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ABSTRACT 

 

 

 After World War I and through the end of World War II, the United States 

military dumped unused chemical warfare munitions (CWM) into coastal waters off 

Oahu.  A number of studies are currently researching how the condition of CWM and 

effect environmental quality in the marine environment.  Lewisite, an arsenic-rich 

compound, is found in CWM and hydrolyses in water, allowing arsenic to seep into the 

marine environment.  To supplement current ongoing studies, controlled laboratory batch 

reactor experiments evaluated the potential mobility of arsenic (As) derived from sea-

disposed lewisite in the marine environment.  Sediment cores obtained from the CWM 

sites were evaluated for their ability to absorb and retain arsenic.  Sediment-water 

suspension experiments, with different As concentrations (5 µM, 10 µM, and 20 µM) and 

species added (As(III) and As(V)), have been run from one minute to 7 days and 

experiment sediment samples were analyzed by ICPMS to determine As content.  

 Arsenic uptake onto sediments continued over time but the relative or absolute 

uptake at the end of the experiment does not necessarily increase with increasing As 

spike concentrations. The uptake of As(V) was also greater over time (as compared to 

experiments with an equivalent concentration of As(III). It was concluded that over the 7 

day experiment duration, none of the experiments reached equilibrium, therefore 

suggesting that As adsorption on the sediments at the CWM sites is much less than 

anticipated, and the amount of As going into the surrounding water is greater than 

expected. The calculations of As that is added to sediment and seawater, based on the 

experimental data, concludes that the impact on the environment is minimal.  



 v 

TABLE OF CONTENTS 

 

Acknowledgments ____________________________________________________ iii 

Abstract ____________________________________________________________ iv 

List of Tables ________________________________________________________ vii 

List of Figures ______________________________________________________ viii 

List of Abbreviations __________________________________________________ ix 

Chapter 1: Introduction _________________________________________________ 1 

 History of Munitions Disposal at Sea _________________________________1 

 HI-05 _________________________________________________________ 5 

 HI-06 _________________________________________________________ 6 

Chapter 2: Background _________________________________________________ 7 

 Chemical Warfare Agents (Mustard, Lewisite, etc.) _____________________ 7 

 Arsenic ________________________________________________________ 8 

 Arsenic in Saltwater_____________________________________________ 11 

 Arsenic in Marine Sediment _______________________________________ 14  

Chapter 2: Methods ___________________________________________________ 16 

 HUMMA Sediment Characterization _______________________________ 16 

 Batch Reactor Experiments _______________________________________ 18 

 Arsenic Analysis by ICP-MS _____________________________________ 21 

 Calculations ___________________________________________________ 22 

Chapter 3: Results ____________________________________________________ 24 

 Arsenic Recovery ______________________________________________ 24 



 vi 

Chapter 4: Discussion _________________________________________________ 32 

 Uptake of As as a Function of Seawater Spike Concentration ____________ 40 

 Estimation of As Uptake at Equilibrium _____________________________ 44 

 Real World Implications _________________________________________ 49 

Chapter 5: Conclusion ________________________________________________ 53 

Appendix A: Data for all experiments _____________________________________ 56 

Appendix B: HUMMA As analysis by ICPMS ______________________________ 79 

Appendix C: Lewisite Production and Chemical Behavior _____________________82 

References __________________________________________________________ 85  



 vii 

LIST OF TABLES 

 

Table           Page 

 
Table 1: HUMMA samples 001-007 As concentration by ICPMS______________________ 24



 viii 

LIST OF FIGURES 

 

Figure           Page 
 

Figure 1: World map of DMM sites (cns.miss.edu) ________________________________________________ 2 
Figure 2: Known DMM around Hawaii (cns.miis.edu)_____________________________________________ 4 
Figure 3: Lewisite structure _________________________________________________________________________ 7 
Figure 4: Arsenic speciation vs. pH and Eh (Smedley & Kinniburgh, 2011) _____________________ 12 
Figure 5: Map of HUMMA site off Oahu__________________________________________________________ 16 
Figure 6: PVC sediment scoop designed by HURL for HUMMA sediment collection __________ 17 
Figure 7: Batch reactor and pH monitor ___________________________________________________________ 18 
Figure 8: Percent uptake plotted vs time for experiments 3 through 15 (expt 4 not plotted) ___ 25 

Figure 9: Comparative plot for duplicate experiments 3 & 5 ___________________________  26 

Figure 10: Comparative plots for experiments 6,7, & 11 ______________________________  27 

Figure 11: Percent uptake plotted vs time for the comparison of experiments 8 & 9 _________ 28 

Figure 12: Percent uptake plotted vs time for experiment 10 ___________________________ 28 

Figure 13a: Comparative plot of As(III) and As(V) experiments (log time) _______________  30  

Figure 13b: Comparative plot of As(III) and As(V) experiments (linear time) _____________  30 

Figure 14: Examples of molecular interferences during ICPMS analysis of solutions ________ 33 

Figure 15a: Percent As uptake prior to change in methods _____________________________ 33 

Figure 15b: Percent As uptake after uptake in methods _______________________________  34 

Figure 16a: pH versus time during As(III) experiment ________________________________ 35 

Figure 16b: pH versus time during As(V) experiment ________________________________  36 

Figure 17: Comparison plot of As(III) and As(V) experiments at 5µM (linear) __________________ 37 
Figure 18: Absolute As uptake (in µM) at 3 minutes for 5, 10, and 20 µM spikes _______________ 39 
Figure 19: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes ______________________________ 39 
Figure 20: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes ______________________________ 40 
Figure 21: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes ______________________________ 40 
Figure 22: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes ______________________________ 41 
Figure 23: Absolute As Uptake (in µM) at 5, 10, and 20 µM spikes ______________________________ 41 
Figure 24: Average absolute uptake over time for 5, 10 & 20 µM experiments __________________ 42 
Figure 25: As uptake at equilibrium for experiment 7 _____________________________________________ 43 
Figure 26: As uptake at equilibrium for experiment 8 _____________________________________________ 44 
Figure 27: As uptake at equilibrium for experiment 9 _____________________________________________ 44 
Figure 28: As uptake at equilibrium for experiment 10 ___________________________________________ 44 
Figure 29: As uptake at equilibrium for experiment 13 ___________________________________________ 45 
Figure 30: As uptake at equilibrium for experiment 15 ___________________________________________ 46 
Figure 31: As uptake at equilibrium over a whole uptake plot for experiment 13 to show how 

equilibrium plot was projected _____________________________________________________________________ 46 



 ix 

LIST OF ABBREVIATIONS 

AlCl3 – aluminum chloride 

Ar - argon 

As – arsenic 

As(V) – arsenate (AsO4
3-)  

As(III) – arsenite (AsO3
3-) 

AsCl3 – arsenic trichloride 

AsH3 – arsine 

ATP - adenosine triphosphate 

C2H2 – acetylene 

C2H2AsCl3 – Lewisite 

C – Celsius  

CEM – channeltron electron multiplier 

CWM – chemical warfare munitions 

CWA – chemical warfare agents 

DI - deionized 

DOD – Department of Defense 

DMM – discarded military munitions 

FeOx – iron oxides (of various oxidation state) 

g – gram 

H2O – water 

HCl – hydrochloric acid 

HDPE - high-density polyethylene 



 x 

HF – hydrofluoric acid 

HNO3 – nitric acid 

HUMMA – Hawaii Undersea Military Munitions Assessment Project 

HURL – Hawaii Undersea Research Laboratory 

ICP – inductively coupled plasma 

kg - kilogram 

km – kilometers 

L - liter 

m – meter 

MHz - megahertz 

µg – microgram 

µm – micrometer 

µM - micromolar 

mg - milligram 

mm – millimeter  

MPRSA – Marine Protection, Research and Sanctuaries Act 

NOAA – National Oceanic and Atmospheric Administration 

MS – mass spectrometry 

OES – optical emission spectrometry 

P – phosphorus 

pH – power of hydrogen 

PO4
3- - phosphate 

ppb – parts per billion 



 xi 

ppm – parts per million 

PVC – polyvinyl chloride 

S – sulphur 

SRM – standard reference materials 

T (U.S.) – short ton (2000 pounds) 

U.S. – United States 

U.S.C. – United States Code 

v/v – volume to volume 

WWI – World War One 

WWII – World War



 
 

1 

CHAPTER 1: INTRODUCTION 

History of Munitions Disposal at Sea 

 According to 10 U.S.C. 101(e)(4)(A) through (C), military munitions are 

defined as:  

“ammunition products and components produced for or used by 

the armed forces for national defense and security, including 

ammunition products of components under the control of the 

Department of Defense, the Coast Guard, the Department of 

Energy, and the National Guard. The term includes confined 

gaseous liquid, and solid propellants; explosives, pyrotechnics, 

chemical and riot control agents, smokes, and incendiaries, 

including bulk explosives, and chemical warfare agents; chemical 

munitions, rockets, guided ballistic missiles, bombs, warheads, 

mortar rounds, artillery ammunition, small arms ammunition, 

grenades, mines, torpedoes, depth charges, cluster munitions and 

dispensers, demolition charges; and devices and components 

thereof.”  

As stated, this defines only U.S. munitions. Additionally, discarded military 

munitions (DMM) are “all such munitions that have been removed from storage 

in a military magazine or storage area for the purpose of disposal” (10 U.S.C. 

210(e)(2)) (uscode.house.gov). 

 Despite these terms as defined by the United States, this practice was not 

particular to U.S. forces, but was widespread and considered an acceptable means 
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of disposing of unwanted munitions by many other nations as well. Ocean 

disposal of military munitions was common all over the world after World War I, 

and continued well past World War II. Worldwide, there are 127 known DMM 

sites, which have been located based on disposal records or human exposure 

(Figure 1) (Ong et al., 2009). 

 

Figure 1: World map of DMM sites (cns.miss.edu) 

 

Of the 127 known sites, 74 are catalogued as associated with the U.S. Army 

(Bearden, 2007). The former Soviet Union has military archives describing the 

disposal of at least 160,000 tons of chemical weapons materials (CWM) into the 

Baltic Sea, with much more unaccounted for (Jegelevicious, 2011). After World 

War II, the U.S. discarded the Japanese chemical munitions stockpile in at least 

15 locations off the coast of Japan (Brankowitz, 1987). In Germany, leftover 

chemical munitions totaling 302,857T were discarded into the North Atlantic, the 

North Sea, and the Baltic Sea (Laurin, 1991, Missaiaen, 2002). It is assumed that 
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there are many more DMM, but poorly documented written accounts of locations, 

quantities or depths of disposal, and because of the extent of DMM occurrences 

near coasts, discovery of the DMM is often unintentional and has led to human 

exposures.  

 Since 1946, DMM have injured nearly 500 people around the world. 

Injuries are often associated with fishing activities, where CWM are caught in 

nets or accidentally dredged up during trawling operations. Danish fishermen 

have reported the most accidents: 450 since 1976. Most of these occurrences have 

taken place in the Baltic Sea, where fishing vessels are required to report and 

recover all discovered DMM (Laurin, 1997). In the United States, fishermen in 

New York were severely burned when a clamming vessel inadvertently brought 

mustard gas canisters onto the deck of their boat in 2010 (CDC.gov, 2013). In 

Hawaii, three U.S. Army Corp of Engineers dredged up a CWM canister, injuring 

three men in 1976. Additionally, a fisherman received chemical burns after 

inadvertently pulling up a mustard gas mortar in the 1970’s (HUMMA, 2010).   

 Unused conventional and chemical warfare munitions were dumped into 

coastal waters off Oahu, Hawaii beginning after World War I (Figure 2). In 

Hawaii, most munitions were either surplus or obsolete but, because of the 

tropical climate, corroding, leaking, and damaged military munitions were also 

discarded into the ocean. The DMM included small arms rounds, large caliber 

projectiles, but also included highly noxious chemical agents or CWM, such as 

mustard gas and lewisite (Ong, et al., 2009).  
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Munitions were often discarded at sea because, at the time, this method 

was considered the safest alternative in poisonous munitions disposal. 

 

Figure 2: Known DMM around Hawaii (cns.miis.edu) 

 

In 1972, however, human health, environmental, and economic impact 

concerns led to congressional prohibition of the sea-disposal of “material that 

would reasonably degrade or endanger human health or the marine environment.” 

The ensuing legislation was part of the Marine Protection, Research and 

Sanctuaries Act (MPRSA) (EPA, 2013). 

 While the majority of CWM were documented as being disposed of at 

depths greater than 300 feet (~90 m) and distances further than 10 miles (16 km) 

offshore, many have been found in shallower water and closer to shore than 

military records specify. The names of reefs along the west side of Oahu, such as, 

‘Ammo Reef’ and ‘Ordnance Reef’ illustrate this fact. Discarded military 
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munitions have often washed up along beaches on the West side of Oahu after 

swell events (Bettinger, 2007). Military records indicate that large quantities of 

CWM were dumped in 1945, in the deep ocean off the Waianae coast. Exact 

locations and depths were not recorded, however, discarded weapon records 

include, 204T of chloride bombs, 1,531T of mustard (bombs, shells, containers), 

and 253T of lewisite (U.S. Army Research, 2001). 

