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Abstract

One of the key characteristics of the El Niño-Southern Oscillation (ENSO) phe-

nomenon is its synchronization to the annual cycle. Current theories o↵er two possible

mechanisms to account for this synchronization: frequency locking of ENSO to periodic

forcing by the annual cycle, or the e↵ect of the seasonally varying background state of

the equatorial Pacific on the coupled stability of the ocean-atmosphere system. Using

a parametric recharge oscillator model of ENSO, we test which of these scenarios pro-

vides a better explanation for the observational characteristics of ENSO/annual cycle

interactions.

Analytical solutions obtained from the neutral case of the model show that the annual

modulation of the growth rate parameter results directly in ENSO’s seasonal variance,

amplitude modulation, and 2:1 phase synchronization of ENSO to the annual cycle. The

analytical solutions are shown to be applicable to numerical runs of the model in the

neutral case, as well as the long-term behavior of the damped model excited by stochastic

noise. The synchronization characteristics of the stochastically forced model agree with

the observations, and are shown to account for the variety of ENSO synchronization in

state of the art coupled general circulation model simulations. Additionally, the idealized

model predicts spectral peaks at “combination tones” between ENSO and the annual

cycle that exist in both the observations and many coupled models.

These results are then compared with the predictions of the nonlinear frequency en-

trainment model for ENSO/annual cycle interactions. The oscillator model is extended

to include periodic forcing by the annual cycle and a nonlinear saturation term, and

the resulting system is shown to be equivalent to the periodically forced van der Pol

oscillator. Results from experiments with the van der Pol oscillator demonstrate that

the frequency locking scenario predicts the existence of a spectral peak at the biennial

frequency corresponding to the observed 2:1 phase synchronization. Such a peak does

not exist in the observed ENSO spectrum. Hence, we conclude that the seasonal mod-

ulation of the coupled stability of the equatorial Pacific ocean-atmosphere system is the

mechanism responsible for the synchronization of ENSO events to the annual cycle.
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Chapter 1

Introduction

The El Niño-Southern Oscillation (ENSO) is the largest global climate signal on interan-

nual timescales (Neelin et al., 1998); strong ENSO events cause changes in the tropical

Pacific climate that are large enough to influence the global atmospheric circulation

(Trenberth et al., 1998), leading to significant environmental and socioeconomic impacts

that occur in areas throughout the world (McPhaden et al., 2006). ENSO events occur

irregularly, with 2-7 year spans between them, but they each follow a similar pattern

of developing during boreal summer and peaking during boreal winter (Rasmusson and

Carpenter, 1982; Larkin and Harrison, 2002). Such seasonal synchronization is a defining

characteristic of ENSO, and understanding the cause is of central importance to ENSO

predictions (Balmaseda et al., 1995; Torrence and Webster, 1998). The exact mechanism

responsible for the synchronization of ENSO to the annual cycle has not yet been deter-

mined, though current ENSO theory o↵ers two possible candidates: frequency locking

of ENSO to periodic forcing by the annual cycle (Jin et al., 1994; Tziperman et al.,

1994), or the modulation of ENSO’s coupled stability due to the seasonal variation of

the background state of the equatorial Pacific (Philander et al., 1984; Hirst, 1986). The

goal of this study is to determine which of these two synchronization mechanism best

explains the observed seasonal characteristics of ENSO.

Evidence supporting frequency locking of ENSO to the annual cycle as a synchro-

nization mechanism comes from investigating the behaviour of ENSO models under
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the variation of relevant model parameters, in particular the simple delay oscillator

model (Suarez and Schopf, 1988) and the intermediate complexity Zebiak-Cane model

(hereafter ZC model, Zebiak and Cane (1987)). Generally, a parameter related to the

amplitude/growth rate of the model’s ENSO is varied along with a parameter related

to the strength of the seasonal forcing (e.g. Tziperman et al. (1995)) or the intrinsic

frequency of the ENSO mode (e.g. Jin et al. (1996)). Within the resultant model pa-

rameter space, frequency locked solutions are a common feature. This is due to the

fact that the various ENSO models used in such studies, though di↵ering in details,

each follow the quasiperiodic route to chaos and thus admit the same suite of possible

model solutions: quasiperiodic solutions that include both the annual cycle and ENSO

frequencies, frequency-locked solutions where the ENSO frequency is a rational multiple

of the annual cycle, and chaotic solutions that result from the overlapping of multiple

frequency locked solutions within the model parameter space (Tziperman et al., 1995;

Jin et al., 1996). This behavior has been demonstrated within the periodically forced

delay oscillator (Tziperman et al., 1994; Liu, 2001), a two equation dynamic system

model of ENSO (Wang and Fang, 1996), the ZC model (Tziperman et al., 1995; Pan

et al., 2005), and variations of the ZC model that include coupling the atmosphere to

total SST (Chang et al., 1994) and reducing the ocean component to zonal equatorial

strip with fixed meridional structure (Jin et al., 1994, 1996).

As the various ENSO models each follow the quasiperiodic route to chaos, one can

investigate the model results simultaneously by examining the relevance of each type of

model solution to the observed ENSO synchronization. Quasiperiodic solutions do not

reproduce the observed ENSO seasonal synchronization, and frequency locked solutions

do not reproduce the observed ENSO irregularity, so realistic solutions must either be

chaotic or frequency locked solutions that are perturbed by high frequency atmospheric

forcing. Chaotic solutions are relatively rare compared to quasiperiodic and frequency

locked solutions (Jin et al., 1996), so the most likely realistic solution is a frequency locked

solution perturbed by stochastic noise. Additionally, both chaotic and stochastically

forced solutions retain the subharmonic peaks in the ENSO spectra that are characteristic

of the frequency-locked solutions (Jin et al., 1996). Thus, the results from the various
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studies can be fairly said to support the theory that ENSO synchronization results from

frequency locking of ENSO to the annual cycle.

Alternatively, several physical processes have been proposed whereby the annual

cycle could a↵ect the growth rate of ENSO anomalies, beginning with the idea that

the seasonal movement of the Intertropical Convergence Zone (ITCZ) should have a

strong e↵ect on the coupled instability of the equatorial Pacific ocean-atmosphere system

because of its influence on atmospheric heating (Philander, 1983). Analytical results

based on a suite of four linear coupled models showed that the unstable modes allowed

by the models were highly dependent on the parametrization of SST anomalies and

large scale latent heating, and that the observed climatological background state did

not permit the growth of ENSO-like instabilities (Hirst, 1986). However, ENSO events

could be initialized during more favorable conditions, including high SST, a shallow

thermocline, a large zonal SST gradient, and strong surface winds (Hirst, 1986). Isolating

the e↵ect of individual variables within the ZC model indicated that the seasonality in

the wind divergence (Tziperman et al., 1997) and SST (Yan and Wu, 2007) fields are

most critical to the synchronization of ENSO events. Sensitivity analysis of a hybrid

coupled model, used to capture the structure of the mixed layer and thermocline, found

that the seasonal outcropping of the thermocline increased the coupled instability of the

model by linking thermocline anomalies to the surface (Galanti et al., 2002). Lastly,

at the end of the calendar year the location of ENSO-associated western Pacific wind

anomalies shift from along the equator to the southern hemisphere , which forces oceanic

equatorial Kelvin waves that act to reduce or reverse the eastern equatorial Pacific SST

anomalies (Harrison and Vecchi, 1999). The shift in wind anomalies has been linked to

the southward displacement of highest SST in boreal winter (Lengaigne et al., 2006),

which is associated with increased convection and minimal surface momentum damping

of wind anomalies (McGregor et al., 2012). The wind shifts have also been associated

with a recently identified climate mode with energy at combination tone frequencies that

emerges through an atmospheric nonlinear interaction between ENSO and the annual

cycle (Stuecker et al., 2013).

The e↵ect of the seasonal cycle on ENSO variance has been confirmed statistically

3



by studies that examine the optimal perturbation growth around a seasonally varying

background state within both ENSO model output and observations. For example,

singular vector decomposition of a linearized version of the ZC model (Thompson and

Battisti, 2000), as well as the ZC forward tangent model along a trajectory in reduced

EOF space (Xue et al., 1997), result in singular values that have a strong seasonal

dependence, with growth of the singular vectors peaking in boreal winter. Similary,

cyclic Markov models derived from the ZC model (Pasmanter and Timmermann, 2003),

an anomaly coupled GCM (Kallummal and Kirtman, 2008), and observations (Johnson

et al., 2000), reveal a stong seasonality in the internal dynamics of the equatorial Pacific

coupled ocean-atmosphere system. It has been suggested that this internal seasonality

is su�cient to produce the observed the ENSO seasonal variance, without the need for

nonlinear dynamics or seasonality in the noise forcing (Thompson and Battisti, 2000;

Kallummal and Kirtman, 2008; Stein et al., 2010). Moreoever, the Markov models can

be explicitly related to Floquet analysis (Pasmanter and Timmermann, 2003), which

can be used to show that the dynamics of most unstable mode of the ZC model with a

seasonally varying background are the same as in the annual average case (Jin et al., 1996;

Thompson and Battisti, 2000), which forms the basis of our dynamical understanding of

ENSO (Philander et al., 1984; Hirst, 1986; Neelin and Jin, 1993a,b).

In this study, a parametric recharge oscillator (PRO) model of ENSO is employed

to determine the e↵ects of the seasonally varying background instability on a variety

of ENSO synchronization metrics. Analytical solutions for the model’s seasonal vari-

ance, amplitude modulation, and phase synchronization are obtained, and are shown

to match well with observations and the variety of ENSO behavior identified in state

of the art coupled general circulation models (CGCMs). The parametric model is also

shown to explain spectral peaks at combination tone frequencies that are present in both

the observed and modelled ENSO spectra. Additionally, the ENSO recharge oscillator

model is extended to include external periodic forcing by the annual cycle and a cubic

damping term, in order to produce frequency locked model solutions. The extended

model corresponds to the well-known van der Pol oscillator (van der Pol, 1927), which

exhibits frequency locking through so-called Arnol’d tongues (Arnold et al., 1983), with
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global behavior similar to the ENSO models used in previous studies. The van der Pol

oscillator is used to examine the relevance of the frequency locking scenario to ENSO

seasonal synchronization, ultimately demonstrating that the observed ENSO lacks the

characteristics of a frequency locked oscillation.

