantic region. However, this is not the only

STPS available. Two complementary studies used di↵erent modeling methods for STPS

from HF radar data, one using a long historical record of HF radar currents to train the

model and the second was developed as STPS for rapid deployment. Frolov et al. (2012)

developed a predictive alogrithm for surface currents up to 48 hours in the future by using

empirical orthogonal functions (EOFs). They used 1-2 years (minimum) of previous HF

radar data and deconstructed it using EOFs to capture spatial variability which they then

used to train their model. Their EOF-based STPS was more accurate for their area of

interest than other existing operational model forecasts. In contrast, Barrick et al. (2012)
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developed a STPS for rapid deployment of HF radars, in cases where radars are deployed

for emergency operations, such as oil spill response. In this case, 1-2 years of HF radar data

is not available to initiate a short-term predictive model. Instead, they created a STPS

algorithm that could work with as little as 12 hours of previous data with predictions 24

hours into the future. They did experience poor performance during short-term local wind

events, but the majority of the predictions agreed with with actual drift where mean winds

were used. Where available, these STPS programs provide a spatially robust data set of

predicted ocean currents for emergency responders.

A.3.3 Data Assimilating Ocean Current Models

The purpose of data assimilation into numerical models is to move beyond a purely

mathematical solution to one that resembles reality as closely as possible. Le Traon

(2013) outlines three major advancements in oceanography: satellite altimetry, Argo, and

operational oceanography, but the three advancements are not independent, instead they

work hand in hand to improve our knowledge of ocean science. Satellite altimetry provides

global high resolution, near-real time sea surface heights. Oke and Schiller (2007) found

that for the Ocean Forecasting Austrailia Model (OFAM) altimetry was critical in order

to represent mesoscale variability, but without Argo measurments salinity variations were

not well resolved. This was reinforced by Le Traon (2013), who showed that ocean models

rely on altimetry and Argo data sets to constrain the models. Using data assimiliation,

improvements were also noted in the Forecast Ocean Assimilation Model (FOAM) in the

North Atlantic and Nucleus for European Modeling of Ocean VARiational (NEMOVAR)

global output (Cummings et al. 2009). However, data assimilation into models can be a

computationally intense processes that requires dedicated supercomputers. In addition, not

all observations are available in real time and most observational data runs through at least

a preliminary quality control process before assimilation into a model (Martin et al. 2015).

169



A.3.4 Search Models

To run drift simulations, the USCG uses the Search and Rescue Optimal Planning System

(SAROPS) computer program. This program represents a large improvement in SAR

technology and methods, from previous versions or hand calculations. For reference, Frost

and Stone (2001) and Breivik et al. (2013) provides a robust overview of search methods

prior to the implementation of SAROPS in the early 2000s. SAROPS is computationally

similar to SAR models used in the East and South China Seas (Cho et al. 2014) and

the Austrailian SARMAP program (http://asascience.com/software/sarmap/). SAROPS

subjects drift objects to an ambient current with the specific leeway coe�cients input

for each search object given the observed or modeled wind speed and direction. It then

uses a Monte Carlo approach to forecast drift position from a variety of initial condition

scenarios that reflect the information from the reporting sources. The initial conditions

include one to four search objects, uncertainty in time and spatial distributions. The spatial

distributions include: (1) bi-variate normal distribution about point from a Last-Known-

Position, (2) uniform distribution over a regular polygon for simulating fishing grounds,

3) distributions from lines of position(s) from radio transmissions or flare sightings, and

(4) simulated voyages of the originating craft. Each object’s position is subject to random

walks to account for noise in the wind and current fields at the location of the particles,

where each subsequent application of the random walk is correlated to the one before.

One simulation can be run with up to 10,000 particles (representing 10,000 di↵erent drift

runs for each object) per initial scenario. The output is then a probability map showing

where the object is most likely to be found at each time-step, based on location of the

highest particle density at that point in the simulation and accounting for all previous search

e↵orts and the subjective weighting of the scenarios and 1 to 4 search objects likelihood.

In order to complete these calculations, SAROPS requires access to oceanographic and

meteorological data. This data is pulled from the Environmental Data Server (EDS) that

aggregates and stores observational and forecasted wind and currents. This data includes

global and regional numerical model forecasts of ocean currents and winds. It also includes
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inputs of observational data from High Frequency (HF) Radars and Self-Locating Datum

Marker Buoys (SLMDBs), a code-style drifter deployed during a SAR case to validate model

currents. Both West and East Coast STPS current fields are provided to the EDS for use

by SAROPS.