 For this study, controlled laboratory experiments will evaluate the 

potential mobility of arsenic (As) derived from sea-disposed lewisite in the 

marine environment.  Sediment cores obtained from the HUMMA DMM sites 

will be evaluated for their ability to adsorb and retain arsenic. It is expected that 

the As adsorption would be be very rapid inititally and then reach an equilibrium 

over an extended but relatively short time.  The data collected from these 

experiments will assist in better understanding the environmental impacts from 

CWM sites. 

 

HI-05 

 The CWM disposal site off the Southern coast of Oahu, designated by the 

U.S. Department of Defense as HI-05, is a known deep-water location of DMM 

(HUMMA, 2010). Records indicate that three disposals events were associated 

with this area between 1944 and 1945. Known DMM include 16,000 M47A2 100-

lb bombs filled with mustard gas plus an additional 29T of mustard gas, 4,220T of 

an unspecified material (CNS.miis.edu). The HUMMA research project, 

conducted by the University of Hawaii (HUMMA, 2010) has been monitoring and 
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studying this site since 2007 to better understand the location and the fate of sea-

disposed munitions, in general.   

 

HI-06 

DMM were discovered close to shore in 1992 by a City and County of 

Honolulu, Wastewater Management Oceanographic team during benthic studies 

of the area This new site, designated HI-06 by the U.S. military was discovered in 

near-shore waters of Waianae, on the western side of Oahu, in 18 to 36 meters of 

water (Cox et al., 2007). Since then, DMM and CWM, in particular, have been a 

subject of controversy among community and environmental activists who 

believe the munitions pose an immediate threat to human health. Eventually, 

public concern led the NOAA Marine Sanctuaries Program, the U.S. DOD and 

the University of Hawaii at Manoa into an agreement to study and evaluate 

potential explosive and human health hazards of military munitions around Oahu 

(Cox et al., 2007).
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 CHAPTER 2. BACKGROUND 

Chemical Warfare Agents (Mustard, Lewisite, etc.) 

 Chemical weapons were first used on a wide scale in Europe during World 

War One (WWI). Because of the widespread use of CWM, WWI was considered 

“The Chemists’ War” (Fitzgerald, 2008). At least 40 different chemical weapon 

agent (CWA) compounds were produced and deployed, and about one third of all 

shells fired contained toxic compounds (Missiaen, 2002). During and after WWI, 

the Germans introduced war gases of chlorine, phosgene, and mustard, while the 

allies had prepared the arsenical compounds Lewisite and Adamsite (Fitzgerald, 

2008).  

 PhD student J.A.Nieuwland first synthesized Lewisite in 1904. Nieuwland 

was sent to the hospital while studying the interaction of the hydrocarbon 

acetylene (C2H2) with As trichloride (AsCl3) and a catalyst aluminum chloride 

(AlCl3). Unknowingly, Nieuwland had produced C2H2AsCl3. A U.S. Chemist and 

soldier, W. L. Lewis, eventually synthesized and named that compound Lewisite 

(Figure 3), while working for the Chemical Warfare Service (Vilensky, 2005) 

(lewisite production Appendix C). 

                                            

Figure 3: Lewisite structure 

   

 From the First World War onwards, organoarsenicals, including Lewisite 

were developed, stockpiled and also used as harassing, vomiting or vesicant 
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agents in chemical warfare (Leermakers, et al., 2006). The majority of Lewisite 

produced prior to World War Two (WWII) was disposed of, along with thousands 

of tons of other CWM, at sea. 

 

Arsenic 

 Arsenic (As) is a commonly occurring element. It is found in terrestrial 

and aquatic environments, both freshwater and marine, with geology being the 

most important factor controlling its natural distribution and abundance.  As is the 

47th most abundant of the 88 naturally occurring elements (Plant et al. 2005). It is 

ubiquitous in the lithosphere, however at relatively low concentrations ranging 

from 0.5 to 2.5 ppm (Kabata-Pendias, 2000). It is the 48th most abundant element 

in the Earth’s continental crust, with an average concentration of 1.7 ppm 

(Wedepohl, 1995). Natural concentrations of As, however, are highly variable. 

Weathering of As-containing rocks is considered to be the dominant natural 

source of As to the environment (Tamaki & Frankenberger, 1992). Volcanic 

eruptions and hydrothermal activity are two other important natural sources of As 

(Matschullat, 2000). As forms a broad range of organic and inorganic compounds, 

and strongly complexes to solid metal oxides, especially those of iron (Fe), when 

present as an oxyanion (Fuller et al. 1993).  The most important As-containing 

minerals are metal sulfides, including arsenopyrite, orpiment, and realgar.  Mining 

of sulfide ores provides important metal resources in many areas but mining 

activities can concentrate As, and often subsequently release it to the environment 

in large quantities (Matschullat 1996;  Matschullat, 2000). 
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 In the U.S. and worldwide, industrial activities have left vestigial As in 

surface and near-surface soils. Smelting, S and P mineral processing, cement 

production, fossil fuel combustion, geothermal power plants, waste incineration, 

fertilizer application, and the widespread use of As based pesticides during the 

20th century have all contributed to increased As abundances. Concentrations of 

residual anthropogenic As ranges from 10s to 1,000s ppm (Matchullat, 2000; 

Kabata-Pendias, 2001).  Soil As accumulations from agricultural pesticide 

applications have been reported at sites across the U.S. (Belluck, et al., 2003; 

Yang & Donahoe, 2007; Robinson, et al., 2007), including Hawaii (Cutler, 2006, 

De Carlo et al., in press).   

 Due to the range of natural and anthropogenic controls over localized 

enrichment of As, there is great variability in the abundance and availability of As 

in aquatic systems (Mcintyre and Linton, 2012). Worldwide, however, As 

concentrations in the open ocean tend to be less variable than that of freshwater 

environments. This is due to the proximity of freshwater to geochemical 

environment and anthropogenic influences (Mcintyre and Linton, 2012). In the 

marine open-water environment, As concentrations typically range from 0.5 to 2.0 

µg L-1 (Francesconi and Kuehnelt, 2002).  Biological processes, pH, and redox 

potential all play an important role to determine As speciation and consequently 

influence its toxicity to marine life (Sharma et al., 2009).  

The main properties of As are as follows; As is an element with the atomic 

number 33. It is in group 15 of the periodic table and is described as a metalloid 

that is readily oxidized. As exists in four oxidation states; +5 (AsO4
3-), and +3 
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(AsO3
3-), are the most common, but also found are, 0 (As), and -3 (AsH3)  

(Sharma, et al., 2009). AsO4
3- shows many similarities in chemical behavior with 

the isostructural PO4
3- (Goldschmidt, 1958). In the soil and sedimentary 

environments, inorganic and organic As may be present as salts of available 

cations, in the form of precipitates, or as adsorbates on hydrous oxides, clays and 

other surface active materials (Stoeppler, 1992; Francesconi & Kuehnelt, 2002; 

Plant, et al., 2005). The relative omnipresence and inherent toxicity of As are 

cause for concern, and the contamination of groundwater and coastal ecosystems 

has gathered much recent attention.   

The toxicity of As to biotic receptors is of great concern owing to a 

potential for bioaccumulation and biomagnification in ecosystems. As is classified 

as both an essential trace element to some animals, including humans, and also a 

proven carcinogen and mutagen (Mcintyre & Linton, 2012; Sharma & Sohn, 

2009). Some toxic effects of As occur due to its substitution for P in the cellular 

ATP cycle, which effectively reduces the energy normally produced during that 

process (Wurl et al., 2013). Additionally, As may inhibit metabolic reactions by 

binding with the sulfhydryl groups of enzymes (Edenborn, et al., 1986).  Bacteria 

and some phytoplankton have evolved methods to alter the toxic effects on their 

by reducing AsO4
3- to AsO3

3- or methylation, to make excretion of toxins easier, 

therefore changing the concentration of more toxic As forms in the water column 

(Andreae & Klumpp 1979; Sanders & Riedel 1993; Hellweger, et al., 2003). 

Microbes may play an important part in the chemical transformation of As 
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species, and can increase mobility of the more toxic AsO3
3- in the environment 

(Bhattacharya et al, 2007).  

  

Arsenic in Saltwater  

 The distribution and abundance of As in seawater are less variable than in 

freshwater. Concentrations generally range from 0.5 to 2.0 µg L-1 and the 

distribution of this element in the open ocean is like those of essential nutrients 

(Geng, et al., 2009).  In estuaries, concentrations of As rarely exceed 4.0 µg L-1, 

but increased salinity and pH can influence Fe flocculation and As co-

precipitation, leading to variation in As concentrations (Smedley & Kinniburgh, 

2011).  Conversely, in the clean waters of the coastal and open ocean, average As 

concentrations are around 1.7 µg L-1, with a range of 1-3 µg L-1 (Neff, 1997).   

 The common species of inorganic As in the marine environment are  

AsO4
-3 (arsenate (As(V)) which is the more stable oxidation state and AsO3

-3 

(arsenite (As(III)) a more reduced form (Ferguson & Gavis, 1972).  The principal 

form of As in well-oxygenated seawater is AsO4
-3 because of its enhanced 

thermodynamic stability (Mcintyre, 2012).  In contrast, AsO3
-3 is 

thermodynamically unstable in oxygenated environments and is therefore usually 

not present in significant quantity in oxidizing environments (Mandal & Suzuki, 

2002). Redox potential (Eh) and pH (Figure 4) exert important control on the 

speciation of As. AsO3
-3 is dominant at pH less than 6.9; conversely at higher pH 

AsO4
-3 becomes dominant. (Yan, et al., 2000). 
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Figure 4: Arsenic speciation vs. pH and Eh (Smedley & Kinniburgh, 2011) 

 

  

Additionally, three organoarsenic compounds are found in seawater and produced 

through biological transformations in organisms such as sea grasses (Fourqurean 

& Cai, 2001).  

 Although concentrations of the element As vary widely in terrestrial 

systems because of geologic and, more recently, anthropogenic fluxes, marine 

concentrations display considerably less variability.  In seawater, the residence 

time of As has been estimated to be 60,000 to 100,000 years (Henke, 2009; 

Matschullat, 1996).  Estuaries and rivers, when unpolluted, traditionally have not 

delivered significant amounts of particulate or dissolved As in the ocean 
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(Smedley, et al., 2011).  As discussed earlier, industries, such as mining and 

agriculture, however, have caused increased transport of As into marine 

ecosystems.  Riverine run-off of As from pollution sources can contribute a large 

proportion of As in localized areas (Hinkle et al., 1998).  In areas where activities 

such as mining occur, concentrations of As can reach 16 µg L-1 in estuarine 

waters (Smedley, et al., 2011).  

 Additional inputs of As to the ocean can be attributed to atmospheric 

deposition.  Deposition of As from industrialized sources, and mineral aerosols 

from deserts and seasonal events can be a major source of this element into the 

ocean (Cutter, et al., 2001).  In areas of relatively low industrialized outputs, such 

as Tacoma Washington, As deposition ranges from 0.5 to 2.5 µg m-2 (Sanders et 

al., 1998).  In contrast, on the central Atlantic Coast, where industrial coal 

combustion is common, As deposition ranges from 38 to 266 µg m-2 per yr  

(Scudlark, et al., 1988?).   

 Anthropogenic sources typically impact concentrations of As in marine 

environments to a greater extent than natural sources. Various studies, however, 

have found that rivers in areas with geothermal activity are often enriched in As 

(Smedley, 2011).  It is important to note that riverine and estuarine inputs of As to 

the ocean may not ultimately affect its seawater concentration because of the 

propensity for As to coprecipitate with or adsorb onto iron oxides, which remove 

As from suspension in the water column (Andreae, 1983).  Estuarine flocculation, 

which occurs at freshwater and saltwater interface (Sholkovitz, et al., 1978), also 
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reduces the flux of dissolved As from polluted freshwater sources to the ocean 

(Cullen & Reimer, 1989). 

 

Arsenic in Marine Sediment        

 Marine sediments are the largest global geochemical reservoir of As 

(Maher & Butler, 1988).  In contrast to the residence time of As in seawater, 

ocean sediments can hold the element for one million years (Mackenzie et al., 

1979).  Natural depositories include estuarine deposition, coastal sediment 

delivered by river runoff, and deep-ocean sediments, where As incorporates with 

detritus and settles to the bottom (Edenborn et al., 1986).  Concentrations of As in 

deep ocean sediment are affected very little by human activities, however along 

the coast, sediment concentrations may vary depending on anthropogenic 

influences. Sediments unaffected by anthropogenic or natural hydrothermal 

activity, however, display concentrations of As from 0.1 and 3.5 µg g-1 and are 

similar in near-shore and deep-ocean locations (Maher & Butler, 1988).  Deep-

ocean content typically increases near mid-ocean ridges, where hydrothermal 

activity is common.   