The remainder of this dissertation is organized as follows: Chapter 2 discusses fea-

tures of ENSO synchronization based upon the Nino3.4 index. ENSO synchronization is

described using a variety of metrics, including seasonal variance, amplitude modulation,

phase synchronization, and secondary peaks in the ENSO spectrum. These features are

examined both for the observations and within a range of state of the art coupled gen-

eral circulation models. Chapter 3 repeats the analysis of ENSO metrics using complex

empirical orthogonal function (CEOF) analysis, comparing the results to the metrics cal-

culated with the Nino3.4 index. Results from the two methods are very similar, demon-

strating that including the modulation of the annual cycle and the additional spatial

information from the CEOFs is not necessary for a description of ENSO synchronization

that is su�cient to distinguish the two leading theories of ENSO synchronization. This

allows for the analysis of ENSO synchronization to be based on the Nino3.4 index, which

is dynamically consistent with the recharge oscillator framework. Chapter 4 discusses the

analytical solution of a simplified neutrally-stable version of the parametric recharge os-

cillator (PRO) following the perturbation expansion of An and Jin (2011). The solutions

demonstrate that the observed features of ENSO-annual cycle interaction arise directly

from the modulation of the growth rate parameter within the model. Numerical experi-

ments with the parametric recharge oscillator are presented in Chapter 5, demonstrating

that the analytical solutions presented in Chapter 4 apply both to the neutrally stable

unforced version of the PRO model as well as the damped version forced by Gaussian

stochastic noise. Solutions within the subset of the model’s parameter space relevant

to ENSO are discussed. A derivation of the van der Pol oscillator from the extended

oscillator model is shown in Chapter 6, which is used to examine the likelihood that

ENSO synchronization is due to subharmonic frequency locking. The observed ENSO is

shown to be lacking the characteristics of a frequency locked oscillation. A discussion of

the implications and caveats concerning the work herein is presented in Chapter 7, and
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the paper concludes with a summary of major results in Chapter 7.
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Chapter 2

Features of ENSO

synchronization: Nino3.4 index

In order to test the two leading theories of ENSO synchronization, it is necessary to

construct a detailed picture of ENSO synchronization using a variety of di↵erent metrics.

This study examines the synchronization theories within the recharge oscillator model

framework; to allow for direct comparison with model results, the synchronization metrics

are calculated from the Nino3.4 index time series, defined as the area average of SSTA

between 5�N-5�S and 120� � 170� W. The metrics were also calculated using time series

of ENSO derived from complex emirical orthogonal functions (CEOFs, Chapter 3), and

the results are very similar due to the fact that ENSO anomalies are large scale and

occur in phase across the central Pacific (Stein et al., 2011).

Figure 2.1 (top, black) shows the monthly Nino3.4 SSTA index based on data from

the National Oceanic and Atmospheric Administration’s Extended Reconstructed Sea

Surface Temperature version 3b data set (ERSST.v3b, Smith et al. (2008)) from the

year 1950 to 2011, with the monthly mean climatology (bottom left) and long-term

trend removed. The Nino3.4 SSTA index T (t), can be expressed as a cyclostationary

process T (y,m), where y is the year, m the month, and T (y,m + 12) = T (y + 1,m).

The monthly variance is then determined as �2
m

= E[T (y,m)2], where E indicates the

expected value and we have made use of the fact that the monthly means have been
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removed from the time series. Figure 2.1 (bottom center) shows the monthly variance of

the Nino3.4 SSTA index, which has a minimum in variance in March-April and highest

variance in December, reflecting the tendency for ENSO events to peak in boreal winter.

The seasonally modulated variance is an expression of either a phase synchronization

of ENSO with the annual cycle (Stein et al., 2011), the seasonal modulation of ENSO’s

amplitude, or a combination of the two. To separate the processes, it is necessary to

construct a state space that allows for the definition of ENSO magnitude and phase. A

well-known method for defining amplitude and phase from a data set, and the one most

naturally applied to climate data, is to construct the analytical signal (Gabor, 1946) of

the data using the Hilbert transform (Pikovksy et al., 2000). The analytical signal dT (t)

of the Nino3.4 SSTA index is defined as

dT (t) = T (t) + iH[T (t)], (2.1)

where H[T (t)] is the Hilbert transform of T , and i =
p
�1. The top panel of Figure

2.1 shows the time series of the Hilbert transform of the Nino3.4 SSTA index (grey

dashed). The amplitude and phase of the index can be calculated from the complex

analytical signal dT (t), based on a Cartesian to polar coordinate transform

↵(t) =
q
Re[ bT ]2 + Im[ bT ]2, (2.2)

�
e

(t) = Arg
Im[ bT ]
Re[ bT ]

, (2.3)

where Arg is the principal value of the arg function of complex numbers, defined

such that bT = ↵ei�e . For consistency, all phase values considered here will be calculated

modulo 2⇡, and therefore on the interval [0, 2⇡).

The monthly mean amplitude of the analytical signal of the Nino3.4 SSTA index,

↵
m

= E[↵(y,m)], is compared to the monthly variance of T (t) in Figure 2.1 (bottom

center). There is an indication of amplitude modulation of the complex signal by the
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seasonal cycle, with maximum mean ENSO amplitude occurring in boreal winter, but

with a minimum in September, which does not correspond to the minimum in monthly

variance of the direct Nino3.4 SSTA index. The overall strength of the seasonal amplitude

modulation of analytical signal bT (t) is insu�cient to reproduce the observed seasonal

variance of T (t), indicating phase synchronization must also play a role.

To investigate the phase synchronization of ENSO with the annual cycle, we define

the generalized phase di↵erence

��
k,l

(t) = k�
e

(t)� l�
a

(t), (2.4)

where �
e

is the ENSO phase1 (2.3), �
a

is the annual cycle phase, and k, l 2 Z+.

If the phase di↵erence were constant the annual cycle and ENSO would be perfectly

synchronized, and if the values of ��
k,l

(t) were equally distributed throughout the 2⇡

range then the two modes would have no phase relationship. Phase locking is defined as

a bounded ��
k,l

di↵erence, i.e. if |��
k,l

(t) � s| < c, where c < 2⇡ is a constant and s is

the average phase shift between the two time series (Pikovksy et al., 2000). Because the

monthly mean climatology was removed from the Nino3.4 SSTA index, the annual cycle

is fixed, and we will define the phase of the annual cycle to be �
a

(t) = (!
a

t) mod 2⇡,

where !
a

= 2⇡
12 month�1 is the annual cycle angular frequency.

Figure 2.1 (bottom right) shows a histogram of ��2,1, indicating the strength of the

2:1 phase synchronization of ENSO to the annual cycle, the only ratio that was found

to show significant phase synchronization (Stein et al. (2011), see Section 6). The phase

di↵erence between the two signals is not bounded, indicating that ENSO is not strictly

phase locked to the annual cycle throughout the observable record. However, certain

phase di↵erences are three times more likely than others, which is evidence of partial 2:1

phase synchronization of ENSO to the annual cycle.

1The �(t) time series as calculated from the analytical signal are in fact the proto-phase of the time
series, which may di↵er from the true phase (Kralemann et al., 2008). However, the di↵erences between
the proto-phases and phases calculated in this study are negligible and the transformation to true phase
has no e↵ects on the results, so a discussion of this complexity is omitted.
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In terms of existing ENSO theory, such behavior could be explained by intermittent

periods of frequency locking of ENSO to the annual cycle. However, the 2:1 phase

synchronization of ENSO to the annual cycle is not associated with a distinct peak

in the Nino3.4 spectrum at 0.5 years�1 (Fig. 2.2), as would be expected if the phase

synchronization behaviour was due to frequency locking.2 (See Chapter 6). Instead, the

primary ENSO spectral peak occurs at 0.23 years�1, along with a second secondary peaks

at 0.77 and 1.23 years�1, though the higher frequency peak is not statistically significant

based on the spectrum from a first order autoregressive fit of the Nino3.4 time series

(Fig. 2.2). The secondary peaks occur at combination tones frequencies !
a

± !
e

, which

indicative of nonlinear interaction between ENSO the annual cycle (McGregor et al.,

2012; Stuecker et al., 2013) and arise directly form the modulation of ENSO growth rate

within the parametric recharge oscillator model (An and Jin (2011), see Section 4).

To demonstrate that the above features of ENSO’s seasonal synchronization are ro-

bust, we examine the synchronization of a variety of di↵erent model-based representa-

tions of ENSO and the annual cycle, as simulated by state of the art coupled general

circulation models participating in the Coupled Model Intercomparison Project Phase 5

(CMIP5, Taylor et al. (2012)). The detrended Nino3.4 SST index was calculated from

CMIP5 historical run output for each model, covering model years 1901-2000. The an-

nual cycles of the Nino3.4 SST index for each model are compared in Figure 2.3, the

monthly variance of the Nino3.4 SSTA indices are compared in Figure 2.4, and the ��2,1

phase di↵erences with the annual cycle are compared in Figure 2.5. The models have

been ordered according to the strength of the seasonal synchronization of ENSO to the

annual cycle (as measured by the ⌫ index, defined below).

As can be seen in Figure 2.3, the CMIP5 CGCMs show a variety of di↵ering am-

plitudes for the annual cycle of the Nino3.4 SSTA index. The annual cycles for all the

models are more symmetric than the observations (Figure 2.1, bottom left), showing a

warming for six months out of the year rather than four, but the timing of the warm to

cold phase transitions for the models is in agreement with the observations. In particular,

2Note that the definition of frequency locking ( k!e
l!a

= 1, where !a = d�a
dt is the annual cycle frequency,

!e = d�e
dt is the ENSO frequency, and k, l 2 Z+) is stronger than that for phase locking.
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there are no semiannual seasonal cycles, allowing for the use of a single sinusoidal func-

tion at the annual frequency as the proxy for the annual cycle in the models, as with the

observations. The models also display a variety of behavior in terms of overall ENSO

variance and the strength of the seasonal modulation of ENSO variance (Figure 2.4).

For most models, total ENSO variance and the magnitude of the seasonal modulation

of ENSO variance are both weaker than observations, which is reflected in the flatter

distributions of phase di↵erences between ENSO and the annual cycle (Figure 2.5). The

seasonal variance of each model ENSO (Figure 2.4) shows a peak in December/January,

and so the most likely ��2,1 phase di↵erences for each model are all near the same value

(Figure 2.5).

To examine any systematic relationship between synchronization characteristics across

all the CMIP5 CGCMs, we define three indices relating to ENSO’s seasonal variance, 2:1

phase synchronization, and amplitude modulation of the corresponding complex analyt-

ical signal. The first index simply captures the range of the monthly ENSO variance,

⌫ =
max[�2

m

]�min[�2
m

]

max[�2
m

]
, (2.5)

and will be referred to as the “seasonal variance index.” The index ranges from 0 to

1, where 0 indicates that each month has exactly the same variance throughout the year

and 1 indicates that the variance of a particular month drops to zero.

