RECOVERY OF PROTEIN NITROGEN FROM BIO-OIL BEARING BIOMASS

A THESIS SUBMITTED TO

THE GLOBAL ENVIRONMENTAL SCIENCE

UNDERGRADUATE DIVISION IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE

IN

GLOBAL ENVIRONMENTAL SCIENCE

MAY 2015

By

Melisa Ibrahimovic

Thesis Advisor

Michael Cooney
ABSTRACT

The commercial processing of bio-oil bearing biomass is financially challenged owing to the marginal value of the bio-oil product. Commercial viability requires the recovery of additional value added products including fermentable sugars, chemicals, and protein. In previous reports a novel ionic liquid based co-solvent system was demonstrated to provide pathways for the recovery of bio-oil, phorbol esters, and fermentable sugars from Jatropha seed biomass. Not discussed, however, was the fate of the protein nitrogen throughout the multi-phase extraction process. In this work the fate of total and protein nitrogen was tracked throughout all steps. Results demonstrated that the majority of protein (~86%) remained in the final bottom biomass phase while approximately 12% was lost to the co-solvent phase, with the remainder (~1.3%) lost to the methanol wash phase. Commentary on the best pathways for protein recovery and use as a biomass for animal feedstock or in form of nitrogen is provided.

Keywords: bio-oil bearing biomass, Jatropha, ionic liquid co-solvents, protein extraction.