 In the marine environment, As is strongly associated with iron oxide 

phases and is typically present in anionic form. Adsorption of As onto iron oxides 

(FeOx) is highly sensitive to pH and the presence and abundance of additional 

anions in the environment, such as those of P and S (Henke, 2009). The typical 

environmental speciation of As as an oxyanion allows it to readily adsorb onto 
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FeOx particles in the water column and within sediments on the seafloor (Maher 

& Butler, 1998).   

 As adheres to sediments through adsorption reactions, however changes in 

sediment characteristics (i.e., elemental composition and mineralogy) can cause 

changes in the amount of As adsorbed as well as the solid phases onto which it 

partitions.  Sedimentary material that undergoes early diagenesis can also release 

As into porewaters if dissolution of the host carrier phases takes place. In such 

cases, the As may still remain in close proximity to sediments and potentially be 

taken up again by other phases as sedimentary conditions change subsequently. 

Furthermore, diffusion of As from the porewater into the overlying water column 

may also take place.  Some of the main parameters that can affect the mobility of 

As in/on the seafloor include redox potential, mineral phase composition, and 

animal or plant pertubation of the sediment (e.g., bioturbation), in addition to 

physical mixing processes (Maher & Butler, 1998).  Desorption and dissolution of 

As from sediments is most likely to be enhanced by reducing conditions and the 

dissolution of any As-bearing phases (Kocar, et al., 2008).  As sediment 

compacts, any dissolved As can diffuse up through the sediment column, 

eventually becoming involved in surficial mixing or escape to the overlying water 

column.  If sufficient quantities of inbenthic organisms exist in the sediments, the 

flux of As from deeper porewater may be greater than in unbioturbated sediments, 

thereby allowing for greater dissolved concentrations of As in the benthic 

boundary layer (Edenborn, et al., 1986).
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CHAPTER 3: METHODS 

HUMMA Sediment Characterization 

Laboratory experiments utilized homogenized sediment samples collected 

during HUMMA. The study area is thought to host CWM and the fine-grained 

hemipelagic sediments at this location are generally similar to those found in 

other deep ocean CWM disposal locations. The HUMMA munition site, labeled 

HI-05 by the Department of Defense, is located 5 miles south of Pearl Harbor off 

the coast of Oahu (Figure 5). The primary HUMMA study area has been 

categorized by the U.H. Environmental Center (1996a) as a “flat silty plain with 

no significant topographic features”. The southwestern part of the study area has 

some morphological diversity, such as, irregularly shaped mounds and 

Pleistocene reefs covered with thin sediment layers (HUMMA, 2010).

 

Figure 5: Map of HUMMA site off Oahu 
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HUMMA sediment samples taken in clear polyvinyl chloride (PVC) 

sediment scoops labeled with unique identifier numbers were collected by HURL 

submersibles in March of 2009 (image). Sediment was collected within 1-2 

meters of randomly chosen munitions. The recovered samples were then analyzed 

on ship for chemical agent and, cleared (in the absence of CWA) for subsequent 

laboratory processing and analysis of explosives and metals. The minor and major 

element composition of sediments was determined on acid digested material by 

inductively coupled plasma (ICP) spectrometry optical emission spectrometry 

(OES) and mass spectrometry (MS) as described below. 

  

Figure 6: PVC sediment scoop designed by HURL for HUMMA sediment collection 

 

Selected samples from the HUMMA project were composited to yield a 

sufficient quantity of material to use in subsequent experiments. Five splits of the 

well-mixed composite were subsequently analyzed to determine it’s As content. 
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The original samples used to generate the experimental composite were HUM001 

through HUM007, which individually contained from 5.75 to 6.76 mg/kg of As. 

 

Batch Reactor Experiments 

 A series of controlled experiments was conducted to evaluate the capacity 

of the hemi-pelagic sediment to sequester and retain As. All experiments in this 

study were conducted with batch reactors (Figure 7). Fifteen individual free drift 

(i.e., there is no adjustment made to the system during the experiment) batch 

reactor experiments were completed during this study. Experiments were 

numbered 1-15; these include a blank, and seven paired (duplicate) As spike 

concentration experiments.  

 

Figure 7: Batch reactor and pH monitor 

 

Experiments consisted of temperature-controlled batch equilibrations of 

one liter of seawater spiked with specific concentrations of inorganic As either in 

the form of the metastable (reduced) arsenite (As(III)) or the thermodynamically 
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stable arsenate (As(V)), and known amounts (~1g) of suspended sediment. 

Duplicate runs of individual experiments were conducted with each of the 

following concentrations: 3µM, 5µM, 10µM, and 20µM dissolved As(III) and  

5µM of As(V). Fifteen experiments were completed and these included duplicates 

and a few replicates that addressed prior experimental procedure difficulties.   

 In order to prepare solutions with the individual As(III) spike 

concentrations described above, a stock concentrated solution of ~1 mM NaAsO2 

was initially prepared volumetrically. Exactly 135.0 mg NaAsO2 (77.86 mg As) 

were placed in a one liter volumetric flask and diluted to the mark with DI H2O to 

yield an exact concentration of 1.04 mM As(III). The stock solution was stored 

sealed and utilized subsequently to prepare working micromolar solutions of 

NaAsO2. Working solutions were prepared in seawater. 

 A constantly stirred jacketed batch reactor was set up to keep sediment 

(~1g) in suspension and the temperature was maintained constant (25.0o C) within 

0.1oC during experiment runs with recirculation of jacket water through a Thermo 

Fisher Scientific thermostat and refrigerated bath/circulator. The sediment- 

seawater suspension was then sampled at predetermined intervals: 1 min, 3 min, 5 

min, 10 min, 20 min, 40 min, 60 min, 120 min, 12 hours, 24 hours, 3 days and 7 

days. The pH of the suspension was also monitored throughout the experiment as 

one means of evaluating ion exchange reactions on substrate surfaces. 

 At designated times throughout individual batch reactor runs, fifty 

milliliters of seawater were sampled with a syringe using the depth-integrated 

technique. The samples were then filtered through pre-weighed 0.22 µm 
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membrane and the filtrate collected in acid cleaned, 25 mL HDPE bottles and 

stored for later analysis. After experiments 1 & 2, 10 mL DI H20 were passed 

through the membranes to rinse them of remaining seawater. Any remaining 

seawater would contribute Cl- to the digested sediment solutions and interfere 

with As analysis by ICPMS (see below). Sediment loaded filter membranes were 

placed in a drying oven maintained at 60o C for at least 24 hours. Dried 

membranes were weighed on an analytical balance to the nearest 0.1 mg and the 

weight of suspended sediment recovered then recorded. 

  Dry membranes were subject to acid digestion in preparation for ICPMS 

analysis. For all experiments, dried membranes were transferred to Teflon® 

Savillex screw cap beakers for sediment dissolution. The digestion protocol of 

experiments 1-9 involved pipetting a small amount of DI H2O onto the dry 

membrane to prevent violent reaction of dry particles with acid; this was followed 

by addition of 0.4mL of concentrated trace-element grade 15M HNO3 and the 

sample then heated in the oven to dissolve particles. For experiments 10-15, a 

slightly different digestion protocol was used to assure complete dissolution of 

refractory minerals that remained when using only 15M HNO3. The modified 

procedure is similar to the method described by Wen et al. (1997). The digestion 

mixture consisted of 0.4mL of HNO3, 0.4mL of HCl, and 0.1mL of HF. The 

digestion vessels were then placed in an oven at 60oC until the sediment and 

membrane were completely dissolved, generally within 48 hours. Digested 

materials were transferred quantitatively into pre-weighed 25 mL HDPE bottles 

and diluted to approximately 25mL with de-ionized H2O. Samples were then 
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weighed to the nearest 0.01g. Digested sample solutions were diluted an 

additional 10-fold with 2% (v/v) trace element clean HNO3 immediately before 

injection into the ICPMS.  

 

Arsenic Analysis by ICP-MS  

 Inductively Coupled Plasma Mass Spectrometry (ICPMS) was utilized to 

carry out analysis of arsenic in solutions derived from adsorption experiments. 

ICPMS is a sensitive and precise analytical method capable of detecting metals, 

metalloids, and certain non-metals in liquid samples. The ICP provides a high 

temperature plasma discharge that produces positively charged ions, which are 

then transmitted through a mass spectrometer (MS) and detected with a 

channeltron electron multiplier (CEM).  

 A simplified description of the principles of operation of the ICPMS is as 

follows. An oscillating RF field (~50 MHz) is used to generate and sustain 

aninductively coupled argon (Ar) plasma that generates a temperature of 6000-

7000K. This plasma serves as an ionization source for the sample and is located at 

the inlet to the mass spectrometer. Sample solutions are pumped through a 

nebulizer into a spray chamber where an aerosol is transported to and passed 

through the super-heated Ar plasma, which ionizes most elements in solution. The 

ions are introduced into the mass spectrometer (MS) through a small orifice into 

an expansion chamber where they are supersonically accelerated into the high 

vacuum section of the mass spectrometer. The mass spectrometer then separates 

ions by their mass/charge ratio. A CEM collects the ions separated by the mass 
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spectrometer, which generate a cascade of electrons thereby generating a current 

that is proportional to ion concentration. Computer electronics then produce a 

record of current versus mass/charge ratio that is subsequently used to quantify 

the concentration of isotopes of elements of interest. The ICPMS is standardized 

by aspiration of a series of known calibration standards to generate a (linear) 

response curve that is applied to unknown sample ion counts. For this study, a VG 

PQ2S quadrupole mass spectrometer was utilized. 

  In order to ensure the precision and accuracy of ICPMS data, it is 

important to continuously evaluate the quality of the instrument performance 

during spectrometric analysis. Instrument calibration is verified throughout the 

run, blanks are analyzed periodically, and internal standard solutions allow 

monitoring of instrument stability. Sample duplicates and solutions of standard 

reference materials (SRM), digested by the same procedure as samples, were 

included in all analyses, thereby allowing assessment of analytical variability. 

 A range of working standards for calibration of the ICPMS was prepared 

daily. The standards, ranging from 1 to 40 µg/L, were prepared by volumetric 

dilution of a stock 100 µg/L certified multielement solution with 2% (v/v) trace 

element clean HNO3. 

 

Calculations 

 Data from the experiments were entered into Microsoft Excel spreadsheets 

in order to organize and compare sediment uptake between experiments. The 

concentration of As, as measured by ICPMS, was transformed to a mass As 
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adsorbed (µg). The concentration of As in solution was multiplied by the dilution 

factor and the solution weight in grams, and divided by the dry weight of the solid 

sediment sample (mg) measured prior to digestion, then multiplied by the 

sediment mass (g). An example calculation, taken from experiment 5 (Appendix 

A) is as follows: 

 

 

The absolute amount of As adsorbed to the sediment was calculated by 

subtracting the concentration of As in the original material and then dividing by 

weight of sediment added to the reactor: 

 

Finally, the percent uptake of arsenic in the reactor experiments was calculated by 

dividing the amount adsorbed by the concentration of As added to the solution 

(µM) and multiplied by the atomic weight of As and then multiplied by 100, as 

follows: 
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CHAPTER 4. RESULTS 

 Table 1 shows concentrations of As in sediment samples collected during the 

HUMMA study in 2010, which were used to generate composite test sediment in reactor 

experiments. Also included in this table is the concentration of As found in the composite 

sediment prepared from the individual HUMMA samples. As discussed previously, the 

original HUMMA sediment samples labeled HUM001 through HUM007 contain from 

5.74 to 6.79 mg/kg As. The average of the composite prepared in this study (6.29 mg/kg 

or ppm) is consistent with what would be expected based on individual HUMMA sample 

concentrations of arsenic. 

 

Sample ID # Arsenic (mg/kg) date Sample location 

HUM 001 6.02 3-Mar-09 RC1 

HUM 002 6.76 3-Mar-09 RC1 

HUM 003 6.79 3-Mar-09 RC1 

HUM 004 5.75 3-Mar-09 RC1 

HUM 005 6.04 3-Mar-09 RC1 

HUM 006 6.25 3-Mar-09 RC1 

HUM 007 5.74 3-Mar-09 RC1 

Table 1: HUMMA As concentrations for sediment batches HUM 001-007 

  

 

Arsenic Recovery  

 A comparison of relative uptake of As by sediments for all experiments is 

presented in Appendix A and shown in figure 8. In general, uptake increases over time 
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but the relative or absolute uptake at the end of the experiment does not necessarily 

increase with increasing As spike concentrations. The uptake of  As(V) is also greater 

over time as compared to experiments with an equivalent concentration of As(III). 