An index for the strength of the 2 : 1 phase synchronization between ENSO and the

annual cycle can be defined as

� =
���
D
ei(2�e��a)

E

t

��� , (2.6)

where �
a

is the annual cycle phase, �
e

is the ENSO phase, and h...i
t

indicates temporal

averaging (Kralemann et al., 2008). The index is a measure of the length of the vector

in the complex plane that results from the temporal averaging of unit vectors with
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angles equal to the phase di↵erence ��2,1. The index varies from zero to one, with

zero indicating that the phase of the two time series are completely independent and

one indicating perfect phase synchronization. Similarly, one can define an index that

captures the strength of the complex amplitude modulation of ENSO by the annual

cycle as

 =

��⌦↵ei(�a)
↵
t

��

h↵i
t

, (2.7)

where ↵ is the ENSO amplitude time series (2.2). The index is the temporal average

of the vectors in the complex plane defined by the ENSO amplitude and annual cycle

phase, which is then normalized by the mean ENSO amplitude. The index varies from

zero to one, with zero indicating that the complex ENSO amplitude is equal across all

phases of the annual cycle, and one indicating that ENSO’s analytical signal only has a

finite amplitude at a single time of the year, and has zero amplitude at all other times.

As such, the values of the  index would be expected to be much smaller than the the

values of the other two indices, and these indices should not be directly compared, such

that a value of � that is larger than  is interpreted as stronger phase synchronization

than amplitude modulation. Rather, the indices measure the changing strength of these

processes across the CMIP5 models.

Figure 2.6 shows scatter plots of the seasonal variance index (⌫) versus the complex

amplitude modulation index ( , top) and the 2:1 phase synchronization index (�, bot-

tom) for each of the CMIP5 models and the observations. Most models simulate ENSOs

that are more weakly synchronized with the annual cycle than the observed ENSO. The

seasonal variance of ENSO (⌫) is linearly related to the strength of the phase synchroniza-

tion of ENSO to the annual cycle (�), while the strength of the amplitude modulation

( ) is not as closely related, though the  index does tend to be larger for models

with a larger range of seasonal ENSO variance. The models that display the strongest

synchronization of ENSO to the annual cycle also display peaks at one or both of the

!
a

± !
e

combination tone frequencies, as seen in Figure 2.7. Five of the first six models
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(CNRM-CM5, FGOALS-g2, CanESM2, bcc-csm1-1, Giss-E2-R) show a significant peak

at the !
a

� !
e

combination tone, and all but three of the models show a spectral peak

at at least one combination tone, though the peaks are statistically significant in only

nine of the sixteen models (CNRM-CM5, FGOALS-g2, CanESM2, bcc-csm1-1, Giss-

E2-R, NorESM1-ME, Giss-E2-H, GFDL-ESM2M, CCSM4). Four of the sixteen models

(CNRM-CM5, FGOALS-g2, CanESM2, Giss-E2-R) also display a spectral peak at the

two year period, but each of these models also shows a peak at a combination tone fre-

quency. It is unclear at this point whether the spectral peak at periods of two years in

these models is due to frequency locking, parametric resonance, or another mechanism.

However, it is apparent that overall ENSO seasonal synchronization is more often asso-

ciated with peaks in the ENSO spectrum at combination tone frequencies, as opposed to

a peak at 1
2 years�1. In Chapter 4, we will show how the !

a

± !
e

spectral peaks, along

with ENSO’s seasonal variance, amplitude modulation, and partial 2:1 phase synchro-

nization, all arise directly from the modulation of ENSO’s growth rate by the annual

cycle within the parametric recharge oscillatory model of ENSO. Before doing so, the

results presented in this chapter are compared to the results of the same analysis utilizing

complex empirical orthogonal function analysis, which was the technique used to first

identify the partial 2:1 phase synchronization of ENSO to the annual cycle (Stein et al.,

2011).
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Figure 2.1: (Top) The time series of the Nino3.4 SSTA index (black) and the Hilbert
transform of the index (gray dashed), calculated from the ERSST.v3b data set. (Bottom
left) The monthly deviations of Nino3.4 SST from the time mean. (Bottom center) The
monthly variance of the Nino3.4 SSTA index and the monthly amplitude of the analytical
signal of the index. (Bottom right) A PDF of the ��2,1 phase di↵erence of ENSO with
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Chapter 3

Features of ENSO

synchronization: CEOF analysis

Complex emipircal orthogonal function (CEOF) analysis (Barnett, 1983) potentially of-

fers a more complete description of ENSO synchronization than the one based on the

analytical signal of the Nino3.4 index for two main reasons. First, CEOF analysis in-

corporates more spatial information than the Nino3.4 analytical signal because the time

series associated with each CEOF mode represents a propagating spatial pattern within

the larger domain of the equatorial Pacific. Second, the CEOF analysis produces a mod-

ulated annual cycle time series, thereby describing ENSO-annual cycle synchronization

in terms of two coupled modes, as opposed to the single ENSO mode being periodically

modulated by the annual cycle. In this chapter, ENSO synchronization metrics are re-

calculated utilizing time series based on a CEOF analysis of ERSST.v3b observations

and compared to the results based on the analytical signal of the Nino3.4 index. The

two sets of results are very similar, indicating that for the purpose of this study, namely

di↵erentiating the two leading theories of ENSO synchronization, the analytical signal

of the Nino3.4 index is su�cient.

Again, the ERSST.v3b data set is used, in the spatial domain 20�S to 20�N, 110�E

to 290�E, and the temporal domain 1950-2011. Both the long term mean and the linear

trend of the data set are removed. This spatio-temporal data set is denoted s(t), where
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the vector components represent the individual spatial grid points and t is time.

Complex EOFs are calculated in exactly the same way as real-valued EOFs, with

the single additional step of calculating the analytical signal of each spatial point in s(t)

before performing the EOF decomposition (Preisendorfer, 1988). In vector notation, one

obtains

a(t) = s(t) + iH[s(t)]. (3.1)

The spatial covariance matrix C of the complex analytical signal vector a(t) is then

given by

C = ha⇤(t)⌦ a(t)i
t

, (3.2)

where ⌦ is the outer (tensor) product and the asterisk denotes complex conjugation.

Because C is self-adjoint, it possess real eigenvalues �
n

and complex eigenvectors e
n

=

(e
n,j

) with j = 1, ...N , representing the N spatial data points. The complex eigenvectors

of C correspond to the spatial fields in the CEOF representation of a(t), which is written

as

a(t) =
X

n

p
n

(t)e⇤
n

, (3.3)

where the complex principal component time series p
n

(t) are computed via the pro-

jection p
n

(t) =
P

x

a(t) · e
n

. The vectors can be normalized such that

hp
n

p⇤
m

i
t

= �
nm

(3.4)

e
n

· e⇤
m

= �
n

�
nm

, (3.5)
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where �
nm

is Kronecker’s delta. The combination of the principal component time

series p
n

(t) and the spatial vectors e
n

is referred to as the n-th mode of the CEOF

representation. The fraction of the total data set variance associated with the n-th mode

is given by �
n

/
P

�
m

(Preisendorfer, 1988). By convention, the first mode accounts for

the largest amount of variance in a(t), the second mode the second largest amount of

variance, and so on.

The magnitude and phase for both the spatial fields and time series of each mode

can be computed in the same manner as for the analytical signal of the Nino3.4 index.

For each spatial component j of the vector field we obtain:

q
n,j

=
p
Re[e

n,j

]2 + Im[e
n,j

]2, r
n,j

= Arg
Im[e

n,j

]

Re[e
n,j

]
(3.6)

↵
n

(t) =
p

Re[↵
n

]2 + Im[p
n

]2, �
n

(t) = Arg
Im[p

n

]

Re[p
n

]
, (3.7)

where ↵
n

(t),�
n

(t) are the amplitude and phase of the nth principal component time

series and qn, rn are the associated amplitude and phase spatial patterns.

Figure 3.1 shows the magnitudes (q1,↵1) and phases (r1,�1) of the spatial patterns

and the time series of the first mode obtained from the CEOF analysis, accounting for

the 77.3% of variance in a(t). The mode captures the annual cycle of the ERSST.v3b

data set, displaying a very regular phase progression in time and westward propagation

along the equator in the phase spatial structure. The node line of the phase spatial

structure located north of the equator in the central to eastern tropical Pacific is due

to the influence of the Intertropical Convergence Zone (ITCZ) (Horel, 1982; Xie, 1994),

which acts as the “climatological equator.” The areas of smallest annual cycle magnitude

lie under the ITCZ and the South Pacific convergence zone (SPCZ), while the largest

magnitudes are associated with areas of strong upwelling along the equator and the coast

of South America and in the eastern Pacific cold tongue.

The second mode (Figure 3.2) accounts for 11.3% of the variance in a(t), and the

largest amount of variance on interannual timescales, thus capturing the dominant mode
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of ENSO in the time series. The mode displays areas of largest amplitude in the central

to eastern Pacific, confined to within approximate 5� of the equator. The SST variation

occurs in phase across the central to eastern Pacific, encompasing the area of largest

amplitude. El Niño events are represented in the time series by large amplitude values

and phase values near zero or 2⇡, whereas La Niña events are represented by large

amplitude values and phase values near ⇡.

The phase time series �2(t) is equivalent to the �
e

(t) time series obtained from the

analytical signal of the Nino3.4 SSTA analytical signal. Similarly, ↵2(t) is equivalent

to ↵(t), and �1(t) is equivalent to �
a

(t), although the progression of the phase time

series (�1(t)) of the first principal component (p1(t), PC1) can vary from year to year,

as opposed to the fixed progression of �
a

(t). The ENSO synchronization metrics based

on the CEOF analysis are thus calculated as

�2
m

= E{Re[p2(y,m)]2} (3.8)

��2,1(t) = 2�2(t)� �1(t) (3.9)

↵
m

= E[↵2(y,m)], (3.10)

and the indices measuring the strength of each of theses processes (⌫,�, ) are calcu-

lated as before (2.5,2.6,2.7).

Figure 3.3 shows ENSO synchronization metrics based on the CEOF decomposition.

