CATION EXCHANGE CAPACITY AND CARBON QUALITY OF BIOCHAR AND BIOCHAR AMENDED SOILS

A THESIS SUBMITTED TO THE GLOBAL ENVIRONMENTAL SCIENCE UNDERGRADUATE DIVISION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE

IN GLOBAL ENVIRONMENTAL SCIENCE

AUGUST 2013

By Erika Mizokuchi

Thesis Advisor

Susan Crow
ABSTRACT

Biochar has long been looked at for its ability to increase soil fertility and its potential for long-term carbon (C) sequestration has generated an enormous amount of interest. I investigated Diacarbon woodchip biochar’s ability to facilitate nutrient retention in soil through a six week corn growing season and stabilize C in a soil community in a 49 day incubation. CEC analysis was done and the 49 day incubation was done at three temperatures—16°C, 21°C, and 26°C. There was a direct relationship between increasing incubation temperatures and respiration rates and the addition of biochar had a negative effect on soil respiration. With the addition of biochar the soil was able to maintain its CEC better and coupled with the addition of an organic fertilizer, biochar has the ability, not only to increase yield, but to increase a soil’s resistance to changes in temperature.