 

Figure 8: Percent uptake plotted vs time for experiments 3 through 15 (expt 4 not plotted) 

  

 Experiments 1 and 2 were discarded due to initial experimental problems with 

filtration and recovery of suspended materials. Experiment 4, a blank (i.e., no As was 

added to the seawater) adsorption experiment  (data not shown in the above figure), 

showed a nearly constant amount of arsenic in each sample. 
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 Data for duplicate experiments 3 and 5, in which the seawater was spiked with 

3µM with As(III), appeared to show extremely different amounts of As uptake, by 30% 

or more, in the two experiments (Figure 9). Experiment 3 displayed an upward trend of 

As adsorption from 37% after one minute to 100% at 720 minutes, while Experiment 5 

displayed only a 3% increase of adsorption between the sample collected after one 

minute and that collected after 720 minutes (12 hours). There was no sample collected 

after one day or three days during Experiment 3, and the relative uptake appeared to drop 

drastically by the 7 day sample. This rather anomalous behavior and lack of 

reproducibility between what was supposed to be two replicate experiments is discussed  

  

  

 The experiments in which the seawater was spiked with 5µM As are Experiments 

6, 7, and 11 (Figure 10). The maximum As uptake at after 7 days, however, was only 

4.34% for Experiment 6, while Experiment 7 displayed a maximum As uptake of 10.8%, 

while the maximum uptake for Experiment 11 was 30.25%. Again, discrepancies 
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Figure 9: Comparative plot for duplicate experiments 3 & 5 

Figure 10: Comparative plots for experiments 6, 7 & 11 
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between these replicate runs will be discussed later. The uptake curve for Experiment 11, 

however, was smooth and gradually increased through the final 7-day sample  

   

 Results for Experiments 8 and 9 (figure 11) were consistent, unlike what was 

observed for previous experiments. These experiments, in which the seawater was spiked 

with 10µM As, displayed very similar uptake curves. The largest difference in uptake 

was at the 7 day experiment. The maximum uptake was observed at the final time 

increment and was 14.68% in Experiment 8-7d and 12.94%  in Experiment 9-7d. 
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 Figure 12 displays the uptake plot for Experiment 10, in which the seawater was 

spiked with 20µM of As(III). The uptake for Experiment 10 follows a relatively smooth 

curved trend upward, with a maximum uptake of 5.4% after three days. 

 

 A comparison of As(III) and As(V) uptake experiments is shown in Figures 13a 

and 13b, which plot relative uptake on logarithmic and linear time scales, respectively. 

Experiment 11 was conducted with a 5µM As(III) spike , whereas Experiments 13 and 15 

were carried out with an As(V) spike of 5µM. The uptake curves for As(V) exhibit a 

consistently higher rate of recovery throughout the duration of the experiment compared 

to the As(III) experiment. There was one outlier in each of the As(V) experiment; at the 

fifth and seventh time intervals of Experiments 13 and 15, respectively. Additionally, the 

final sample point in Experiment 15 was collected after16 days, whereas the final sample 

point for Experiment 11 was collected after seven days.  
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CHAPTER 4. DISCUSSION 

 The study of DMM sites and the marine sediments surrounding CWM has been 

ongoing in waters around Oahu for nearly a decade. Understanding the potential impacts 

of these synthetic chemical warfare agents on the marine environment is clearly 

important. One reason is because the local population of Hawaii is strongly linked to the 

ocean not only as subsistence or recreational fishermen who consume local seafood, but 

also culturally. How marine sediments are impacted by CWM/CWA and how these 

impacts might transfer up the food chain are particularly important topics to the local 

community.  

 The characteristics of marine sediment vary widely. The chemical composition, 

mineralogy, and particle size all differ depending on a number of factors that are largely 

determined by the origin of the sediment. Primarily, particles that compromise marine 

sediments originate from skeletons of marine organisms (biogenic), or they are carried 

from land to the ocean (terrigenous). Additionally, some marine sediments form through 

other processes, such as, hydrothermal activity and authigenic mineral formation (Libes, 

1992). Coastal and deep ocean sediments may vary in the prevalence of sediment type, 

depending on their distance from shore. Furthermore, the abundance and composition of 

sediment has been altered in many areas of human activities (van Geen & Luoma, 1999). 

Consequently, the variability of physical properties and the chemical composition of 

sediments can influence how chemical pollutants partition between the surrounding 

seawater and sediment at a particular location. As a result of this, broad scale predictions 

may be inaccurate for some specific situations. 
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 Hawaiian coastal sediments are comprised of particles from two primary sources, 

and the formation and general makeup of these particles depends principally on a few 

processes. In Hawaii, marine sediments consist of fluvial/erosional or of biogenic 

deposits and the composition of sediments is generally controlled by the weathering of 

volcanic basalts and marine biological processes (Calhoun and Fletcher, 1999). 

Sediments at the HUMMA sampling sites are composed of carbonate sand/silt, reef 

platform carbonates, and dredge spoil (largely terrigenous) material originally removed 

from Oahu harbors and dumped at the EPA approval dump site south of Pearl Harbor 

(HUMMA). 

 Because the properties of sediments used in this study were different from pure 

model phases used in laboratory adsorption studies due to their complex mineralogy and 

chemical composition, it became necessary to modify experimental procedures from the 

initially envisioned approach in order to generate reproducible results. During the ICPMS 

analysis of samples derived from Experiments 1-3, it was deduced that spectral 

interferences might be causing inconsistent results and that an isobaric interference from 

Cl was occurring on 75As . Because uptake experiments were carried out in seawater and 

solution aliquots collected at various time intervals were filtered through glass fiber filter 

(GFF) membranes held in capsule filters, some seawater remained on the filters and on 

the particles after filtration. The residual seawater contributed to both a slight increase in 

apparent particle mass from NaCl left behind that was subsequently digested and injected 

into the ICPMS. The presence of Cl in solution also leads to the formation of 40Ar35Cl 

molecular ions, which cause a positive interference on 75As (figure 14) (Wolf, 2005). 

Because As is a monoisotopic element no alternative mass could be monitored on the 
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ICPMS to avoid this interference.  In order to remove the isobaric interference, 

subsequent experiments (after Experiment 3) included two changes. The GFF were first 

replaced by Millipore (cellulose acetate) membrane filters, and second, all filters were 

rinsed with a small volume of DI to eliminate any residual NaCl.  

   

 

  

 Despite efforts to reduce the isobaric interference through the two previous 

measures, there were still considerable inconsistencies within the As uptake results. 

These disparities were then attributed to a combination of a variable efficiency of 

collection of particles from solution during sampling and a subsequent incomplete 

digestion of the particles. Beginning with Experiment 8, a new digestion and dilution 

method was implemented to remedy the incomplete recovery of As from the solid phase. 

Prior to implementation of the new digestion method, it was assumed that all As was 

adsorbed on the surface of particles and that it would only require a weak acid treatment 

to remove quantitatively the As from the solid phase. However, some of the As in the 

sediment particles was likely bound within mineral particles and not readily released with 

a weak acid treatment; so a more complete digestion was required in order to determine 

Figure 14: Examples of molecular interference during ICPMS analysis of solutions. 
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how much total (original + adsorbed) As was recovered from the sediment. After this 

new step, as described in the methods, was put in place, all remaining experiments 

showed consistent, reproducible outcomes. Figures 15a & 15b display the difference in 

results prior to, and after the resolutions.       

  

Figure 15a: above - Percent As uptake prior to change in methods 

Figure 15b: below - Percent As uptake after change in methods 

  

 Despite the consistent and reproducible outcomes of later experiments, the uptake 

curves do not entirely support the hypothesis that As adsorption would be be very rapid 

inititally and then reach an equilibrium over an extended but relatively short time. Other 

studies have shown that, under certain conditions, As adsorption onto particles follows 
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very rapid kinetics, displaying uptake patterns consistent with those of  the stated  

hypothesis (e.g., O’Reilly, et al., 2001). The rate of adsorption in the first series of 

experiments from the current study, however, may have been lower as a result of the 

(reduced) oxidation state of As.  

 During all experiment time frames, pH slowly increased (figure 16a & 16b). The 

shift to a more alkaline environment is often associated with oxidizing conditions. 

Although this may have occurred through protonation of arsenite when initially placed in 

seawater, this should have occurred in the seawater spike solution before it was added to 

the sediment-seawater suspension. Another more likely alternative, is that upon mixing of 

the spike solution and the sediment suspension, exchange reactions begin to take place at 

the particle surface and release OH- to solution. It is well-known that the adsorption of 

ligands on metal oxides can be compared to complex formation reactions that release OH-  

to solution  (e.g., Stumm 1992), Another alternative is that a slow oxidation of As(III) 

under the slightly basic conditions of these experiments consumes H+, thereby increasing 

pH (Sharma & Sohn, 2009;  Zhao et al., 2011). Which of these processes predominates in 

controlling pH cannot be ascertained unequivocally, the slightly lower pH increase 

observed during the As(V) uptake experiment is consistent with an additional increase in 

pH associated with the oxidation of As(III) to As (V).  
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Figure 16a: pH versus time during As(III) experiment 

 

 

Figure 16b: pH versus time during As(V) experiment 
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 In order to help elucidate why the uptake curves from the As(III) experiments all 

showed relatively low adsorption and a slower uptakethan hypothesized, similar 

experiments were run using As(V). The oxidized form of As is known to be more particle 

reactive than As(III) (Glendon-Baclig, 2007). Thus it was necessary to determine what 

extent of adsorption would be observed with As(V) under the same conditions as used for 

the As(III) experiments. A comparative plot (figure 17) showing the uptake by HUMMA 

sediment of equimolar spikes of (5 μM) As(III) and As(V) displays sub-parallel curves 

for the two As species but with a greater extent of adsorption of As(V) relative to As(III) 

The greater extent of uptake of As(V) the suggests that sediment used in this study has a 

greater sorption capacity than would be predicted only from uptake experiments with 

As(III) and confirmed the preferential uptake by particles of As(V) over As(III) observed 

in prior work. Additionally, the apparent continued uptake over longer time intervals also 

implies that more reaction time was needed in order to reach equilibrium and/or fully 

saturate the sediment surface with As.  
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Figure 17: Comparison plot of As(III) and As(V) experiments at 5µM (linear) 

  

 The lesser and especially slower uptake of As(III) onto the sediment relative to 

As(V) likely reflects the inherent differences in the propensity of As in these two 

different oxidation states to bind to particle surfaces but may also be indicative of other 

processes taking place in solution. It is possible that the continued uptake of As(III) over 

extended times may be due to a slow but continued oxidation to As(V), leading to a lesser 

extent of adsorption than would be predicted from extrapolation of the plots of As uptake 

versus the inverse square root of time. 

If As(III) slowly oxidizes in the batch reactors during the course of the 

experiments, its transformation to As(V) should lead to a greater propensity for uptake by 

particles, although this process is expected to be relatively slow (Smedley & Kinniburgh, 

2011). Furthermore, because the rate of uptake of As(III) is slower than that of As(V), 

oxidation in seawater of dissolved As derived from Lewisite would be beneficial from 

two perspectives. First, if oxidation occurred quickly, As(III) would transform quickly to 
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the less toxic As(V) species, reducing the amount of the more toxic form that might be 

taken up by biota (other than in-benthic sediment feeders). Additionally, uptake of As by 

sediment should then be enhanced both in extent and possibly in rate, further decreasing 

its concentration in solution and availability. Counter to this argument, however, is the 

fact that in-benthic species would then be exposed to a greater concentration of As during 

their ingestion of sediment. If incorporation of As into their tissues was sufficient, 

bioaccumulation of As could occur, potentially leading to greater transfer and 

biomagnification through the food chain. Recent work, however, suggests that 

holothurians, for example, have a relatively high gut pH compared to humans, thereby 

minimizing dissolution of particles and solubilization of adsorbed (toxic) species (Mayer, 

et al., 1997). Polychaetes, however, are thought to be greater accumulators of As and 

predation on these organisms by higher trophic levels could lead to greater 

biomagnification of As through the food chain.. 

During the current experiments, the pH of the seawater/sediment suspension was 

monitored and , although it increased slightly over time, remained near pH 8 (see figure 

16a and 16b). In such a mildly basic solution oxidation of As(III) to As(V) should not be 

favored thermodynamically, although prior work has shown that even in basic solution 

some oxidation of As(III) to As(V) does take place (e.g., Zhao et al., 2011).  

   

Uptake of As as a Function of Seawater Spike Concentration 

 The amount of As(III) taken up by solid phases from seawater by suspended 

sediments in these experiments displays an increase as a function of time for all spike 

concentrations. However, the total (absolute) amount of As taken up by the solid phase 
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does not always follow the same trend (see Figures 18-22). In fact it appears that, at 

higher spike concentrations, there is a lesser fraction of the spike taken up by the solid 

phase, suggesting that saturation of the solid surface may be taking place. 

 

Figure 18: Absolute As uptake (in µM) at 3 minutes for 5, 10, and 20 µM spikes 

 

Figure 19: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes 
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Figure 20: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes 

 

Figure 21: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes 
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Figure 22: Absolute As uptake (in µM) at 5, 10, and 20 µM spikes 

  

Figure 23: Absolute As Uptake (in µM) at 5, 10, and 20 µM spikes 

        

 Figure 24 depicts the average absolute amount of As that is sorbed as a function 

of time for the various concentration spikes investigated in this study. This plot shows an 

increase in the amount of As that partitions onto the solid phase with time. The standard 

deviation for each point in Figure 24, however, generally increases with time. The 
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increasing standard deviation of the later sample times may provide evidence of the first 

stages in saturation of the solid phase in the higher As spikes (10 µM and 20 µM), 

although additional experiments with longer sample times are needed to fully support this 

interpretation. 