At the top, the real part of the PC2 time series (Re[p2(t)]) is compared to the Nino3.4

time series, showing the two time series are highly correlated. This is because the Nino3.4

index is the area average of SST over 5�N-5�S, 190��240�E, lying directly over the area

of largest amplitude of the second mode of the CEOF. In turn, the synchronization

metrics calculated from the PC2 time series (Figure 3.3, bottom) are very similar to

those calculated from the Nino3.4 analytical signal (Figure 2.1). The PC2 time series

indicates slightly stronger amplitude modulation that the analytical signal of the Nino3.4

index, and vice versa for the phase synchronization, but overall the two methods produce

very similar time series for ENSO and metrics of ENSO synchronization.
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The spectrum of the real part of the PC2 time series also displays peaks at the

!
a

� !
e

sideband, but the peak is not significant based upon comparison to a first

order autoregressive fit of the time series (Figure 3.4). This is because the PC2 time

series retains significant energy at the annual and semi-annual frequencies, which mask

the relatively weaker peak at the combination tone frequency. Removing the monthly

averages of the real part of the PC2 time series eliminates the annual and semi-annual

peaks (Figure 3.5), producing a spectrum similar to that of the Nino3.4 index (Figure

2.2). The spectrum displays significant energy across interannual frequencies, with a

peak at 0.22 years�1, and a associated peak at the combination tone 0.78 years�1. As

with the the spectrum of the Nino3.4 index, there is no evidence of a significant peak at

the higher !
a

+ !
e

frequency.

Additionally, CEOF analysis of SST output from the CMIP5 models reveals the same

relationship between ENSO seasonal variance, amplitude modulation, and 2:1 phase

synchronization with the annual cycle as seen with the analytical signals of the Nino3.4

indices from the models. CEOF analysis was performed on model output of equatorial

SST from historical runs, covering model years 1901-2000 and over the same spatial

domain as the observations, 20�S - 20�N, 110�E - 290�E. The spatial patterns of the first

two modes of each CMIP5 model produced from the CEOF decomposition are included

as supplementary figures (Appendix A). Figure 3.6 (top) shows the relationship between

the range of the seasonal variance (⌫) of the real part of the PC2 time series and the

strength of the amplitude modulation ( ) of the complex PC2 time series. Below,

the relationship between the seasonal variance (⌫) and the strength of the 2:1 phase

synchronization (�) between mode 2 (ENSO) and mode 1 (annual cycle) of each model

is shown. Two additional SST reanalysis data sets were also included for comparison: the

European Centre for Medium-Range Weather Forecasts operational Ocean Re-Analysis

System 3 (ECMWF ORA-S3, Balmaseda et al. (2008)) and the UK Met O�ce Hadley

Centre’s 1� gridded SST analyses (HadISST Rayner et al. (2003)), with the same spatio-

temporal domain as the ERSST.v3b data set.

The CEOF analysis shows the same overall relationships between the synchronization

metrics as the analytical signals of the Nino3.4 indices. There is a strong relationship
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between the range of the seasonal variance (⌫) of the PC2 time series and the 2:1 phase

synchronization between the ENSO and annual cycle CEOF modes (�). The strength of

the seasonal amplitude modulation ( ) of PC2 for each model, on the other hand, has

little to no relationship with the range of ENSO variance across CMIP5 models. The

linear regression between the ⌫ and � as calculated from the CEOFs does have the o↵set

seen with the indices based on the Nino3.4 analytical signals, though the exact reason

for this is unknown.

The similarity between the ENSO synchronization metrics calculated from CEOFs

and the analytical signals of the Nino3.4 indices indicates that the Nino3.4 indices are

su�cient to describe ENSO synchronization, based on the metrics used in this study.

This result has two interesting repercussions. First, it suggests the including the modu-

lation of the annual cycle, and in particular the feedback of ENSO back onto the annual

cycle, is not a necessary component of a theory of ENSO synchronization. This allows for

ENSO synchronization to be treated as the single ENSO mode modulated and/or forced

by the fixed annual cycle, as opposed to two coupled oscillatory modes, significantly

simplifying the problem. Second, use of the Nino3.4 index to describe ENSO synchro-

nization is dynamically consistent with the recharge oscillator framework (Jin, 1997),

which will be used to examine the theories of ENSO synchronization in the following

chapters.
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Figure 3.1: The magnitudes (q1,↵1(t)) and phases (r1,�1(t)) associated with the first
mode obtained from a CEOF analysis of ERSST.v3b data. The contour plots show the
spatial maps of q1, r1, with contour intervals indicated on the top right. The correspond-
ing time series ↵1(t) (blue line, left ordinate) and �1(t) (green x’s, right ordinate) are
shown below. The first mode captures the annual cycle of the data set.
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Figure 3.2: The magnitudes (q2,↵2(t)) and phases (r2,�2(t)) associated with the second
mode obtained from a CEOF analysis of ERSST.v3b data. The contour plots show the
spatial maps of q2, r2, with contour intervals indicated on the top right. The correspond-
ing time series ↵2(t) (blue line, left ordinate) and �2(t) (green x’s, right ordinate) are
shown below. The second mode captures the dominant ENSO mode in the data set.
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Chapter 4

Analytical solutions of the

parametric recharge oscillator

This chapter presents analytical solutions of the neutral, unforced version of the para-

metric recharge oscillator (PRO) model of ENSO, which is used as a framework to test

the theory that ENSO synchronization arises due to the seasonal modulation of the

coupled stability of the equatorial Pacific ocean-atmosphere system, or equivalently, the

seasonal modulation of ENSO’s growth rate. The PRO model is based upon the recharge

oscillator model of ENSO (Jin, 1997) derived with seasonal varying coe�cients (Stein

et al., 2010), taking the form of a stochastic parametric oscillator

dT

dt
= ��(t)T + !(t)H + ⇠(t) (4.1)

dH

dt
= �RT, (4.2)

where T represents eastern equatorial Pacific sea surface temperature (SST) anoma-

lies, H represents the zonal mean equatorial Pacific thermocline depth anomalies, �(t)

and !(t) are the seasonally varying growth rate and angular frequency parameters of

the oscillator, the constant R relates to the time scale of the geostrophic adjustment of
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the thermocline to wind stress anomalies, and ⇠(t) is Gaussian white noise representing

forcing by the atmosphere (Hasselmann, 1976). The parameters �,! can be derived from

a statistical-dynamical estimation of the linearized upper ocean heat budget based on

the Bjerknes index (Jin et al., 2006).

The model has been shown to reproduce the observed seasonal cycle of ENSO variance

(Figure 4.1), based on fits of equations (4.1,4.2) to a hindcast performed with the Ocean

GCM for the Earth Simulator (OFES), developed at the Japan Agency for Marine-Earth

Science and Technology (JAMSTEC) (Masumoto et al., 2004). Time series for the east-

ern Pacific upper ocean temperature (T) and zonally averaged subsurface temperature

(H) were calculated from the hindcast output, and the parameters in (4.1,4.2) were deter-

mined using a direct statistical of the equations (�(t)) and from a statistical-dynamical

fit (I
BJ

(t)) based on the Bjerknes index (Jin et al., 2006). Models runs utilizing both

the estimated growth parameters (�(t),I
BJ

(t)) reproduced the seasonal cycle of ENSO

variance in the hindcast (Figure 4.1). Modulation of the frequency parameter was shown

to have little e↵ect on the seasonal variance of ENSO (Stein et al., 2010), so the model

can be further reduced to

dT

dt
= ��(t)T + !

e

H + ⇠(t) (4.3)

dH

dt
= �!

e

T, (4.4)

where where !
e

=
p
!R. Equations (4.3,4.4) consitute the PRO model of ENSO.

An approximate analytical solution was obtained for the neutrally stable, unforced

case of the PRO model, where ⇠(t) = 0, �(t) = �0 cos (!a

t), and !
a

is the annual

frequency in (4.3). Setting �0 = ✏, 0 < ✏ << !
a

, and using the perturbation method, the

first-order approximation to the solution for T can be obtained (An and Jin, 2011) as

T = C [cos (!
e

t) + ✏A cos (!
a

t) sin (!
e

t)� ✏B sin (!
a

t) cos (!
e

t)] +O(✏2), (4.5)
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where C is a constant dependent on the initial conditions, A = !e
!

2
a�4!2

e
, and B =

!

2
a�2!2

e
!

3
a�4!2

e!a
. Without loss of generality, we can set C = 1. Note that due to the denom-

inators of A and B, T ! 1 as !a
!e

! 2, which reflects parametric resonance in the

system. For all values of !a
!e

> 2, the parameter B is larger than A, with the ratio of

B

A

⇡ 1.12⇥ !a
!e

� 1 for realistic ENSO periods.

An example of the T and H[T ] time series, seasonal variance, and amplitude and

phase for equation (4.5) is show in Figure 4.2. For this example, the ENSO period was

set to 3.75 years and the amplitude of the seasonal modulation was set to ✏ = 2 years�1

in order to match the range of the observed monthly Nino3.4 SSTA index variance.

Although there is an arbitrary phase shift in terms of the time of year that the modulation

occurs, the equation can reproduce the salient aspects of ENSO seasonal synchronization.

The ranges of the seasonal variance, amplitude modulation, and the PDF of the phase

di↵erence with the annual cycle agree well with the observations (Figure 2.1), especially

considering the equation’s simplicity. Utilizing equation (4.5), analytical solutions can be

obtained for the Hilbert transform of T, as well as the seasonal variance and amplitude

modulation of the T time series. Additionally, it can be shown that the ENSO signal

expressed in equation (4.5) will have a preferred phase di↵erence with the annual cycle.

This analysis will demonstrate that the various aspects of ENSO synchronization results

directly from the modulation of ENSO’s growth rate by the annual cycle.

First, to calculate the seasonal variance of T , write the time series as the the cyclo-

stationary process T (y,m), with a monthly time series chosen for consistency with the

observational data and coupled model output used in this study. The seasonal variance

is then
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�2
T

(m) = E{T 2(y,m)}

= E{cos2 [!
e

(y,m)] + ✏A cos [!
a

(y,m)] sin [2!
e

(y,m)]

�2✏B sin [!
a

(y,m)] cos2 [!
e

(y,m)]

+✏2A2cos2[!
a

(y,m)]sin2[!
e

(y,m)] + ✏2B2sin2[!
a

(y,m)]cos2[!
e

(y,m)]

�✏2
AB

2
sin[2!

a

(y,m)]sin[2!
e

(y,m)]}+O(✏3), (4.6)

where E indicates the expected value and we have made use of the fact that E{T} =

0. For the relevant ENSO timescale, the A2 term in (4.6) is negligible. With a long

enough sampling time, the expected value of !
e

terms will be constant with respect

to the annual cycle and we can set E
�
cos2 [!

e

(y,m)]
 
= E

�
sin2 [!

e

(y,m)]
 
= 1

2 and

E {cos [2!
e

(y,m)]} = E {sin [2!
e

(y,m)]} = 0, resulting in

�2
T

(m) ⇡ 1� 2✏B sin (!
a

m) + ✏2B2sin2(!
a

m)

2
. (4.7)

Thus, the variance of ENSO will be periodic with respect to the annual cycle, with

this periodicity arising from the second cross term between the annual cycle and ENSO

in (4.5). The third term in equation (4.7) represents a semi-annual contribution to the

seasonally modulated variance.

