BIOGEOCHEMICAL CONSEQUENCES OF RISING ATMOSPHERIC CO₂ AND OCEAN ACIDIFICATION IN THE GLOBAL COASTAL OCEAN AND CARBONATE ECOSYSTEMS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY

DECEMBER 2006

By
Andreas J. Andersson

Thesis Committee:
Fred Mackenzie, Chairperson
Craig Glenn
Jane Schoonmaker
Richard Zeebe
Nicholas Bates
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform 3251038
Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346
TABLE OF CONTENTS

Acknowledgements .. vii
Abstract .. xi
List of Tables ... xiii
List of Figures .. xiv

CHAPTER 1: Humans as agents of environmental change 1
 1.1 Introduction ... 1
 1.2 The global coastal ocean region .. 9
 1.3 Objectives of thesis .. 14
 1.4 Outline of thesis .. 15
 1.5 References ... 19

CHAPTER 2: Human influences on the organic and inorganic carbon cycles
 of the global coastal ocean ... 25
 2.1 Shallow water oceans: a source or sink of atmospheric CO₂? 27
 2.1.1 Abstract .. 27
 2.1.2 Introduction ... 27
 2.1.3 Methods .. 31
 2.1.4 Results and Discussion .. 36
 2.1.4.1 Net ecosystem metabolism .. 36
 2.1.4.2 Net ecosystem calcification 36
 2.1.4.3 Air-sea CO₂ exchange .. 38
 2.1.5 Conclusions .. 42
 2.1.6 Acknowledgements .. 42
 2.1.7 References ... 42
 2.2 Boundary exchanges in the global coastal margin: implications for the
 organic and inorganic carbon cycles 45
 2.2.1 Introduction ... 45
 2.2.2 The present-day organic carbon balance in the global coastal ocean 48
 2.2.3 Estimates of long-term (pre-anthropogenic) NEP 57
 2.2.4 Estimates of present-day coastal zone NEP 59
 2.2.5 Model calculations and ecosystem NEP 64
 2.2.6 The present-day inorganic C cycle in the global coastal ocean 73
 2.2.7 Carbon flows between the atmosphere and coastal zone 78
 2.2.8 Summary and prognosis .. 84
 2.2.9 Acknowledgements .. 90
 2.2.10 References ... 90
 2.3 Summary of major results of Chapter 2 101
CHAPTER 3: Century scale changes to the coastal ocean CO₂-carbonic acid-
calcium carbonate system .. 103

3.1 Coastal ocean and carbonate systems in the high CO₂ world of the
anthropocene .. 105
3.1.1 Abstract .. 105
3.1.2 Introduction ... 107
3.1.3 Model methodology ... 109
 3.1.3.1 Essential mathematical relationships of the model 111
 a) Biogenic calcification .. 113
 b) Inorganic dissolution and precipitation 115
 c) Air-sea CO₂ exchange .. 117
3.1.3.2 Dissolved inorganic carbon (DIC) system calculations ... 122
3.1.3.3 Sensitivity analyses .. 123
3.1.3.4 External forcings ... 124
3.1.4 Biogeochemical consequences of increasing atmospheric CO₂ 126
 3.1.4.1 Seawater chemistry .. 126
 3.1.4.2 Marine calcifying organisms and ecosystems 134
 a) Effect of calcium carbonate saturation state 134
 b) Effect of surface water temperature 138
3.1.4.3 Pore water-sediment system: carbonate chemistry and mineral
dissolution .. 142
3.1.4.4 Surface water buffering owing to carbonate dissolution .. 150
 a) Global coastal environment .. 150
 b) Regional environments .. 152
3.1.5 The century-scale future of the coastal carbonate system 156
 3.1.5.1 Highlights of forcing trends 157
 3.1.5.2 Results of model calculations for coastal surface waters 158
3.1.6 Discussions of 600 years of the CO₂-carbonate system 162
3.1.7 Beyond the year 2300 .. 170
3.1.8 Conclusions .. 171
3.1.9 Acknowledgements .. 173
3.1.10 References ... 174