 

Figure 24: Average absolute uptake over time for 5, 10 & 20 µM experiments 
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0.999 demonstrates a good fit to the data and suggests that the experiment followed 

equilibrium thermodynamics.  Yet, the y intercept of absolute As uptake of 0.7925 µM, 

the predicted equilibrium uptake value is greater than the observed As uptake at the end 

of this experiment of 0.54 µM. This indicates that the experiment did not reach 

equilibrium. The results obtained through this data manipulation indicate that the 

equilibrium uptake of As(III) in the various experiments should range from a low of 

about 0.20 µmole of As to a maximum of about 3.68 µmole. It should be borne in mind, 

however, that the shape of the experimental uptake plots (i.e., versus time) suggest that a 

continued uptake of As would occur, even though the value observed at the end of the 

experiments was generally well below the assumed equilibrium uptake value derived 

from the inverse square root of time plots.  

   

  

 

     

Figure 25: As uptake at equilibrium for experiment 7 
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Figure 26: As uptake at equilibrium for experiment 8 

 

Figure 27: As uptake at equilibrium for experiment 9 

   

Figure 28: As uptake at equilibrium for experiment 10 
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  The same approach, when applied to uptake experiments with As(V) shows 

greater amounts of As adsorbed onto the suspended sediments at infinite time than was 

observed for any of the As(III) experiments. The plots for the two 5 μM As(V) duplicate 

experiments display R2 values of 0.97251 and 0.98121, respectively and the predicted 

equilibrium uptake is similar (~2.24 µmole and ~2.64 µmole, respectively). As observed 

during the As(III) experiments, the actual uptake plots (i.e., versus time) show that uptake 

of As(V) at the end of the experiments was still below the assumed equilibrium uptake 

value (figure 33). Again, this is indicative of relatively slow uptake kinetics as and that 

equilibrium would be reached at a time beyond the seven day duration of the experiments 

conducted in this study. 

  

Figure 29: As uptake at equilibrium for experiment 13 
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Figure 30: As uptake at equilibrium for experiment 15 

   

Figure 31: As uptake at equilibrium over a whole uptake plot for experiment 13 to show how equilibrium plot 

was projected 
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Real World Implications  

 The data collected in this study, in addition to known CWM site details, can be 

utilized in real world implication scenarios to predict a worse case scenario if Lewisite 

contained in CWM around Hawaii were to breach catastrophically and release their entire 

content to the environment at one time. In making such a prediction, the the highest As 

uptake, of about 30% observed in these experiments, was used to calculate the fractions 

of As derived from CWA that would be released to the sediments and seawater. As 

mentioned in the background, according to U.S. Military records, nearly 300 T (U.S.) 

(272,155 kg) of Lewisite were dumped off southern Oahu, with the majority of those 

DMM reported spread over an area of about 40 km2. Analysis of the HUMMA sediment 

determined that As concentrations, were near 6 ppm throughout the HUM001-HUM007 

sediment sample area. Calhoun (1999) estimated deep ocean sediment around Hawaii to 

have a general density of 2.0 Mg m-3. Furthermore, Lewisite contains 39% As by weight. 

 Assuming an area of 40 km2 and that sediment will be affected down to a depth of 

10 cm below the seawater-sediment interface and that seawater will be affected 

throughout about 10 m above the seawater-sediment interface, we can estimate the 

impact Lewisite derived-As has on sediment and seawater as follows: 

 

 Total amount of As = 272,155 kg Lewisite x 0.39 As/Lewisite = 106,140 kg As 

 Sediment 

o As retained by sediment = 106,140 kg As x 0.30 = 31,842 kg As 

o Volume of sediment = 40 km2 x 10 cm = 40 x 105 m3  

= 40 km2 x 1000 m km-1 x 1000 m km-1 x 0.1 m  
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o Mass of sediment = 40 x 105 m3 x 2 Mg m-3  

= 80 x 106 Mg x (1 x 103 kg Mg-1) = 80 x 109 kg  

 

o Added As in sediment over the natural concentration  

= 31,842 kg s (80 x 109 kg) = 3.98 x 10-6 Mg = 0.4 mg kg-1 (ppm) 

 

 Seawater 

o As released in seawater = 106,140 kg As x 0.70 = 74,298 kg 

   = 7.4298 x 1010 mg As 

 

o Volume of seawater = 40 x 106 m2 x 10 m x 1000 L m-3 = 4 x 1011 L  

o Concentration of As added to seawater  

= (7.4298 x 1010 mg As) ÷ (4 x 1011 L) = 0.186 mg L-1 (ppm) 

 

 The hypothetical calculation above shows that the amount of As added to the 

sediment would only be 0.4 ppm if 30% of the As from the Lewisite went into the 

sediment. The amount of As added to the sediments represents only a small increase to 

the natural concentration of As that was previously observed in these sediments (6 ppm). 

In other parts of the HUMMA study area, however, concentrations of As reached near 20 

ppm, and the amount of As added to the sediment based on the above calculations would 

be even less significant.  Furthermore, Lewisite bombs dumped around the HI-05 site are 

relatively small when compared to the 40 km2, and if the As did not disperse far amongst 

the sediment, then we might assume that only 10% of the area would be affected. Under 

this more conservative scenario the concentration of As added to sediments near DMM 

would be higher at about 4 ppm. The latter, however, is still not very large as 

concentrations of As in sediments around Hawaii range from below 10 ppm to several 

orders of magnitude higher values, in areas subject to human activities (De Carlo and 

Anthony, 2002; De Carlo et al., 2004; 2005; Cutler 2006, De Carlo et al., submitted). The 
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concentration of As in other marine environments may range from 0.38 ppm to 1270 ppm 

in industrially polluted intertidal areas to 48 – 361 ppm in shale at mid-ocean ridges & 

Kinniburgh, 2011).  

 Calculations of the amount of As that would be added to seawater under the 

theoretical scenario described above indicate an increase of 0.186 ppm to the seawater 

across the 40 km2 HUMMA area and over the bottom10 m of the ocean. Natural As 

concentrations in deep ocean water average about 1.7 ppm, which leads to an increase of 

less than 10% of total As. At about 500 m depth (within the thermocline), the depth range 

of the HUMMA study area, the concentration of As is only about 1.1 ppm. Hence the As 

added from catastrophic release of Lewisite would only represent about an 18% increase 

over existing levels of As. It is also very likely that the As released from Lewisite would 

not be limited to a ten meter depth range. Strong bottom currents observed at at the 

HUMMA site would likely spread the dissovled As into a greater volume, thereby 

commensurately decreasing its concentration and its impact on bottom water 

concentrations.  

 The calculation of the As released into the area surrounding CWM described is an 

absolute worst-case scenario, as all the Lewisite from DMM would be released into the 

environment at once. This is highly unlikely as is the volume of sediments or seawaer 

over which the As would be distributed. Yet the calculations reveal a rather minimal 

effect of such a catastrophic scenario on local As concentrations.  As a result, it is much 

more likely that any leakage of Lewisite at a site such as the HUMMA area, the ensuing 

hydrolysis of the CWA to As(III) and its partitioning between sediment and seawater 
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would only have a very limited impact on the environment and would not likely represent 

an environmental problem.  

 



 
 

51 

CHAPTER 5. CONCLUSION 

 This study investigated the adsorption of dissolved As in seawater onto deep-sea 

marine sediments. The rationale for the study was to evaluate the potential mobility of 

this toxic element that is released by the hydrolysis of Lewisite, of a constituent of 

chemical agents found in certain sea-disposed military munitions. This research 

determined the extent to which dissolved As(III) and As(V) are taken up by hemipelagic 

sediments under ambient conditions and the partitioning of As between the aqueous and 

solid phases. It was hypothesized that sediments around CWM had a high propensity for 

adsorbing and retaining Lewisite derived As, and that the uptake reaction would occur 

quickly once As was released from hydrolyzed Lewisite in the environment. Such a 

reaction would effectively immobilize As and prevent its transport through the water 

column. The final objective of the study was to use study results to estimate 

concentrations of As that would be found in the marine environment upon catastrophic 

release from CWM in order to address some of the public concerns regarding potential 

ecological and human health risks associated with discarded CWM. 

 The results of laboratory experiments partially disproved the working hypothesis, 

demonstrating that the adsorption of As did not occur as rapidly as hypothesized, and that 

equilibrium between As in the aqueous and solid phase was not reached even after 7 

days. The maximum uptake of As onto the sediment at the end of the experimental 

procedures was found to be a function of the initial concentration of As in solution, but 

that the absolute amount of As taken up by the solid phase was more constant (i.e., the 

product of the % uptake of As and the initial solution concentration was nearly constant. 

Evaluation of the data and extrapolation of uptake curves to infinite time yielded 
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“equilibrium” concentrations that were greater than those observed at the conclusion of 

the experiments, confirming that equilibrium was not reached by the end (7 days) of the 

experiments conducted in this study. The data demonstrate, that the adsorption of As onto 

the sediments found at the CWM sites occurs to a much lesser extent than anticipated, 

consequently the amount potentially released to the water column upon rupture of CWM 

is greater than expected.  

Calculations of the partitioning of As between sediment and seawater under a 

worst case scenario and based on the experimental data, reveal that that the impact on the 

environment would be minimal, even if 300 T (U.S) of CWA were to leak simultaneously 

out of the CWM during a catastrophic rupture and release of all CWA within a 40km2 

area of the seafloor. In spite of this somewhat comforting conclusion, it should be kept in 

mind that, although “dilution is a solution to pollution” in this case, the best situtation is 

one where no CWA/CWM is disposed of in the deep ocean. Short of the latter, however, 

one might conclude that the old military decisions to dispose of unwanted munitions in 

the ocean may not have been as ill thought out as many might believe.    

  In order to gain a greater understanding of the conditions controlling the 

adsorption of As on marine sediments, additional experiments will be needed to 

supplement the findings in this study. First, the temperature of the seawater in the batch 

reactor should mimic the temperature in the deep-sea areas CWM are often found (10-

140C), as temperature has been reported to have an effect on speciation of As in the 

marine environment (Leermakers, et al., 2006) and because kinetics of reactions are 

known to be temperature dependent. Second, greater sediment loadings than used in this 

study should be utilized to reflect better conditions that will exist within the porewater of 
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deep sea sediments at CWM sites. Additional experiments will also need to evaluate 

uptake as a function of redox state, which varies tremendously within the water column 

and sediment porewater.  Finally, because equilibrium was not reached within the 7 day 

experimental period, further experiments will need to employ to be carried out for longer 

durations. After concluding further abiotic reactor experiments and more fully 

characterizing the behavior of Lewisite derived As under seafloor conditions, the impacts 

of As retained by sediments on benthic infauna can then be assessed.  
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APPENDIX A: Data for all experiments 

Run ID Time 75As 147Sm Mass 

Solid 

Mass 

Soln 

Time 1/t(1/2) Solid 

Sample 

As 

Sample-

Original 

Sediment 

mass 

added to 

expt  

% uptake pH of 

seawater 

   ppb ppb mg g (min)  µg total µg total g   

Expt 1   (Discarded)                         

 Mean of 1-1 5/7/12 14:01 11.1 1.103 10.9 9.44 1 1 96.43 90.66 1.0031 12.08830595  

 SD of 1-1  0.102 n/a          

 %RSD of 1-1  0.921 n/a          

              

 Mean of 1-3 5/7/12 14:06 23.76 1.283 28.5 8.58 3 0.577350269 71.75 65.98 1.0031 8.797869812  

 SD of 1-3  0.197 n/a          

 %RSD of 1-3  0.83 n/a          

              

 Mean of 1-5 5/7/12 14:12 23.28 1.345 33 8.32 5 0.447213595 58.88 53.11 1.0031 7.081059202  

 SD of 1-5  0.101 n/a          

 %RSD of 1-5  0.432 n/a          

              

 Mean of 1-10 5/7/12 14:16 24.81 1.403 31.9 8.4 10 0.316227766 65.53 59.77 1.0031 7.968680905  

 SD of 1-10  0.325 n/a          

 %RSD of 1-10  1.308 n/a          

              

 Mean of 1-20 5/7/12 14:21 23.04 1.403 36 8.5 20 0.223606798 54.57 48.80 1 6.506775333  

 SD of 1-20  0.134 n/a          

 %RSD of 1-20  0.58 n/a          
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 Mean of 1-40 5/7/12 14:36 17.71 1.44 36.3 11.43 40 0.158113883 55.94 50.17 1.0031 6.689278739  

 SD of 1-40  0.045 n/a          

 %RSD of 1-40  0.255 n/a          

              