In order to calculate the Hilbert transform of the T time series, first note that equa-

tion (4.5) is equivalent to

T = cos (!
e

t)� ✏
B �A

2
sin [(!

a

+ !
e

)t]� ✏
A+B

2
sin [(!

a

� !
e

)t] +O(✏2). (4.8)

This form of the analytical solution shows explicitly that modulation of ENSO by

the annual cycle will result in energy at the combination tone frequencies !
a

±!
e

which

account for the secondary peaks in the observed and modelled ENSO spectra. In par-
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ticular, the approximate solution (4.8) explains the dependence of the frequencies of the

secondary peaks on the mean ENSO frequency, and shows that !
a

�!
e

component of the

time series will be more larger than the !
a

+!
e

component. Both of these characteristics

are apparent in the observed Nino3.4 SSTA spectrum (Fig. 2.2).

We then utilize the fact that the Hilbert transform is a linear operator, and that the

Hilbert transform of the cosine and sine functions are known, namely H[cos (x)] = sin (x)

and H[sin (x)] = � cos (x). The Hilbert transform of T is then

H[T ] = sin (!
e

t) + ✏
B �A

2
cos [(!

a

+ !
e

)t] + ✏
A+B

2
cos [(!

a

� !
e

)t] +O(✏2)

= sin (!
e

t) + ✏A sin (!
a

t) sin (!
e

t) + ✏B cos (!
a

t) cos (!
e

t) +O(✏2). (4.9)

The seasonal variance of the Hilbert transform of T can also be calculated as it was

for the T time series itself,

�2
H(m) ⇡ 1 + 2✏A sin (!

a

m) + ✏2B2cos2(!
a

m)

2
. (4.10)

This periodic variance of the T and H[T ] time series are related to the seasonal

amplitude modulation. The amplitude of the analytical signal of T is defined as

↵(t) =
p
T 2 +H[T ]2, (4.11)

and the seasonal amplitude modulation is defined by taking the cyclostationary mean

of the amplitude, namely

E{↵(y,m)} = E{
p

T 2(y,m) +H[T ]2(y,m)}

⇡
p
1 + ✏[A�B] sin (!

a

m). (4.12)
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which can be solved readily to first order using equations (4.5) and (4.9). Because

the complex amplitude modulation is proportional to the di↵erence of the A and B

parameters, the e↵ect is relatively small.

Additionally, the modulation of the growth parameter in (4.3) results in a preferred

phase di↵erence between ENSO and the annual cycle. The result may seem counter-

intuitive, but the reason that modulation of the growth rate parameter in the PRO

model can lead to phase synchronization is that the modulation of the growth parameter

occurs on a shorter timescale than the intrinsic ENSO period. This is in contrast to

a standard amplitude modulated (AM) signal, in which the modulation occurs at a

much lower frequency than the carrier signal, and therefore no phase synchronization

can result.

The phase of ENSO is defined as

�
e

(t) = Arg

⇢
H[T ]

T

�
(4.13)

= 2 arctan

(
H[T ]p

T 2 +H[T ]2 + T

)
, (4.14)

where the tangent half-angle formula is used to calculated the principle value of the

argument in a uniform matter. Neglecting the A terms yields

�
e

(t) ⇡ 2 arctan

⇢
sin (!

e

t) + ✏B cos (!
a

t) cos (!
e

t)

↵(t) + cos (!
e

t)� ✏B sin (!
a

t) cos (!
e

t)

�
, (4.15)

which is form of the solution that was used for calculating the analytical phase

di↵erence ��2,1 in Figures 4.2, 5.1, & 5.2. However, a simplified version of the equation

is more helpful in demonstrating conceptually the relationship between ENSO seasonal

variance and phase synchronization with the annual cycle. As shown before, the seasonal

amplitude modulation is small, so the value of ↵(t) can be fixed at 1. Neglecting the ✏

term in the numerator then yields
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�
e

(t) ⇡ 2 arctan

⇢
sin (!

e

(t)

1 + cos (!
e

t)� ✏B sin (!
a

t) cos (!
e

(t)

�
. (4.16)

Solving equation (4.7) for ✏B and inserting the solution into equation (4.16) results

in a solution for ENSO phase modulation in terms of the seasonal variance:

�
e

(t) ⇡ arctan

⇢
sin (!

e

(t)

1 +
p
2�

T

cos (!
e

t)

�
, (4.17)

where we have made use of the fact that sin (!
a

t) = sin (!
a

m) by definition.

With no modulation, the phase of ENSO would proceed monotonically as expected,

�
e

(t) = !
e

t. The stronger the modulation of the growth rate parameter (✏), the stronger

the seasonal modulation of ENSO variance (4.7), and therefore the stronger the modu-

lation of the ENSO phase progression (4.17) which leads to the phase synchronization

with the annual cycle. Equation (4.17) thus explains linear relationship between ENSO

seasonal variance and the strength of the phase synchronization with the annual cycle

that occurs across CMIP5 models and observations (Figure 2.6). The annual cycle mod-

ulation has the largest e↵ect when cos (!
e

t), and therefore the value of T, is near an

extrema. In other words, the phase synchronization of ENSO to the annual cycle occurs

in the PRO model through the modulation of the ENSO progression near the peak of El

Niño and La Niña events.

The analysis of the PRO model shows that the annual modulation of the growth rate

parameter can account for all the observed features of ENSO synchronization: seasonal

variance, amplitude modulation, phase synchronization, and combination tones in the

ENSO spectrum. The secondary spectral peaks at combination tones between ENSO

and the annual cycle result directly from the modulation of ENSO’s growth rate by the

annual cycle, and are seen explicitly in the first order solution to the system (4.8). Ana-

lytical solutions for the seasonal variance (4.7) , amplitude modulation (4.12), and phase

synchronization (4.15) of ENSO are also obtainable, with low-order forms of the solutions
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agreeing well with the statistical analysis (Figure 4.2). Simplified equations (4.16,4.17)

for ENSO phase capture the essential mechanism that produces the preferred 2:1 phase

di↵erence with the annual cycle, and explicitly relates ENSO’s phase synchronization

to its seasonal variance. The counter-intuitive result that modulation of the growth pa-

rameter can result in a preferred phase di↵erence is due to the fact that the modulation

of ENSO occurs at a higher frequency than ENSO itself. In such a system, amplitude

modulation and phase synchronization are not independent, but result directly from the

annual cycle modulation, and are dependent on the two free parameters of the system:

the strength of the modulation (✏), and ENSO’s intrinsic frequency (!
e

). In the next

section, the simplified analytical equations are shown to apply to more realistic numer-

ical runs of the PRO model, supporting the proposition that the equations capture the

salient features of ENSO synchronization in the natural system.

40



J F M A M J J A S O N D
0.6

0.8

1

1.2

1.4

 

 

J F M A M J J A S O N D

 -1

 -0.5

0

0.5

Seasonal ENSO growth rate 

Seasonal ENSO variance 

� (t)

T

Figure 4.1: (Top) The growth rate of ENSO in OFES, estimated from a stastical fit
of equation (4.1) (dash-dot), and from a statistical-dynamical fit (dashed) based on the
Bjerknes index (Jin et al., 2006). (Bottom) The seasonal variance of eastern Pacific upper
ocean temperature (T) in OFES (solid) compared to model runs of (4.1,4.2) utilizing the
growth rate �(t) determined from a statistical (dash-dot) and a statistical-dynamical
(dash) fit. Figure reproduced from Stein et al. (2010).
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Figure 4.2: (Top) The T time series and the Hilbert transform of the time series, based
on the analytical solution of the neutral PRO model (equation 4.5). (Bottom left) The
monthly variance of the T time series and the monthly amplitude of the analytical signal
of the time series. (Bottom right) A PDF of the ��2,1 phase di↵erence of ENSO with
the annual cycle. The analytical solutions of the seasonal variance, seasonal amplitude,
and phase di↵erence are indicated by dashed lines.
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Chapter 5

Numerical confirmation of the

analytical solutions

The analytical results presented in the preceding section were based on a solution (4.5)

obtained via a first-order perturbation expansion to a particular case of the PRO model,

namely the neutrally stable system with no stochastic forcing. Three assumptions were

made to obtain this solution: 1) no forcing of the system, 2) neutral stability, i.e. zero

mean growth rate, 3) relatively small modulation of the growth/damping rate, specifically

0 < ✏ << !
a

. However, it is not possible to obtain realistic model oscillations given these

assumptions. Moreover, the approximate solutions obtained for ENSO seasonal variance

(4.7), amplitude modulation (4.12), and phase (4.15), were obtained by neglecting some

higher order terms. It is therefore uncertain whether the approximate solutions have any

relevance to the observations. To test the validity of the solutions, they were compared

to output from numerical runs of the full PRO model (4.3,4.4). For both experiments,

the ENSO period was set to 3.75 years, a daily timestep was used, and monthly averages

of the T time series were saved as output. For simplicity, the model year consists of 360

days, 12 months of 30 days each.

In order to reproduce the observed range of ENSO seasonal variance, the amplitude

of the modulation of the growth rate (�) for the numerical runs was set to ✏ = 2 years�1.

This value is much large than was assumed by the perturbation method, so it is necessary
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to test whether the analytical solutions are still applicable to the case of the neutral, un-

damped PRO model. To do so, the analytical solutions were compared to output from a

60 year integration of equations (4.3,4.4) with ⇠(t) = 0, �(t) = ✏ cos (!
a

t), ✏ = 2 years�1.

