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ABSTRACT

The scattering of internal waves at finite bottom topography is studied theoretically
and numerically. For the two-dimensional problem, a numerical scheme has been devel-
oped to calculate the distribution of scattered wave energy flux in wavenumber space
for a given Incident wave. Results are used to assess the partition of energy flux be-
tween reflected and transmitted waves and the effectiveness of various types of bottom
topography in transferring internal wave energy to higher modenumbers through the
interaction.

We consider two types of topography: a slope-shelf and a ridge. In the slope-shelf
configuration, a shallow flat bottom is connected to a deep one by a slope, while in
the ridge configuration, a finite bump sits on an otherwise flat bottom. Calculations
are carried out for various depth ratios and bottom slopes to explore the effect of
the topographic parameters. For a monochromatic incident wave, results show that
the energy partition between reflected and transmitted waves strongly depends on the
height and the type of topography. For supercritical topography. a significant part
of the incident wave energy flux is reflected, especially for low modenumnber incident
waves which satisfy n'd < 1, where ¢ is the depth ratio and n' is the modenumber.
The distribution of scattered wave energy flux in modenumber space shows peaks at
modenumbers which can be roughly estimated from a reflection law using the maximum
slope of the bottom. It also shows that more energy is transferred to higher modenumber
than to lower modenumber, especially at near critical slope.

Experiments with different topographic shapes show that a convex slope is much

more effective in transferring energy to higher modenumbers than a concave slope,



which is consistent with the result of previous studies. Near the critical slope. a curved
bottom is far less effective in transferring energy to higher modenumbers than a straight
slope. Thus, results obtained with a straight infinite slope may well overestimate the
energy transfer rate.

Both the energy and the energy flux spectrum of the scattered wave field are calcu-
lated from the incident wave spectrum, which is specified by projecting Garrett-Munk
spectrum onto a two-dimensional spectrum. The reflected energy spectrum shows that
internal wave energy is transferred from low wavenumber to high wavenumber with most
of the energy redistribution at subcritical frequencies. Assuming a symmetric ridge, the
scattered wave field is the sum of the reflected and transmitted wave field. The redis-
tributed energy flux is less than 10% of the incident energy flux from our calculation.
For the slope configuration, about 90% of the incoming energy flux is transmitted to the
shelf. The energy transfer from low to high wavenumbers results in great amplification
of the inverse Richardson number for scattered wave fields. Based on a calculation with
512 resolved modes, for a linear and convex bottom the R ' ratio between reflected
wave fleld and the incident wave field can be as large as several hundred while that for
a concave bottom is less than 100.

For three-dimensional internal wave scattering, we derive a general formula for the
scattered wave field using a Green’s function method. The scattered wave is expressed
as an integral of internal waves generated by a boundary source. The boundary source
itself satisfies an integral equation. The source term for the integral equation is the
incident wave field, and its kernel is related to the Green's function for internal waves
in an infinite domain. The system is successfully applied to both the internal wave

reflection from a straight slope and the scattering by an infinitesimal rough bottom.
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