 Mean of 1-120 5/7/12 14:45 208.5 1.449 41.8 8.24 60 0.129099445 412.29 406.52 1.0031 54.20275648  

 SD of 1-120  0.767 n/a          

 %RSD of 1-120  0.368 n/a          

Expt 2   (discarded)                         

 Mean of 2-1 5/7/12 15:11 122.4 1.727          

 SD of 2-1  0.956 n/a          

 %RSD of 2-1  0.781 n/a          

              

 Mean of 2-3 5/7/12 15:16 21.04 1.524          

 SD of 2-3  1.209 n/a          

 %RSD of 2-3  5.749 n/a          

              

 Mean of 2-5 5/7/12 15:20 18.9 1.548          

 SD of 2-5  0.264 n/a          

 %RSD of 2-5  1.398 n/a          

Expt 3 

(3µm 
As(III)) 

                          

 Mean of 3-1 8/13/12 13:00 7.338 0.954 8.7 9.14 1 1 81.68 75.59 1.0595 33.59376541  

 SD of 3-1  0.199 n/a          

 %RSD of 3-1  2.71 n/a          
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 Mean of 3-3 8/13/12 13:04 8.111 0.974 8.6 9.32 3 0.577350269 93.13 87.04 1.0595 38.68380695  

 SD of 3-3  0.241 n/a          

 %RSD of 3-3  2.974 n/a          

              

 Mean of 3-5 8/13/12 13:08 8.604 1.033 8.7 9.16 5 0.447213595 95.98 89.89 1.0595 39.94985611  

 SD of 3-5  0.11 n/a          

 %RSD of 3-5  1.277 n/a          

              

 Mean of 3-10 8/13/12 13:12 9.933 1.031 8 8.87 10 0.316227766 116.68 110.59 1.0595 49.15238875  

 SD of 3-10  0.253 n/a          

 %RSD of 3-10  2.548 n/a          

              

 Mean of 3-20 8/13/12 13:29 11.53 1.161 8.6 8.84 20 0.223606798 125.57 119.48 1.0595 53.10104491  

 SD of 3-20  0.277 n/a          

 %RSD of 3-20  2.402 n/a          

              

 Mean of 3-40 8/13/12 13:33 12.92 1.147 8.4 8.81 40 0.158113883 143.57 137.48 1.0595 61.10074836  

 SD of 3-40  0.358 n/a          

 %RSD of 3-40  2.773 n/a          

              

 Mean of 3-60 8/13/12 13:37 14.81 1.178 10.7 10.25 60 0.129099445 150.31 144.22 1.0595 64.09809969  

 SD of 3-60  0.462 n/a          

 %RSD of 3-60  3.122 n/a          

              

 Mean of 3-120 8/13/12 13:42 19.85 1.279 10.7 8.81 120 0.091287093 173.16 167.07 1.0595 74.2534567  

 SD of 3-120  0.496 n/a          
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 %RSD of 3-120  2.496 n/a          

              

 Mean of 3-1d 

(1x2) 

8/13/12 13:46 30.46 1.291 13.1 9.4 720 0.0372678 231.57 225.48 1.0595 100.2136028  

 SD of 3-1d (1x2)  1.01 n/a          

 %RSD of 3-1d 

(1x2) 

 3.315 n/a          

              

 Mean of 3-7d 10x 8/15/12 14:15 13.86 0.902 17.6 8.96 10080 0.009960238 74.76 68.67 1.0595 30.51830889  

 SD of 3-7d 10x  0.103 n/a          

 %RSD of 3-7d 

10x 

 0.741 n/a          

Expt 4 
(blank) 

                          

 Mean of 4-1 7/11/12 16:37 14.6 1.339 20.8 9.97 1 1 70.23 64.46 1.0035   

 SD of 4-1  0.073 n/a          

 %RSD of 4-1  0.499 n/a          

              

 Mean of 4-3 7/11/12 16:42 16.23 1.571 22.6 9.27 3 0.577350269 66.80 61.03 1.0035   

 SD of 4-3  0.274 n/a          

 %RSD of 4-3  1.691 n/a          

              

 Mean of 4-5 7/11/12 16:47 16.63 1.695 23.9 10.29 5 0.447213595 71.85 66.08 1.0035   

 SD of 4-5  0.078 n/a          

 %RSD of 4-5  0.472 n/a          

              

 Mean of 4-10 7/11/12 17:07 20.67 1.977 29.6 10.11 10 0.316227766 70.85 65.08 1.0035   

 SD of 4-10  0.05 n/a          

 %RSD of 4-10  0.244 n/a          



 
 

5
8

 

              

 Mean of 4-20 7/11/12 17:12 22.4 2.177 29.9 9.8 20 0.223606798 73.68 67.90 1.0035   

 SD of 4-20  0.135 n/a          

 %RSD of 4-20  0.602 n/a          

              

 Mean of 4-40 7/11/12 17:17 12.61 2.109 15 9.78 40 0.158113883 82.50 76.73 1.0035   

 SD of 4-40  0.153 n/a          

 %RSD of 4-40  1.214 n/a          

              

 Mean of 4-60 7/11/12 17:22 27.97 2.431 35.5 9.05 60 0.129099445 71.55 65.78 1.0035   

 SD of 4-60  0.088 n/a          

 %RSD of 4-60  0.316 n/a          

Expt 5 

(3µm 

As(III)) 

                          

 Mean of 5-1 8/13/12 13:54 24.96 1.467 31.6 9.58 1 1 16.36 10.14 1.0807 4.507227307  

 SD of 5-1  0.411 n/a          

 %RSD of 5-1  1.645 n/a          

              

 Mean of 5-3 8/13/12 14:11 27.75 1.697 25.7 9.1 3 0.577350269 21.24 15.02 1.0807 6.677165456  

 SD of 5-3  0.851 n/a          

 %RSD of 5-3  3.066 n/a          

              

 Mean of 5-5 8/13/12 14:15 28.75 1.624 27.9 8.37 5 0.447213595 18.64 12.43 1.0807 5.523577778  

 SD of 5-5  0.623 n/a          

 %RSD of 5-5  2.166 n/a          
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 Mean of 5-10 8/13/12 14:19 37.89 1.849 40.4 10.08 10 0.316227766 20.43 14.22 1.0807 6.319686311  

 SD of 5-10  1.287 n/a          

 %RSD of 5-10  3.398 n/a          

              

 Mean of 5-20 8/13/12 14:23 41.99 1.806 34.5 8 20 0.223606798 21.05 14.83 1.0807 6.591608702  

 SD of 5-20  0.904 n/a          

 %RSD of 5-20  2.154 n/a          

              

 Mean of 5-40 8/13/12 14:27 41.44 1.92 38.1 11.33 40 0.158113883 26.64 20.42 1.0807 9.076183153  

 SD of 5-40  1.487 n/a          

 %RSD of 5-40  3.587 n/a          

              

 Mean of 5-60 8/13/12 14:32 39.44 1.842 32.3 10.83 60 0.129099445 28.58 22.37 1.0807 9.941479378  

 SD of 5-60  1.385 n/a          

 %RSD of 5-60  3.513 n/a          

              

 Mean of 5-120 8/13/12 14:44 48.91 2.155 38.9 12.67 120 0.091287093 34.43 28.22 1.0807 12.54123673  

 SD of 5-120  1.326 n/a          

 %RSD of 5-120  2.712 n/a          

              

 Mean of 5-12h 

10x 

8/15/12 14:19 10.24 0.947 37.4 9.1 720 0.0372678 26.93 20.71 1.0807 9.205406453  

 SD of 5-12h 10x  0.101 n/a          

 %RSD of 5-12h 

10x 

 0.983 n/a          

              

 Mean of 5-1d 10x 8/15/12 14:23 10.25 0.912 46.3 12.09 1440 0.026352314 28.93 22.71 1.0807 10.09379506  
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 SD of 5-1d 10x  0.113 n/a          

 %RSD of 5-1d 
10x 

 1.105 n/a          

              

 Mean of 5-3d 10x 8/15/12 14:27 21.54 0.992 47.5 7.25 4320 0.015214515 35.53 29.32 1.0807 13.02932367  

 SD of 5-3d 10x  0.268 n/a          

 %RSD of 5-3d 
10x 

 1.243 n/a          

              

 Mean of 5-7d 10x 8/15/12 14:31 11.35 0.975 54.9 11.57 10080 0.009960238 25.85 19.64 1.0807 8.727139154  

 SD of 5-7d 10x  0.194 n/a          

 %RSD of 5-7d 
10x 

 1.71 n/a          

Expt 6 

(5µm 
As(III)) 

                          

 Mean of 6-1 5x 8/15/12 14:48 4.054 0.956 18.7 8.77 1 1 10.19 4.03 1.0723 1.07410284  

 SD of 6-1 5x  0.031 n/a          

 %RSD of 6-1 5x  0.766 n/a          

               

 Mean of 6-3 5x 8/15/12 14:52 4.36 1.035 20 8.88 3 0.577350269 10.38 4.21 1.0723 1.123541643  

 SD of 6-3 5x  0.032 n/a          

 %RSD of 6-3 5x  0.738 n/a          

               

 Mean of 6-5 5x 8/15/12 14:56 4.58 1.047 20.6 10.15 5 0.447213595 12.10 5.93 1.0723 1.582215087  

 SD of 6-5 5x  0.056 n/a          

 %RSD of 6-5 5x  1.212 n/a          

               

 Mean of 6-10 5x 8/15/12 15:01 6.183 1.113 25.4 9.24 10 0.316227766 12.06 5.89 1.0723 1.571632678  

 SD of 6-10 5x  0.048 n/a          
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 %RSD of 6-10 5x  0.776 n/a          

               

 Mean of 6-20 5x 8/15/12 15:05 9.194 1.182 37.4 9.2 20 0.223606798 12.13 5.96 1.0723 1.589328272  

 SD of 6-20 5x  0.176 n/a          

 %RSD of 6-20 5x  1.91 n/a          

               

 Mean of 6-40 5x 8/15/12 15:09 4.353 1.172 44.4 13.53 40 0.158113883 7.11 0.95 1.0723 0.252331511  

 SD of 6-40 5x  0.047 n/a          

 %RSD of 6-40 5x  1.07 n/a          

               

 Mean of 6-60 5x 8/15/12 15:13 6.633 1.176 44.9 11.5 60 0.129099445 9.11 2.94 1.0723 0.784745281  

 SD of 6-60 5x  0.088 n/a          

 %RSD of 6-60 5x  1.325 n/a          

               

 Mean of 6-120 5x 8/15/12 15:21 11.36 1.323 45.8 7.17 120 0.091287093 9.53 3.37 1.0723 0.898459411  

 SD of 6-120 5x  0.245 n/a          

 %RSD of 6-120 

5x 

 2.152 n/a          

               

 Mean of 6-12h 5x 8/15/12 15:26 16.93 1.345 43.9 7.61 720 0.0372678 15.73 9.57 1.0723 2.551774375  

 SD of 6-12h 5x  0.314 n/a          

 %RSD of 6-12h 

5x 

 1.855 n/a          

               

 Mean of 6-1d 5x 8/15/12 15:30 15.71 1.287 41.8 9.82 1440 0.026352314 19.79 13.62 1.0723 3.632555632  

 SD of 6-1d 5x  0.301 n/a          

 %RSD of 6-1d 5x  1.915 n/a          



 
 

6
2

 

               

 Mean of 6-3d  5x 8/15/12 15:34 16.25 1.337 47.6 8.92 4320 0.015214515 16.33 10.16 1.0723 2.709584958  

 SD of 6-3d  5x  0.28 n/a          

 %RSD of 6-3d  5x  1.722 n/a          

               

 Mean of 6-7d 5x 8/15/12 15:38 23.86 1.398 59.1 10.36 10080 0.009960238 22.42 16.26 1.0723 4.335759472  

 SD of 6-7d 5x  0.183 n/a          

 %RSD of 6-7d 5x  0.768 n/a          

Expt 7 

(5µm 
As(III)) 

                          

 Mean of 7-1 5x 8/15/12 15:59 3.155 1.226 27.9 16.93 1 1 9.59 3.83 1.00 1.021352846 7.93 

 SD of 7-1 5x  0.03 n/a          

 %RSD of 7-1 5x  0.947 n/a          

              

 Mean of 7-3 5x 8/15/12 16:03 2.756 1.226 26.3 21.09 3 0.577350269 11.07 5.31 1.00 1.41621283 7.92 

 SD of 7-3 5x  0.03 n/a          

 %RSD of 7-3 5x  1.094 n/a          

              

 Mean of 7-5 5x 8/15/12 16:07 3.178 1.291 32.2 23.19 5 0.447213595 11.47 5.71 1.00 1.521372904 7.92 

 SD of 7-5 5x  0.063 n/a          

 %RSD of 7-5 5x  1.973 n/a          

              

 Mean of 7-10 5x 8/15/12 16:12 4.006 1.291 31.7 20.25 10 0.316227766 12.82 7.06 1.00 1.882474574 7.92 