The neutral PRO model was initialized with values of T = 0, H = 1.35, resulting in a

variance for the T time series of 1.029�C. Figure 5.1, shows the T and H[T ] time series,

the seasonal variance of the T time series, the amplitude modulation of the analytical sig-

nal, and a histogram of the ��2,1 phase di↵erence between the complex analytical signal

bT and the annual cycle from the neutral PRO model run. Analytical solutions for the sea-

sonal variance, amplitude modulation, and phase di↵erence are shown with dashed lines

for comparison. The numerical and analytical solutions for the T time series agree well,

and the analytical solutions of the amplitude modulation, seasonal variance, and phase

di↵erence are very good approximations to the values computed statistically from the T

time series from the numerical integration. The analytical solutions (4.5,4.7,4.12,4.15)

therefore apply to the neutral PRO model, despite the violation of the assumption of a

small modulation (✏) of the damping rate (�) used in the perturbation expansion and

the further simplifications made in obtaining the approximate synchronization solutions.

Next, the analytical solutions were compared to the more realistic case of the damped,

stochastically forced PRO model. For these model runs, the damping parameter was set

to �(t) = �+ ✏ cos (!
a

t), with the mean damping rate set to � = 0.4 years�1 based upon

the fit of the PRO model to output from the OFES hindcast (Stein et al. (2010), see

Chapter 4). Gaussian stochastic noise with a variance of 0.04�C was applied at each

time step of one model day. Figure 5.2 shows the synchronization statistics from an 100

member ensemble of 150 year runs of the stochastically forced model, with an example

of the time series output above. For each ensemble member, the model was run for 200

years, with the last 150 years of output used for analysis. The ensemble mean monthly

variance, monthly amplitude, and ��2,1 phase di↵erences are shown, along with the 90%

confidence intervals for each statistic. Though the time series of model output for the

two cases are quite di↵erent, the ensemble mean statistics of the stochastic case are very

similar to the damped, unforced case and agree with the analytical estimates. Thus,

the analytical solutions obtained for the neutral, unforced case of the PRO model are
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valid for the long-term behavior of the damped, stochastically forced case. However, the

stochastic forcing adds a large degree of uncertainty about the statistics of a particular

ensemble member. Notably, the seasonal variance and preferred phase di↵erence that

result from the annual cycle modulation will be apparent for each ensemble member,

while the same cannot be said for the amplitude modulation, which is characterized by a

very small signal-to-noise ratio for the stochastically forced case. For time series of  150

years, the stochastic forcing may mask the underlying amplitude modulation, but the

seasonal variance and preferred phase di↵erence that result from the annual modulation

of ENSO will still be apparent. These results explain the weak correspondence between

seasonal variance and amplitude modulation across the CMIP5 models (Figure 2.6), as

reflected in equation 4.12.

The analytical solutions presented in the previous section thus capture the essential

aspects of ENSO synchronization in the PRO model for both the neutral case and for the

forced, damped case with realistic mean damping rate. We can therefore examine the

dependence of ENSO synchronization statistics on the degree of annual cycle modulation

and intrinsic ENSO frequency using equation (4.5). Figure 5.3 shows contours of the

three synchronization indices across a section of the PRO model parameter space. For

ENSO modes with periods longer than three years, the index contours are nearly horizon-

tal, indicating that the strength of all the synchronization indices is determined almost

entirely by the strength of the annual cycle modulation. In this regime, ENSO seasonal

variance, amplitude modulation, and phase synchronization increase nearly monotoni-

cally with increasing modulation of the growth rate parameter. Model ENSOs with a

period less than three years move toward a regime where increased modulation of the

growth rate parameter results in increased seasonal ENSO variance and phase synchro-

nization, but not an increase in amplitude modulation of the complex analytical signal.

In this regime, the model becomes parametrically destabilized, and nonlinear saturation

is necessary to limit overall ENSO variance.

Using Figure 5.3, one can predict the strength of phase synchronization of ENSO

to the annual cycle, given the mean ENSO period and seasonal variance, which provide

an estimate of the strength of the annual cycle modulation, i.e. the range of �(t).
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This calculation was done for the observations and the CMIP5 model ENSOs, using the

⌫ index to derive the strength of the seasonal variance and defining the mean ENSO

frequency using the unwrapped phase times series:

!
e

=

⌧
d�

e

dt

�

t

.

An estimate of the strength of the modulation by the annual cycle based on the

analytical solution to the PRO model can be obtained using ⌫ and !
e

(Figure 5.3,

top), and the values of !
e

and ⌫ then correspond to a predicted phase synchronization

strength � (Figure 5.3, center). The predicted and measured strengths of the 2:1 phase

synchronization are compared in Figure 5.4. The two values agree well, with the value

predicted by the analytical PRO model accounting for 75% of the variance in the strength

of the phase synchronization in the CMIP5 models. The agreement indicates that the

measured 2:1 phase synchronization arises from the modulation of ENSO’s growth rate

by the annual cycle, and provides further evidence that the analytical solutions of the

PRO model capture the essential features of ENSO synchronization in the observations

and CMIP5 models.
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Figure 5.1: (Top) The T time series and the Hilbert transform of the time series, based
on a numerical integration of the a neutral PRO model. (Bottom left) The monthly
variance of the T time series and the monthly amplitude of the analytical signal of the
time series. (Bottom right) A PDF of the ��2,1 phase di↵erence of ENSO with the annual
cycle. The analytical solutions of the seasonal variance, seasonal amplitude, and phase
di↵erence are indicated by dashed lines.
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Figure 5.2: (Top) An example of the T time series and the Hilbert transform of the
time series, from a single member of an ensemble of integrations of the a damped,
stochastically forced PRO model. (Bottom left) The ensemble mean monthly variance
of the T time series and the ensemble mean monthly amplitude of the analytical signal
of the time series. (Bottom right) A PDF of the ��2,1 phase di↵erence of ENSO with the
annual cycle. 90% confidence intervals for the seasonal variance, amplitude modulation,
and PDF of the phase di↵erence, based on the 100 member ensemble, are shown. The
analytical solutions of the seasonal variance, seasonal amplitude, and phase di↵erence
are indicated by dashed lines.
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Figure 5.3: Contours of the seasonal variance index (⌫, top), the amplitude modulation
index ( , middle), and the phase synchronization index (�, bottom) of the analytical
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Figure 5.4: The strength of the 2:1 phase synchronization (�) in the observations and
CMIP5 coupled GCMs versus the amount predicted based on analytical solutions of the
PRO model (figure 5.3).
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Chapter 6

ENSO synchronization through

frequency locking

In order to compare the above results to the frequency locking scenario for ENSO,

equations (4.1,4.2) are extended to include periodic forcing and a nonlinear damping

term. The damping rate � is held constant with respect to the annual cycle, and the

behavior of the model is examined in the unstable regime above the Hopf bifurcation at

� = 0. The extended model is not o↵ered as a particularly realistic representation of

ENSO, but rather as a system that has similar global behavior to the simple (Tziperman

et al., 1994; Wang and Fang, 1996; Liu, 2001) and intermediate (Chang et al., 1994;

Tziperman et al., 1995; Jin et al., 1996) models of ENSO on which the frequency locking

scenario is based, and which admits the same suite of possible model solutions.

The extended model reads:

dT

dt
= �T + !

e

H � cT 3 + F sin (!
a

t) (6.1)

dH

dt
= �!

e

T, (6.2)

where the sinusoidal forcing term represents external forcing by the annual cycle that
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is independent of eastern Pacific SST anomalies (Liu, 2001) and the cubic damping term

represents nonlinear saturation of SST anomalies due to e.g. the nonlinear dependence

of subsurface temperature on thermocline depth (Jin, 1997).

Equations (6.1,6.2) can be reduced to the well-known forced van der Pol oscillator

(van der Pol, 1927) with two simplifications. First, rescale the equations by ⌧ = !
e

t,

and second, fix the strength of the cubic damping to c = �

3 , resulting in:

d2T

d⌧2
� b�(1� T 2)

dT

d⌧
+ T = b! bF cos (b!⌧), (6.3)

where b! = !a
!e
, bc = c

!e
, bF = F

!e
, and b� = �

!e
. By setting bc =

b
�

3 , the growth rate

and cubic damping terms have been combined into the nonlinear damping term b�, which

also controls the intrinsic frequency of the unforced oscillation. The periodically forced

van der Pol oscillator (6.3) has been thoroughly studied (see Mettin et al. (1993) for a

complete description of the bifurcation structure), so we will limit our discussion here

to the types of solutions that are allowed by the system and their applicability to the

seasonal synchronization of ENSO. We begin by providing examples of each type of model

solution, using a value of b! = 4.02 years�1 because of the known chaotic solutions at

that driving frequency (Mettin et al., 1993), and then proceed to examine the solutions

that occur within the parameter space relevant to ENSO.

In the absence of external forcing, the solution of the self-sustained oscillator (b� > 0)

follows a stable limit cycle with an amplitude of 2�C (Figure 6.1, A), which is comparable

to the amplitude of the Nino3.4 index (Figure 2.1, top), so the choice to fix the value

of the cubic damping parameter is reasonable. As the nonlinear damping parameter

(b�) becomes larger, the period of oscillation increases and the system moves toward a

relaxation oscillation (Figure 6.1, B). With the inclusion of periodic forcing, quasiperi-

odic solutions exist for relatively small values of the nonlinear damping (Figure 6.1, C).

Further increasing the nonlinearity results in the oscillator becoming frequency locked

to a rational multiple of the driving frequency (Figure 6.1, D). With strong enough non-

linear damping and forcing, chaotic oscillations can occur when several frequency locked
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solutions overlap, and the oscillation jumps irregularly between the possible resonant

frequencies (Figure 6.1, E). The chaotic solutions observed in the driven van der Pol

oscillator result from period doubling bifurcations (Mettin et al., 1993), a subcase of the

quasiperiodic route to chaos (Jin et al., 1996) followed by ENSO models used in previous

studies.

To examine the model solutions within a realistic parameter range, we fix the value

of the forcing F in (6.1), and then examine model solutions with various values of the

growth rate � and neutral ENSO period T
e

= 2⇡
!e
. The range of the annual cycle of

the Niño3.4 index provides reasonable upper limit of 1.2�C for the annual cycle forcing

F in (6.1) (Liu, 2001). The neutral ENSO period T
e

is varied from 2 to 5 years, and

the � parameter is varied from 0 to 6, corresponding to a maximum growth rate of 3�C

per year. The annual cycle frequency is fixed at !
a

= 2⇡, hence the driving frequency

b! = !a
!e

is equal to the mean ENSO period T
e

.