A.4 Searches in O↵shore and Remote Locations

What makes remote search and rescue di↵erent from mainland scenarios is the low density

of oceanographic data and the distance from response assets. Outside of the near-shore

waters, many valuable resources are unavailable and due to the travel distance for response

assets, time available to search on scene is reduced. In addition responders have to take

into account fuel costs and crew fatigue constraints. The Central Pacific SAR area of

responsibility, and the Hawaiian Islands in particular, make a good case study for remote

SAR. The Hawaiian Islands are isolated, and have a low ratio of land to water (the islands

only make up around 28,000 km2). Here we investigate the location and density of SAR

cases relative to available oceanographic datasets in the Central Pacific, and run three drift

simulations using SAROPS. These case studies allow us to look at SAR statistics relative

to available oceanographic resources and identify areas for improvement.

A.4.1 Remote SAR Case Study: The Hawaiian Islands

There are very few observational data sets available in the Central Pacific that can be pulled

into the EDS for use in SAROPS. One observational data set that has recently been tested

for use, is the surface portion of the 10-day ARGOS float cycle. While there are close to

4000 ARGO floats globally in the deep waters, only a few of the open ocean SAR cases

can directly benefit from this data set. Most of the observations in the region are located

near the main Hawaiian Islands due to the large population center located there. The

only HF radar surface current data in the entire Central Pacific is found on the Hawaiian

Islands (Fig. A.1). However, coverage is small. Only the southern and western shores of
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Oahu, and Hilo Bay on the island of Hawaii are covered by real-time surface current data

(red stars shown in figure A.1). By comparison, near continuous HF radar surface currents

are available from Portland, Oregon to the California-Mexico border. Also, in contrast

from the continental United States, is the lack of a STPS for surface currents based on

the HF Radar data. The Hawaiian Islands do have a local ROMS model available. The

Hawaii Regional Ocean Modeling System (HROMS) is a 4-km resolution ocean model that

covers the main Hawaiian Islands. Nested inside are localized, higher resolution models in

frequently tra�cked areas such as the south shore of Oahu. Further information on HROMS

is provided on the Pacific IOOS (PacIOOS) website. Available from PacIOOS is a regional

Guam ROMS model with 2km resolution, as well as a Western North Pacific ROMS model

with 4km resolution (Fig. A.2). Outside of those resources, the rest of the Central Pacific

is left with only global scale ocean circulation models to conduct drift predictions.

SAR case data in the Pacific was examined using geographical position and case length,

in hours (Fig. A.1). Most (66%) of search and rescue cases in the Central and Western

Pacific occur within 12 nautical miles of land and were excluded from this analysis in order

to focus on o↵shore search and rescue. For these o↵shore cases only a small percentage fall

within the range of the HF radar real-time surface currents (4.5%) while one fifth fall within

the Hawaii ROMS model currents (20%). If the Western Pacific and Guam ROMS model

currents are added, the total number of o↵shore cases that are covered by ROMS increases

to 40%. A detailed breakdown of SAR cases covered by each data source is provided in Table

A.1. The highest case density occurs near the two main population centers, the Hawaiian

Islands (Fig. A.1) and Guam (Fig. A.2) . However, once the cases are weighted by the

time response assets spend on scene, other areas grow in importance. Since 2002, there

have been 146 cases in o↵shore waters (> 12nm from land) that exceeded 36 hours with

response assets on scene. The majority of these cases occured in the Western Pacific near

Guam, Palau, and the Federated States of Micronesia. Although this represents only 2% of

SAR cases, due to the high hourly cost of response assets, these represent long search time,

high cost cases with a low probability of success. In these locations, direct observations of
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ocean currents are sparse, STPS from HF radars is unavailable, and coverage of the data

assimilating regional ocean models is unavailable for the Federated States of Micronesia.