 SD of 7-10 5x  0.113 n/a          

 %RSD of 7-10 5x  2.816 n/a          
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 Mean of 7-20 5x 8/15/12 16:16 4.94 1.36 33.5 20.07 20 0.223606798 14.83 9.07 1.00 2.417593696 7.93 

 SD of 7-20 5x  0.068 n/a          

 %RSD of 7-20 5x  1.368 n/a          

              

 Mean of 7-40 5x 8/15/12 16:20 6.194 1.381 37.8 20.27 40 0.158113883 16.64 10.88 1.00 2.90111269 7.95 

 SD of 7-40 5x  0.078 n/a          

 %RSD of 7-40 5x  1.259 n/a          

              

 Mean of 7-60 5x 8/15/12 16:24 5.992 1.33 35.9 20.76 60 0.129099445 17.36 11.60 1.00 3.09285563 7.97 

 SD of 7-60 5x  0.115 n/a          

 %RSD of 7-60 5x  1.918 n/a          

              

 Mean of 7-120 5x 8/15/12 16:28 6.287 1.363 33.6 20.92 120 0.091287093 19.61 13.85 1.00 3.693246352 8.02 

 SD of 7-120 5x  0.098 n/a          

 %RSD of 7-120 

5x 

 1.551 n/a          

              

 Mean of 7-12 10x 4/2/13 15:33 5.501 0.98 36.7 10.47 720 0.0372678 15.72 9.96 1.00 2.656926862 8.13 

 SD of 7-12 10x  0.042 n/a          

 %RSD of 7-12 

10x 

 0.763 n/a          

              

 Mean of 7-1d 10x 4/2/13 15:37 4.411 0.927 40.2 14.31 1440 0.026352314 15.70 9.95 1.00 2.653824876 8.14 

 SD of 7-1d 10x  0.126 n/a          

 %RSD of 7-1d 

10x 

 2.859 n/a          

               

 Mean of 7-3d 10x 4/2/13 15:42 17.28 0.977 40.9 8.79 4320 0.015214515 37.14 31.39 1.00 8.36992339 8.36 
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 SD of 7-3d 10x  0.395 n/a          

 %RSD of 7-3d 
10x 

 2.287 n/a          

               

 Mean of 7-7d 10x 4/2/13 15:46 17.43 0.993 45.2 11.99 10080 0.009960238 46.24 40.49 1.00 10.79620649 8.3 

 SD of 7-7d 10x  0.172 n/a          

 %RSD of 7-7d 
10x 

 0.988 n/a          

Expt 8 

(10µm 
As(III)) 

                          

 Mean of 8-1 10x 4/2/13 15:50 2.203 0.949 40.4 20.48 1 1 11.98 5.81 1.07 0.774656457 7.94 

 SD of 8-1 10x  0.056 n/a          

 %RSD of 8-1 10x  2.522 n/a          

              

 Mean of 8-3 10x 4/2/13 16:07 1.929 0.938 41.3 26.34 3 0.577350269 13.16 7.01 1.07 0.934841814 8 

 SD of 8-3 10x  0.057 n/a          

 %RSD of 8-3 10x  2.975 n/a          

               

 Mean of 8-5 10x 4/2/13 16:11 1.597 0.926 38 29.78 5 0.447213595 13.39 7.24 1.07 0.965202323 8.01 

 SD of 8-5 10x  0.03 n/a          

 %RSD of 8-5 10x  1.879 n/a          

               

 Mean of 8-10 10x 4/2/13 16:15 1.598 0.906 36.9 32.47 10 0.316227766 15.05 8.89 1.07 1.185778833 8.03 

 SD of 8-10 10x  0.038 n/a          

 %RSD of 8-10 

10x 

 2.374 n/a          

               

 Mean of 8-20 10x 4/2/13 16:19 2.835 0.95 42.9 26.63 20 0.223606798 18.83 12.68 1.07 1.690335618 8.07 

 SD of 8-20 10x  0.048 n/a          
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 %RSD of 8-20 

10x 

 1.707 n/a          

               

 Mean of 8-40 10x 4/2/13 16:24 3.72 0.944 47.4 25.53 40 0.158113883 21.44 15.29 1.07 2.038164895 8.12 

 SD of 8-40 10x  0.08 n/a          

 %RSD of 8-40 

10x 

 2.155 n/a          

               

 Mean of 8-60 10x 4/2/13 16:28 3.392 0.943 39.6 27.66 60 0.129099445 25.35 19.20 1.07 2.559811798 8.16 

 SD of 8-60 10x  0.046 n/a          

 %RSD of 8-60 

10x 

 1.362 n/a          

               

 Mean of 8-120 

10x 

4/2/13 16:32 1.427 0.935 13.7 26.19 120 0.091287093 29.19 23.04 1.07 3.071564389 8.22 

 SD of 8-120 10x  0.034 n/a          

 %RSD of 8-120 

10x 

 2.412 n/a          

              

 Mean of 8-12h 

10x 

4/2/13 16:44 6.909 0.982 44.8 29.24 720 0.0372678 48.25 42.10 1.07 5.613014917 8.36 

 SD of 8-12h 10x  0.167 n/a          

 %RSD of 8-12h 

10x 

 2.416 n/a          

               

 Mean of 8-1d 10x 4/2/13 16:49 9.31 0.964 46.2 27.93 1440 0.026352314 60.22 54.07 1.07 7.209400606 8.38 

 SD of 8-1d 10x  0.257 n/a          

 %RSD of 8-1d 

10x 

 2.762 n/a          

               

 Mean of 8-3d  10x 4/2/13 16:53 17.43 0.982 59.2 25.8 4320 0.015214515 81.28 75.13 1.07 10.01688694 8.37 

 SD of 8-3d  10x  0.349 n/a          
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 %RSD of 8-3d  

10x 

 2 n/a          

               

 Mean of 8-7d 10x 4/2/13 16:57 19.65 0.988 49.2 27.2 10080 0.009960238 116.24 110.09 1.07 14.67813821 8.35 

 SD of 8-7d 10x  0.281 n/a          

 %RSD of 8-7d 

10x 

 1.43 n/a          

Expt 9 
(10µm 

As(III)) 

                          

 Mean of 9-1 10x 4/2/13 17:01 1.375 0.981 38.8 30.47 1 1 10.69 5.00 0.99 0.666201727 7.92 

 SD of 9-1 10x  0.014 n/a          

 %RSD of 9-1 10x  1.04 n/a          

               

 Mean of 9-3 10x 4/2/13 17:05 1.451 0.99 35.4 28.58 3 0.577350269 11.60 5.90 0.99 0.787164267 7.93 

 SD of 9-3 10x  0.023 n/a          

 %RSD of 9-3 10x  1.596 n/a          

              

 Mean of 9-5 10x 4/2/13 17:18 1.63 0.993 40.7 31.71 5 0.447213595 12.57 6.88 0.99 0.917159543 7.94 

 SD of 9-5 10x  0.003 n/a          

 %RSD of 9-5 10x  0.167 n/a          

               

 Mean of 9-10 10x 4/2/13 17:22 1.897 0.996 39.1 30.11 10 0.316227766 14.46 8.77 0.99 1.169066703 7.96 

 SD of 9-10 10x  0.021 n/a          

 %RSD of 9-10 
10x 

 1.11 n/a          

               

 Mean of 9-20 10x 4/2/13 17:26 2.063 0.97 40.2 30.36 20 0.223606798 15.42 9.73 0.99 1.297333322 8 

 SD of 9-20 10x  0.037 n/a          
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 %RSD of 9-20 

10x 

 1.811 n/a          

               

 Mean of 9-40 10x 4/2/13 17:30 2.695 0.991 39.2 27.83 40 0.158113883 18.94 13.25 0.99 1.766215617 8.06 

 SD of 9-40 10x  0.041 n/a          

 %RSD of 9-40 

10x 

 1.539 n/a          

               

 Mean of 9-60 10x 4/2/13 17:35 2.84 0.972 36.9 27.75 60 0.129099445 21.14 15.45 0.99 2.059803306 8.09 

 SD of 9-60 10x  0.084 n/a          

 %RSD of 9-60 

10x 

 2.952 n/a          

               

 Mean of 9-120 

10x 

4/2/13 17:39 3.998 1.012 43.6 28.12 120 0.091287093 25.52 19.83 0.99 2.644120846 8.16 

 SD of 9-120 10x  0.051 n/a          

 %RSD of 9-120 

10x 

 1.27 n/a          

               

 Mean of 9-12h 

10x 

4/2/13 17:43 7.544 1.004 39.6 29.98 720 0.0372678 56.53 50.84 0.99 6.778600976 8.3 

 SD of 9-12h 10x  0.165 n/a          

 %RSD of 9-12h 

10x 

 2.184 n/a          

               

 Mean of 9-1d 10x 4/2/13 17:47 8.37 1.023 40.8 29.81 1440 0.026352314 60.53 54.84 0.99 7.311895198 8.31 

 SD of 9-1d 10x  0.107 n/a          

 %RSD of 9-1d 

10x 

 1.279 n/a          

              

 Mean of 9-3d 10x 4/2/13 18:00 12.95 1.042 44.3 27.92 4320 0.015214515 80.78 75.09 0.99 10.01244144 8.3 

 SD of 9-3d 10x  0.283 n/a          
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 %RSD of 9-3d 

10x 

 2.185 n/a          

               

 Mean of 9-7d 10x 4/2/13 18:04 17.53 1.042 46.2 27.36 10080 0.009960238 102.76 97.06 0.99 12.94183639 8.31 

 SD of 9-7d 10x  0.277 n/a          

 %RSD of 9-7d 

10x 

 1.579 n/a          

Expt 10 
(20µm 

As(III)) 

                          

 Mean of 10-1 10x 7/19/13 12:53 1.901 1.148 37 25.31 1 1 12.88 7.19 0.9906 0.479045414 7.98 

 SD of 10-1 10x  0.064 n/a          

 %RSD of 10-1 
10x 

 3.359 n/a          

              

 Mean of 10-3 10x 7/19/13 12:57 1.127 1.095 25.3 28.61 3 0.577350269 12.62 6.93 0.9906 0.461913778 8 

 SD of 10-3 10x  0.035 n/a          

 %RSD of 10-3 
10x 

 3.101 n/a          

              

 Mean of 10-5 10x 7/19/13 13:02 2.147 1.116 39.1 28.4 5 0.447213595 15.45 9.75 0.9906 0.650135931 8.01 

 SD of 10-5 10x  0.064 n/a          

 %RSD of 10-5 
10x 

 2.976 n/a          

              

 Mean of 10-10 
10x 

7/19/13 13:06 2.01 1.111 30.7 30.24 10 0.316227766 19.61 13.92 0.9906 0.927784559 8.03 

 SD of 10-10 10x  0.028 n/a          

 %RSD of 10-10 
10x 

 1.405 n/a          

              

 Mean of 10-20 
10x 

7/19/13 13:10 2.556 1.081 36.8 31.13 20 0.223606798 21.42 15.72 0.9906 1.048174677 8.06 

 SD of 10-20 10x  0.07 n/a          
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 %RSD of 10-20 

10x 

 2.73 n/a          

               

 Mean of 10-40 

10x 

7/19/13 13:22 3.005 1.126 37.9 29.92 40 0.158113883 23.50 17.80 0.9906 1.186926988 8.11 

 SD of 10-40 10x  0.145 n/a          

 %RSD of 10-40 

10x 

 4.811 n/a          

              

 Mean of 10-60 

10x 

7/19/13 13:27 3.398 1.177 37.6 31.33 60 0.129099445 28.05 22.35 0.9906 1.490103727 8.14 

 SD of 10-60 10x  0.018 n/a          

 %RSD of 10-60 

10x 

 0.519 n/a          

              

 Mean of 10-120 

10x 

7/19/13 13:31 4.843 1.176 41.5 31.83 120 0.091287093 36.80 31.10 0.9906 2.073340758 8.13 

 SD of 10-120 10x  0.102 n/a          

 %RSD of 10-120 

10x 

 2.101 n/a          

              

 Mean of 10-12h 

10x 

7/19/13 13:35 7.409 1.201 40.9 29.12 720 0.0372678 52.25 46.56 0.9906 3.103921658 8.28 

 SD of 10-12h 10x  0.13 n/a          

 %RSD of 10-12h 

10x 

 1.753 n/a          

              

 Mean of 10-1d 

10x 

7/19/13 13:39 9.168 1.215 41 29.59 1440 0.026352314 65.54 59.85 0.9906 3.989881016 8.33 

 SD of 10-1d 10x  0.109 n/a          

 %RSD of 10-1d 

10x 

 1.188 n/a          

              

 Mean of 10-3d 

10x 

7/19/13 13:43 12 1.212 38.1 27.82 4320 0.015214515 86.80 81.10 0.9906 5.40683 8.32 

 SD of 10-3d 10x  0.26 n/a          
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 %RSD of 10-3d 

10x 

 2.169 n/a          

              