Figure 6.2 displays contours of the ratio of the frequency of the T time series output

from (6.3) to the driving frequency b!, based on runs with rescaled parameters bF , b!,

and b� calculated from F , �, and !
e

. Regions of quasiperiodic solutions are separated

by frequency locked solutions that occur within “Arnol’d tongues” (Arnold et al., 1983),

which become larger with increasing growth rate, and hence nonlinear damping b�. The

Arnol’d tongues slope up and to the left because the shorter the neutral ENSO period

T
e

, the weaker the e↵ective forcing b! bF for a fixed F and !
a

. As can be seen, the driven

van der Pol oscillator favors frequency locked solutions at odd multiples of the driving

frequency; frequency locked solutions at even multiples of the driving frequency are very

unstable (Mettin et al., 1993). No chaotic solutions were found in the neighborhood of

realistic parameter ranges, reflecting the rarity of chaotic solutions within more complex

ENSO models (Jin et al., 1996). We will therefore only compare the observed ENSO syn-

chronization characteristics to the probable model solutions: quasiperiodic oscillations,

frequency locked oscillations, and frequency locked oscillations with added stochastic

forcing. However, chaotic solutions were shown to retain the subharmonic peaks asso-

ciate with frequency locked solutions, so the analysis of the frequency locked solutions

applies to the chaotic solutions as well.
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Figure 6.3 shows an example of a quasiperiodic oscillation (top) obtained by setting

T
e

= 2.76 and � = 0.5, along with the corresponding spectrum (bottom left). The

strength of the k : l phase synchronization between the T time series and the periodic

forcing for k, l 2 [1, 10] is shown at the bottom right, defined as

�
k,l

=
���
D
ei(k�e�l�e)

E

t

��� . (6.4)

For a quasiperiodic solution, the ENSO frequency is still largely determined by the

nonlinear damping rate (b�), independent of the forcing frequency, so the oscillation will

not have a seasonal cycle of variance or display any phase synchronization with the

periodic forcing (Figure 6.3, bottom right). Quasiperiodic solutions therefore produce

no synchronization between ENSO and the annual cycle.

Increasing the growth rate to � = 2 moves the system into the 3:1 Arnol’d tongue

(Figure 6.2), resulting in a regular 3 year ENSO as shown in the spectrum (Figure

6.4, bottom left). Such subharmonic frequency locking will by definition produce phase

synchronization as well, which can be seen most strongly at 3 : 1, but also at the other

3n : n ratios (Figure 6.4, bottom right). The weaker phase synchronization at other

ratios result from the fact that the oscillation is not perfectly sinusoidal. The frequency

locked oscillation is far more regular than the observed ENSO, so stochastic forcing is

necessary to make the solution more realistic (Figure 6.5). The inclusion of the stochastic

forcing broadens the spectrum of the T output, and weakens the phase synchronization

between the T time series and the periodic forcing, particular for larger values of k, l.

The only remaining phase synchronization occurs at the ratio 3 : 1, associated with the

peak in the spectrum at the 3 year period.

To examine the possibility that the observed ENSO results from a stochastically

perturbed frequency locked oscillation, we compared the above synchronization charac-

teristics to those of the observations. Figure 6.6 shows the phase synchronization indices

for k, l 2 [1, 10] as calculated from the observed Niño3.4 index. As mentioned before,

the 2:1 phase synchronization is by far the strongest in the observations, and there is
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no indication of particularly strong synchronization at any other ratio. However, the

2 : 1 phase synchronization is not accompanied by a peak at the biennial frequency in

the observed Nino3.4 SSTA spectrum (Figure 2.2), as would be the case if the phase

synchronization was due to frequency locking. Similarly, the annual cycle and ENSO as

simulated by the CMIP5 GCMs only display phase synchronization at the 2:1 ratio (Fig.

6.7). Though some CMIP5 models (CNRM-CM5, FGOALS-g2, CanESM2, Giss-E2-R)

show a significant spectral peak at the biennial frequency, each of those models, and a

majority of the others, have significant spectral peaks at combination tones in agreement

with the analytical PRO model solution (4.8). This observation, combined with the abil-

ity of the PRO model to reproduce seasonal ENSO variance, amplitude modulation, and

phase synchronization, suggests that the seasonal synchronization of ENSO is far more

likely due to the periodic modulation of ENSO’s growth rate by the annual cycle, rather

than frequency locking of ENSO to periodic forcing by the annual cycle.
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Figure 6.1: Time series from numerical integrations of van der Pol oscillator (6.3) for
various values of the forcing amplitude (b! bF ) and nonlinear damping (b�). For all time
series, the driving frequency of the oscillator was set to b! = 4.02 and initialized at
T = 2,dT

d⌧

= 0. From top to bottom, the time series represent a limit cycle, a relaxation
oscillator, a quasiperiodic oscillation, a frequency locked oscillation, and a chaotic oscilla-
tion. The bottom plot shows the divergence of a time series initialized at T = 2.01,dT

d⌧

= 0
(dashed). At the right, Poincaré sections of each time series for values of the annual cycle
phase �

a

= 2⇡N .
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Arnold tongues of the van der Pol oscillator
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Figure 6.2: Contours of the ratio of the T output frequency to the forcing frequency in
the van der Pol oscillator for various values of the growth rate (�) and neutral ENSO
period(T

e

). Multiple regions of frequency locking (Arnol’d tongues) are evident in the
parameter space of the model, preferentially occurring at odd multiples of the driving
frequency. The mean frequency of the output was measured as the mean gradient of the
unwrapped phase time series.
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Figure 6.3: The time series (top) and spectrum (bottom left) of a quasiperiodic oscillation
obtained from a run of the van der Pol oscillator with parameter values F = 1.2�C,
� = 1

2
�
C year�1, and T

e

= 2.76 years. The strength of the phase synchronization of the
T time series with the periodic forcing for various rational multiples of k : l is shown in
the bottom right. See text for the definition of the phase synchronization index.
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Figure 6.4: The time series (top) and spectrum (bottom left) of a frequency locked
oscillation obtained from a run of the van der Pol oscillator with parameter values F =
1.2�C, � = 2�C yr�1, and T

e

= 2.76 yrs. The strength of the phase synchronization of
the T time series with the periodic forcing for various rational multiples of k : l is shown
in the bottom right. See text for the definition of the phase synchronization index.
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Figure 6.5: The same as in Figure 6.4, but with the inclusion of Gaussian stochastic
noise forcing in the model.
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Chapter 7

Discussion

In addition to the PRO model’s ability to capture the various features of ENSO synchro-

nization, the results presented here very nicely complement other recent observational

studies on annual cycle - ENSO interactions. As mentioned before, a newly identified cli-

mate mode, corresponding to the second principal component of an EOF decomposition

of western Pacific winds, has been shown to have energy at the !
a

�!
e

combination tone

frequency (Stuecker et al., 2013). The spatial pattern of the mode captures the develop-

ment of the Philippine Sea anticyclone (Wang et al., 1999), as well as the southward shift

of westerly wind anomalies in the western Pacific (McGregor et al., 2012) during El Niño

events. These two features have been proposed as possible mechanisms for ENSO phase

transition via the modulation of the atmospheric response to SST anomalies and thereby

ENSO’s growth rate, captured heuristically in the PRO model via the modulation of �.

In turn, the modulation of the growth rate (�) in the PRO model results directly in

energy at combination tone frequencies (4.8) due to the nonlinear interaction of ENSO

and the annual cycle. It is important to note that the combination tone is proposed to

be due to the interaction of El Niño events with the annual cycle, so there is an apparent

asymmetry in the observed system not accounted for in the PRO model.

The combination of the analytical PRO model results and the observation of the

combination climate mode suggests that the most important ENSO - annual cycle inter-

action occurs in the atmosphere over the western Pacific, which helps to narrow down
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the myriad possible physical interactions that could result in the modulation of ENSO’s

growth rate by the annual cycle (see Chapter 1). This idea could be tested by examining

characteristics of the various CMIP5 CGCM simulations of the western Pacific and re-

lating them systematically to the strength of the synchronization of ENSO to the annual

cycle within each model (Figure 2.6). The analysis of the CMIP5 output suggest that

there is a universal scaling of the models according to the strength of ENSO synchro-

nization that might be related to e.g. biases the location and strength of western Pacific

atmospheric convection, SST, surface winds, et cetera. If such a connection were made,

it would useful as a way to evaluate and improve coupled general circulation models and

provide insight into the physics of ENSO - annual cycle interaction.

Though the PRO model appears to capture the salient features of ENSO synchro-

nization as presented here, and is further supported by the observed ENSO - annual

cycle combination climate mode, the model has essential limitations that should be dis-

cussed. Throughout this work we have considered only the two leading theories for

ENSO synchronization to the annual cycle, that the synchronization results from the

seasonal modulation of ENSO’s growth rate or from frequency locking of ENSO to the

periodic forcing by the annual cycle. These two theories correspond to limiting cases of

the following model:

dT

dt
= �(t)T + !

e

H � cT 3 + F sin (!
a

t) + ⇠(t) (7.1)

dH

dt
= �!

e

T, (7.2)

which includes the seasonal variation of ENSO’s growth rate, nonlinear saturation,

periodic forcing by the annual cycle, and stochastic atmospheric forcing at fast time

scales. The e↵ect of the seasonal modulation of ENSO’s growth rate was represented

by the parametric recharge oscillator (PRO) model of ENSO, which corresponds to the

limiting cases of c = F = 0. Frequency locking of ENSO to the annual cycle was captured

by the limiting case �(t) = �̄ > 0.

Besides these two limiting cases, there are other possible scenarios that are outside
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the scope of this study but which may warrant further investigation. For example, one

could consider the interaction of the seasonally varying growth rate (�(t)) and the non-

linear saturation term (�cT 3) in the system, or the e↵ect of seasonally varying (Hendon

et al., 2007) or state-dependent stochastic noise forcing (Kessler et al., 1995; Kessler and

Kleeman, 2000; Jin et al., 2007; Levine and Jin, 2010). The importance of the various

interactions within the full system (7.1,7.2) would be dependant on the balance between

the mean damping/growth rate (�̄), the strength of the nonlinearity (c), the strength of

the periodic forcing (F ), and the variance of the stochastic forcing (⇠(t)). Clearly, the

complexity increases rapidly even within the simplest model representation of ENSO,

and the increased complexity must be justified by an increased understanding of ENSO

or ability to explain features of ENSO beyond the stochastically forced model with sea-

sonally varying growth rate. Of the possible avenues of investigation, the inclusion of

state-dependent (mulitplicative) noise forcing (Levine and Jin, 2010) in the system seems

the most fruitful, as it can reproduce ENSO skewness (Burgers and Stephenson, 1999;

An and Jin, 2004), a feature that is not present in the symmetric models presented here.