In order to investigate the impact of various observational data on SAR predictions, a

drift simulation was conducted near the island of Oahu. The goal of the SAR simulation was

to compare drift results from three di↵erent surface current data sources: direct observations

via HF radar with 2-km horizontal resolution, modeled surface currents from HROMS with

4-km horizontal resolution, and modeled surface currents from Global HYCOM at 1/12�

horizontal resolution. Two SAR cases were run simultaneously: a person in the water

(PIW) without a lifejacket and a 14’ sit-on-top kayak, both using the most current leeway

coe�cients available in SAROPS. The case was initiated with a last known position (LKP)

for both objects of 21�10.3020N, 158�02.9480W. The objects were drifted for 48 hours. This

time frame was chosen because it kept the objects within the coverage of all three respective

surface current sources during the whole drift. Additional time allowed both the objects to

drift outside the coverage of the HF radar, invalidating the comparison. For all three

simulations, the same wind source was used, the Hawaii based Weather Research and

Forecasting (WRF) model at 3-km resolution. Particles were allowed to both run ashore

(sticky shoreline) or ”bounce” o↵ the shoreline (slippery shoreline). The results of the

three drift scenarios are shown in Figure A.3. Pink particles represent the PIW and brown

particles represent the kayak. The drift run using the HF radar (Fig. A.3,top) resulted

in the smallest area, with the particles (both PIW and kayak) covering a 2879km2 area,

compared to the HROMS run (Fig. A.3,middle) coming in at 7863km2 and HYCOM (Fig.

A.3,bottom) with the largest area of 12,196km2. These results match previous studies that

found the use of observational data including HF radar reduces search areas by up to a

factor of 3 (Kohut et al. 2012; O’Donnell et al. 2005; Roarty et al. 2010).
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A.5 Recommendations

One region in the Central Pacific that is not covered by ROMS is the area to the south

of Guam, extending from Palau to the Federated States of Micronesia. This area contains

14.8% of o↵shore SAR cases, including the majority of the cases lasting longer than 36

hours. Increasing available observations in this region could benefit a large percentage

of SAR cases. On a smaller scale, near the population hubs of Guam and Hawaii, case

dense regions are the southern coast of Guam and the western shores of Hawaii and Maui.

Additional coverage here could increase o↵shore SAR case coverage from 4.5% to 10%.

Another, more cost e↵ective alternative to installing additional equipment is to maximize

the use of what is already available. Brushett et al. (2017) used consensus modeling to

evaluate search prediction e↵ectiveness in the tropical Pacific. Using four di↵erent global

ocean models, they found that a three or four model consensus search area was greatly

reduced from a single model search area with a four model consensus being approximately

one third the size of a search area produced by a single model. In addition to the large

reduction in search area, they found that for their experiements, the consensus search area

always contained the actual found position of the drift object. This is a promising result

that suggests in areas with few options, consensus forecasts for SAR objects could reduce

search area and decrease individual model error.

A.6 Conclusions

Even as sensors and search platforms continue to improve, mariners lost at sea aboard

small craft which are di�cult to detect, remain a problem for the world’s coast guards.

Narrowing search areas by accessing accurate, verified surface current fields will go a long

way to successfully locating survivors and survivor craft, both saving lives and saving limited

and expensive resource hours. Accessing and fully using all the available oceanographic data

sets and numerical models is key to providing accurate predictions for the SAR trajectory

models.
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Figure A.1: Search and Rescue cases (yellow dots) in the Hawaiian Island region from
2002 through 2018. Only o↵shore cases (>12nm from land) are shown. Red stars indicate
the locations of High Frequency Radars, red diamonds are the locations of moored surface
buoys. The black hatched boxes represents the spatial coverage of the HF Radars.
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Figure A.2: Search and Rescue cases (yellow dots) in the Western Pacific region from 2002
through 2018. Only o↵shore cases (>12nm from land) are shown. Red diamonds are the
locations of moored surface buoys. The hatched areas represent coverage of ROMS models.
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Figure A.3: SAROPS output from a simulated SAR case o↵ Oahu. top: Particle density
map for a 14 foot sit on top kayak (brown) and person in the water (pink) using ocean
current data from available HF Radars. middle: Particle density map for a 14 foot sit on
top kayak (brown) and person in the water (pink) using ocean current data from available
HROM. bottom: Particle density map for a 14 foot sit on top kayak (brown) and person in
the water (pink) using ocean current data from available global HYCOM.
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Ocean Current Source % of cases covered

HF Radar 4.5%
HI ROMS 20%
Guam ROMS 6%
Western Pacific ROMS 14%
Combined ROMS total 40%

Table A.1: Percentage of SAR cases covered by available ocean current data sources
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