3.2 Coastal ocean CO₂-carbonic acid-carbonate sediment system of the
anthropocene .. 189
3.2.1 Abstract .. 189
3.2.2 Introduction ... 190
3.2.3 Structure of a global coastal ocean model 192
3.2.4 Six hundred years of changing conditions in the coastal ocean .. 200
 3.2.4.1 Changing marine inorganic carbon chemistry 201
 3.2.4.2 Changes in variables related to air-sea exchange of CO₂ 204
 3.2.4.3 Sediment-pore water system 205
3.2.5 Model results compared with observational data 209
 3.2.5.1 Air-sea CO₂ exchange in coastal ecosystems 209
 3.2.5.2 Open ocean marine carbon time series observations 212
3.2.6 Effect of calcium carbonate saturation state on calcification rate 214
3.2.7 Buffering of rising CO₂ in surface water by carbonate dissolution 216
3.2.8 Discussion of the coastal carbonate system to the year 2300 and beyond ... 217
3.2.9 Conclusions ... 220
3.2.10 Acknowledgements ... 221
3.2.11 References ... 222

3.3 Summary of major results of Chapter 3 ... 231

CHAPTER 4: Fast reactions of metastable carbonate minerals under rising pCO₂ .233

4.1 Initial responses of carbonate-rich shelf sediments to rising atmospheric
 pCO₂ and ocean acidification: role of high Mg-calcites 235
 4.1.1 Abstract .. 235
 4.1.2 Introduction ... 237
 4.1.3 Mg-calcite solubility and related chemistry 240
 4.1.3.1 General considerations .. 240
 4.1.3.2 Mg-calcite solubility .. 242
 a) The kinetic experimental method and the stoichiometric
 solubility product ... 242
 b) Observed apparent Mg-calcite solubilities 246
 4.1.4 Response of carbonate minerals to rising pCO₂ 251
 4.1.4.1 Modeling the response of Mg-calcite minerals 251
 a) Model methodology ... 252
 b) Model results ... 257
 c) Model discussion ... 262
 4.1.4.2 Laboratory experiments ... 267
 4.1.5 Observations from carbonate dominated regions 272
 4.1.5.1 Bermuda ... 272
 4.1.5.2 The Great Bahama Bank ... 274
 4.1.6 Summary .. 279
 4.1.7 Acknowledgements .. 280
 4.1.8 References .. 281

4.2 Dissolution of carbonate sediments under rising pCO₂ and ocean
 acidification, Devil’s Hole, Bermuda .. 288
 4.2.1 Abstract .. 288
 4.2.2 Introduction ... 289
 4.2.3 Regional description ... 291
 4.2.4 Methodology ... 294
ABSTRACT

Human activities such as burning fossil fuel and land-use change increasingly modify the behavior of the global ecosystem. One region disproportionately affected by human activities is the global coastal ocean. This region is an important component of the global carbon cycle and consequently climate change because a substantial fraction of global marine primary production and burial of organic and inorganic carbon takes place within it. Numerical model results using the Shallow-water Ocean Carbonate Model (SOCM) demonstrate that the role of the global coastal ocean in air-sea exchange of CO₂ with the atmosphere has recently changed from a net source to a net sink of CO₂. This change arises from three interrelated terms: 1) increasing concentrations of atmospheric CO₂; 2) decreasing net ecosystem calcification (CaCO₃ production minus dissolution); and 3) gross primary production increasingly exceeding total ecosystem respiration as a result of increasing nutrient loading to this region from human activities. Results from SOCM demonstrate that the surface seawater carbonate saturation state of the global coastal ocean could decrease by 46% by the year 2100 [pH=7.84] and 73% by 2300 [pH=7.50] owing to published projected increases in atmospheric CO₂ and ocean acidification. As a result, biogenic production of CaCO₃ and dissolution of metastable carbonate sediments, both processes which are directly related to the seawater carbonate saturation state, could decrease by 90% and increase by >200%, respectively, by the year 2300. Coastal zone carbonate dissolution in future centuries could thus exceed its production and net loss of carbonate material from reefs and sediments will take place as a result of increasing atmospheric CO₂. Field observations from Devil’s Hole, Bermuda,
and numerical simulations demonstrate that carbonate minerals will dissolve sequentially based on mineral stability, progressively removing the more soluble, Mg-rich phases until the least soluble phases containing little or no Mg remain. Thus, the average composition of contemporary shallow water carbonate sediments could change in the future. Despite significant dissolution of metastable carbonate minerals, this process will not produce sufficient alkalinity to buffer the surface seawater of the global coastal ocean from pH and carbonate saturation changes imposed by rising atmospheric CO₂ originating from human activities.