More generally, the oscillator models used in this study only consider the unidirec-

tional e↵ect of the annual cycle on ENSO dynamics. The simple models thus neglect

the modulation of the annual cycle as well as the possible interaction of three or more

coupled modes (Penland and Sardeshmukh, 1995), though the comparison of the results

based on the CEOF technique and on the Nino3.4 index suggests the modulation of the

annual cycle may not be important for ENSO synchronization. The models also assume

that ENSO is indeed an oscillation, rather than a series of events with no system memory

carried over from one event to the next (Kessler, 2002). The latter view of ENSO is not

entirely inconsistent with the damped, forced case of the PRO model, depending upon

the mean damping rate of the model. With the damping rate of ENSO based on the

OFES hindcast, the e-folding timescale of the model is ⇡ 2.5 years, so anomalies would

be > 90% damped out over six years without continuous forcing. Thus, model events

separated by six years or longer can be considered essentially independent. However, the

observed tendency for the amplitude of the system to persist over El Niño events but

not La Niña events (Kessler, 2002), suggest a shorter timescale of ⇡ 18 months, as well
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as an asymmetry in the system. The phase transition in the PRO model is necessary for

ENSO synchronization with the annual cycle, as is apparent when considering the first

order autoregessive (AR1) model of ENSO,

dT

dt
= ��(t)T + ⇠(t), (7.3)

where �(t) = � + ✏ cos (!
a

t), with the mean damping rate set to � = 0.4 years�1

and Gaussian stochastic noise with a variance of 0.04�C. The AR1 model was thus

obtained by removing the H time series from the damped, forced PRO model and re-

taining the damping parameter and stochastic forcing. An ensemble run of the AR1

model, performed in the same way as for the damped PRO model (Figure 5.2), shows no

synchronization with the annual cycle despite the modulation of the damping rate (Fig-

ure 7.1). The implication is that the phase transition which results from the subsurface

ocean “memory” is essential to the synchronization of ENSO with the annual cycle. In

the observations, this phase transition may be asymmetric, with La Niña events having a

stronger tendency to follow El Niño events than vice versa. It may be possible to capture

this feature within the recharge oscillator model if the growth rate were both time and

state dependent, i.e. � = �(T, t). This would also have the e↵ect of introducing and

quadratic nonlinearity into the system, which could potentially enhance the 2:1 synchro-

nization with the annual cycle. Overall, it appears that the most important feature of

ENSO not captured by the PRO model is the asymmetry between El Niño and La Niña

events, a shortcoming that could be addressed in future studies.
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Figure 7.1: (Top) An example of the T time series and the Hilbert transform of the
time series, from a single member of an ensemble of integrations of the a first order
autoregressive model of ENSO (7.3). (Bottom left) The ensemble mean monthly variance
of the T time series and the ensemble mean monthly amplitude of the analytical signal
of the time series. (Bottom right) A PDF of the ��2,1 phase di↵erence of ENSO with the
annual cycle. 90% confidence intervals for the seasonal variance, amplitude modulation,
and PDF of the phase di↵erence, based on the 100 member ensemble, are shown.
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Chapter 8

Summary and Conclusions

The two leading theories of ENSO seasonal synchronization are that ENSO is frequency

locked to periodic forcing by the annual cycle (Jin et al., 1994; Tziperman et al., 1994)

or that the seasonal modulation of ENSO’s growth rate leads to the synchronization of

ENSO events (Philander et al., 1984; Hirst, 1986). These two theories were tested here

within the a consistent model framework baed on the recharge osicllator model of ENSO

(Jin, 1997). The observed ENSO synchronization, as well as the synchronization simu-

lated by state of the art CGCMs, was described in terms of ENSO’s seasonal variance,

amplitude modulation, phase synchronization, and secondary peaks in the spectra at

“combination tones” with the annual cycle. These synchronization metrics were then

compared to those of the parametric recharge oscillator (PRO) model of ENSO, which

captures in the simplest form the seasonal modulation of ENSO’s growth by the annual

cycle. Analytical results of the neutral, unforced case of the PRO model show that the

annual modulation of the growth rate parameter results directly in all of the synchro-

nization features, and the strength of each of the synchronization features agree well

with those of the observations. The analytical solutions were shown to be very good ap-

proximations of the behaviour of PRO model numerical simulations for both the neutral

case, and for the long-term behaviour of the damped PRO model excited by stochastic

forcing. Further, analytical and numerical results from the PRO model explain the rela-

tionship between synchronization features across the range of the CGCMs. The results
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are further supported by the recent identification of a climate mode with energy at the

combination tone frequency that results from the nonlinear interaction of ENSO and the

annual cycle (Stuecker et al., 2013).

Next, the scenario that ENSO synchronization results from a manifestation of sub-

harmonic frequency locking to the annual cycle was examined within the same recharge

oscillator model framework. To do so, the behavior of the oscillator model was exam-

ined with the inclusion of periodic forcing by the annual cycle and a cubic damping

term representing the nonlinear saturation of SST anomalies. The system was shown

to be equivalent to the periodically forced van der Pol oscillator (van der Pol, 1927),

which has similar global behavior to the ENSO models on which the frequency locking

scenario is based, and which allows the same suite of model solutions: quasiperiodic,

frequency locked, and chaotic oscillations. The characteristics of each type of solution

were then compared to the observed ENSO. Chaotic oscillations were not found within

the parameter space of the van der Pol oscillator relevant to the observed ENSO, and

occur only rarely in the parameter space of other ENSO models (Jin et al., 1996), so it

is unlikely that the observed ENSO characteristics are due to chaotic interaction with

the annual cycle. Moreover, chaotic solutions retain the subharmonic peaks associated

with frequency locked solutions (Jin et al., 1996), so the chaotic case can be considered

along with the frequency locked case. Quasiperiodic oscillations will only coincidentally

produce synchronization will the annual cycle, and so are unlikely to account for the

observed ENSO characteristics as well. Frequency locked solutions could account for the

observed ENSO synchronization, but are far more regular than the observed ENSO, so

a stochastically perturbed frequency locked oscillation remains the only realistic model

solution. In such a system, the frequency locking will be accompanied by phase syn-

chronization at the same rational multiple of the annual cycle. In the observations, the

only evidence of frequency locking occurs at a ratio of 2 : 1, but this phase synchro-

nization is not associated with a peak in the spectrum at the biennial frequency. The

results indicate that the annual modulation of the coupled stability of the equatorial

Pacific ocean-atmosphere system is by far the more likely mechanism generating the

synchronization of ENSO events to the annual cycle.
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Appendix A

Supplementary figures

The spatial patterns of first two modes of the CEOF decomposition of equatorial SST

(20�S - 20�N, 110� 290�E) GCM output from CMIP5 historical runs (1901 - 2000) are

included here, to display the representations of the annual cycle and ENSO within each

of the models. Each figure shows contours of the phase spatial pattern of the first two

modes (r1,r2), along with shading related to the value of the spatial amplitude (q1,q2).

The darker shading indicates larger values of the spatial amplitude, and vice versa.

The models produce a variety of simulated annual cycles and ENSOs, and qualitatively

speaking, the models that produce more realistic simulations of ENSO and the annual

cycle tend to have values of ENSO synchronization indices near the observations (Figure

3.6). However, no systematic relationship was found between the verisimilitude of the

spatial patterns and the values of the synchronization indices.
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Figure A.1: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Canadian Earth System Model. The
shading indicates the value of the amplitude spatial pattern (q

n

), where darker shading
indicates larger amplitude.
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Figure A.2: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Community Climate System Model. The
shading indicates the value of the amplitude spatial pattern (q

n

), where darker shading
indicates larger amplitude.
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Figure A.3: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the National Centre for Meteorological Re-
search Climate Model. The shading indicates the value of the amplitude spatial pattern
(q

n

), where darker shading indicates larger amplitude.
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Figure A.4: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Commonwealth Scientific and Industrial
Research Organisation Global Climate Model. The shading indicates the value of the
amplitude spatial pattern (q

n

), where darker shading indicates larger amplitude.
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Figure A.5: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Flexible Global Ocean-Atmosphere-Land
System Model. The shading indicates the value of the amplitude spatial pattern (q

n

),
where darker shading indicates larger amplitude.
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Figure A.6: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of two configurations of the Geophysical Fluid
Dynamics Laboratory Earth System Model. The shading indicates the value of the
amplitude spatial pattern (q

n

), where darker shading indicates larger amplitude.
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Figure A.7: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the NASA Goddard Institute for Space
Studies Model E. The shading indicates the value of the amplitude spatial pattern (q

n

),
where darker shading indicates larger amplitude.
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Figure A.8: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Met O�ce Hadley Centre Climate pre-
diction Model. The shading indicates the value of the amplitude spatial pattern (q

n

),
where darker shading indicates larger amplitude.
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Figure A.9: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Met O�ce Hadley Centre Global Envi-
ronmental Model. The shading indicates the value of the amplitude spatial pattern (q

n

),
where darker shading indicates larger amplitude.
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Figure A.10: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Institut Pierre Simon Laplace Climate
Model. The shading indicates the value of the amplitude spatial pattern (q

n

), where
darker shading indicates larger amplitude.
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Figure A.11: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Institut Pierre Simon Laplace Climate
Model. The shading indicates the value of the amplitude spatial pattern (q

n

), where
darker shading indicates larger amplitude.
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Figure A.12: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of two configurations of the The Japan Agency
for Marine-Earth Science and Technology Earth System Model. The shading indicates
the value of the amplitude spatial pattern (q

n

), where darker shading indicates larger
amplitude.

83



Figure A.13: Contours of the phase spatial pattern (r
n

) of the first mode (annual cy-
cle, top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial
SST output from a historical run (1901-2000) of two configurations of the The Japan
Agency for Marine-Earth Science and Technology Model for Interdisciplinary Research
On Climate. The shading indicates the value of the amplitude spatial pattern (q

n

), where
darker shading indicates larger amplitude.
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Figure A.14: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of the Meteorological Research Institute Cou-
pled Global Climate Model. The shading indicates the value of the amplitude spatial
pattern (q

n

), where darker shading indicates larger amplitude.
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Figure A.15: Contours of the phase spatial pattern (r
n

) of the first mode (annual cycle,
top) and second mode (ENSO, bottom) of the CEOF decomposition of equatorial SST
output from a historical run (1901-2000) of two configurations of the Norwegian Earth
System Model. The shading indicates the value of the amplitude spatial pattern (q

n

),
where darker shading indicates larger amplitude.
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