Expt 11 

(5µm 
As(III)) 

                          

 Mean of 11-1 10x 6/12/13 14:58 1.781 1.35 45 25.2 1 1 10.950015

44 

4.64 1.0979 1.236557451 7.98 

 SD of 11-1 10x  0.06 n/a          

 %RSD of 11-1 

10x 

 3.373 n/a          

              

 Mean of 11-3 10x 6/12/13 15:03 1.946 1.34 42.5 25.49 3 0.577350269 12.814053

31 

6.50 1.0979 1.733634216 7.98 

 SD of 11-3 10x  0.054 n/a          

 %RSD of 11-3 

10x 

 2.78 n/a          

              

 Mean of 11-5 10x 6/12/13 15:07 1.954 1.318 44.3 27.4 5 0.447213595 13.268877

39 

6.96 1.0979 1.854920637 7.98 

 SD of 11-5 10x  0.066 n/a          

 %RSD of 11-5 

10x 

 3.36 n/a          

              

 Mean of 11-10 

10x 

6/12/13 15:11 2.367 1.366 44.6 25.94 10 0.316227766 15.114582

52 

8.80 1.0979 2.347108672 7.97 

 SD of 11-10 10x  0.055 n/a          

 %RSD of 11-10 

10x 

 2.331 n/a          

              

 Mean of 11-20 

10x 

6/12/13 15:15 3.266 1.402 39.6 21.45 20 0.223606798 19.422765

92 

13.11 1.0979 3.495957578 7.93 

 SD of 11-20 10x  0.11 n/a          

 %RSD of 11-20 

10x 

 3.359 n/a          
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 Mean of 11-40 

10x 

6/12/13 15:22 2.869 1.378 41.9 24.64 40 0.158113883 18.523370

52 

12.21 1.0979 3.256118804 7.86 

 SD of 11-40 10x  0.017 n/a          

 %RSD of 11-40 

10x 

 0.608 n/a          

              

 Mean of 11-60 

10x 

6/12/13 15:26 3.954 1.379 47.6 25.47 60 0.129099445 23.228514

79 

16.92 1.0979 4.510823944 7.82 

 SD of 11-60 10x  0.13 n/a          

 %RSD of 11-60 

10x 

 3.289 n/a          

              

 Mean of 11-120 

10x 

6/12/13 15:30 4.973 1.384 47.5 24.28 120 0.091287093 27.908488

56 

21.60 1.0979 5.75881695 7.79 

 SD of 11-120 10x  0.154 n/a          

 %RSD of 11-120 

10x 

 3.091 n/a          

              

 Mean of 11-12h  

10x 

6/12/13 15:43 8.352 1.402 46.2 25.08 720 0.0372678 49.778158

63 

43.47 1.0979 11.59072897 7.84 

 SD of 11-12h  10x  0.396 n/a          

 %RSD of 11-12h  

10x 

 4.738 n/a          

              

 Mean of 11-1d  

10x 

6/12/13 15:47 13.18 1.413 53.6 26.43 1440 0.026352314 71.352725

83 

65.04 1.0979 17.34394689 7.93 

 SD of 11-1d  10x  0.502 n/a          

 %RSD of 11-1d  

10x 

 3.807 n/a          

              

 Mean of 11-3d  

10x 

6/12/13 15:51 21.4 1.449 58.8 25.18 4320 0.015214515 100.61319

91 

94.30 1.0979 25.14673976 7.84 

 SD of 11-3d  10x  0.546 n/a          

 %RSD of 11-3d  

10x 

 2.553 n/a          
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 Mean of 11-7d  

10x 

6/12/13 15:55 25.82 1.443 66.7 28.18 10080 0.009960238 119.76617

45 

113.45 1.0979 30.25419987 7.93 

 SD of 11-7d  10x  1.017 n/a          

 %RSD of 11-7d  

10x 

 3.938 n/a          

Expt 12 
(to be 

analyze

d) 

                          

              

Expt 13 

(5µm 
As(V)) 

                          

 Mean of 13-1 10x 6/12/13 13:43 2.768 1.149 30.5 20.36 1 1 18.525576

02 

12.76 1.0026 3.402833604 7.98 

 SD of 13-1 10x  0.088 n/a          

 %RSD of 13-1 

10x 

 3.186 n/a          

              

 Mean of 13-3 10x 6/12/13 13:47 3.142 1.157 31.9 21.16 3 0.577350269 20.895793

19 

15.13 1.0026 4.034891517 7.98 

 SD of 13-3 10x  0.078 n/a          

 %RSD of 13-3 

10x 

 2.473 n/a          

               

 Mean of 13-5 10x 6/12/13 13:51 2.805 1.14 30.7 25.05 5 0.447213595 22.947211

61 

17.18 1.0026 4.58193643 7.99 

 SD of 13-5 10x  0.128 n/a          

 %RSD of 13-5 

10x 

 4.573 n/a          

               

 Mean of 13-10 

10x 

6/12/13 13:55 4.697 1.18 31.1 17.76 10 0.316227766 26.892478

67 

21.13 1.0026 5.634007646 7.99 

 SD of 13-10 10x  0.158 n/a          

 %RSD of 13-10 

10x 

 3.368 n/a          
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 Mean of 13-20 

10x 

6/12/13 14:00 0.718 1.122 2.9 21.39 20 0.223606798 53.096382

25 

47.33 1.0026 12.62171527 8.02 

 SD of 13-20 10x  0.015 n/a          

 %RSD of 13-20 

10x 

 2.156 n/a          

              

 Mean of 13-40 

10x 

6/12/13 14:16 4.59 1.243 29.4 23.72 40 0.158113883 37.128528

73 

31.36 1.0026 8.363620996 8.05 

 SD of 13-40 10x  0.206 n/a          

 %RSD of 13-40 

10x 

 4.498 n/a          

              

 Mean of 13-60 

10x 

6/12/13 14:21 6.131 1.245 31.1 21.06 60 0.129099445 41.625263

36 

35.86 1.0026 9.562750228 8.1 

 SD of 13-60 10x  0.153 n/a          

 %RSD of 13-60 

10x 

 2.488 n/a          

              

 Mean of 13-120 

10x 

6/12/13 14:25 5.874 1.237 26.4 23.29 120 0.091287093 51.954982

65 

46.19 1.0026 12.31734204 8.12 

 SD of 13-120 10x  0.205 n/a          

 %RSD of 13-120 

10x 

 3.496 n/a          

               

 Mean of 13-12h 

10x 

6/12/13 14:29 12.01 1.26 29.5 21.59 720 0.0372678 88.125447

23 

82.36 1.0026 21.96279926 8.18 

 SD of 13-12h 10x  0.392 n/a          

 %RSD of 13-12h 

10x 

 3.264 n/a          

              

 Mean of 13-1d 

10x 

6/12/13 14:33 21.61 1.292 41.4 20.33 1440 0.026352314 106.39458 100.63 1.0026 26.83456801 8.31 

 SD of 13-1d 10x  0.601 n/a          

 %RSD of 13-1d 

10x 

 2.782 n/a          
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 Mean of 13-3d 

10x 

6/12/13 14:37 25.76 1.318 41.8 22.73 4320 0.015214515 140.44190

54 

134.68 1.0026 35.91385477 8.32 

 SD of 13-3d 10x  0.984 n/a          

 %RSD of 13-3d 

10x 

 3.821 n/a          

              

Expt 15 

(5µm 
As(V)) 

                          

 Mean of 15-1 10x 7/19/13 14:42 2.077 1.046 26.7 24.42 1 1 19.030575

51 

13.27 1.0018 3.538726803 8.31 

 SD of 15-1 10x  0.043 n/a          

 %RSD of 15-1 

10x 

 2.074 n/a          

               

 Mean of 15-3 10x 7/19/13 14:46 2.376 1.041 26.6 21.65 3 0.577350269 19.373305

53 

13.61 1.0018 3.630121476 8.31 

 SD of 15-3 10x  0.044 n/a          

 %RSD of 15-3 

10x 

 1.846 n/a          

               

 Mean of 15-5 10x 7/19/13 14:50 3.112 1.071 27.2 21.05 5 0.447213595 24.127027

09 

18.37 1.0018 4.897780557 8.32 

 SD of 15-5 10x  0.063 n/a          

 %RSD of 15-5 

10x 

 2.009 n/a          

              

 Mean of 15-10 

10x 

7/19/13 14:54 3.084 1.076 23.5 22.53 10 0.316227766 29.620250

44 

23.86 1.0018 6.362640118 8.32 

 SD of 15-10 10x  0.051 n/a          

 %RSD of 15-10 

10x 

 1.656 n/a          

              

 Mean of 15-20 

10x 

7/19/13 14:58 4.876 1.083 34.3 21.98 20 0.223606798 31.302447

25 

25.54 1.0018 6.811225933 8.34 

 SD of 15-20 10x  0.057 n/a          
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 %RSD of 15-20 

10x 

 1.16 n/a          

               

 Mean of 15-40 

10x 

7/19/13 15:03 5.073 1.061 31.1 22.04 40 0.158113883 36.016133

78 

30.26 1.0018 8.068209008 8.38 

 SD of 15-40 10x  0.079 n/a          

 %RSD of 15-40 

10x 

 1.554 n/a          

              

 Mean of 15-60 

10x 

7/19/13 15:07 3.33 1.075 20.4 15.6 60 0.129099445 25.510542

35 

19.75 1.0018 5.266717961 8.4 

 SD of 15-60 10x  0.091 n/a          

 %RSD of 15-60 

10x 

 2.718 n/a          

              

 Mean of 15-120 

10x 

7/19/13 15:11 7.555 1.086 29.8 19.23 120 0.091287093 48.840321

73 

43.08 1.0018 11.48799246 8.43 

 SD of 15-120 10x  0.172 n/a          

 %RSD of 15-120 

10x 

 2.278 n/a          

              

 Mean of 15-12h  

10x 

7/19/13 15:24 14.11 1.127 37.6 22.05 720 0.0372678 82.895086

68 

77.13 1.0018 20.56926311 8.5 

 SD of 15-12h  10x  0.345 n/a          

 %RSD of 15-12h  

10x 

 2.443 n/a          

               

 Mean of 15-1d  

10x 

7/19/13 15:28 20.74 1.147 39.5 18.75 1440 0.026352314 98.626575

95 

92.87 1.0018 24.76432692 8.49 

 SD of 15-1d  10x  0.438 n/a          

 %RSD of 15-1d  

10x 

 2.11 n/a          

              

 Mean of 15-3d  

10x 

7/19/13 15:32 27.35 1.159 41.1 20.68 4320 0.015214515 137.86279

23 

132.10 1.0018 35.22731795 8.44 

 SD of 15-3d  10x  0.315 n/a          
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 %RSD of 15-3d  

10x 

 1.153 n/a          

              

15-7d 

actually 
a 16 

day 

sample 

Mean of 15-7d  

10x 

7/19/13 15:36 42.14 1.203 56.3 23.23 23040 0.006588078 174.18725

43 

168.43 1.0018 44.91384116 8.49 

 SD of 15-7d  10x  0.57 n/a          

 %RSD of 15-7d  

10x 

 1.353 n/a          
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APPENDIX B: HUMMA As analysis by ICPMS  

 

 
Sample ID # Arsenic (mg/kg) date Sample location 

    

HUM 001 6.02 3-Mar-09 RC1 

HUM 002 6.76 3-Mar-09 RC1 

HUM 003 6.79 3-Mar-09 RC1 

HUM 004 5.75 3-Mar-09 RC1 

HUM 005 6.04 3-Mar-09 RC1 

HUM 006 6.25 3-Mar-09 RC1 

HUM 007 5.74 3-Mar-09 RC1 

    

HUM 008 6.73 3-Mar-09 RC2 

HUM 009 6.30 3-Mar-09 RC2 

HUM 010 6.86 3-Mar-09 RC2 

HUM 011 5.00 3-Mar-09 RC2 

HUM 012 6.12 3-Mar-09 RC2 

HUM 013 6.02 3-Mar-09 RC2 

    

HUM 036 6.98 8-Mar-09 RC4 

HUM 037 7.02 8-Mar-09 RC4 

HUM 038 6.92 8-Mar-09 RC4 

HUM 039 7.69 8-Mar-09 RC4 

HUM 040 6.66 8-Mar-09 RC4 

HUM 041 7.68 8-Mar-09 RC4 

HUM 042 6.74 8-Mar-09 RC4 

    

HUM 014 13.29 5-Mar-09 DS1 

HUM 015 14.05 5-Mar-09 DS1 

HUM 016 13.91 5-Mar-09 DS1 

HUM 017 12.41 5-Mar-09 DS1 

HUM 018 13.41 5-Mar-09 DS1 

HUM 019 12.87 5-Mar-09 DS1 

HUM 020 12.40 5-Mar-09 DS1 

    

HUM 021 12.17 5-Mar-09 DS2 

    

HUM 043 33.86 10-Mar-09 DS3 

HUM 044 35.64 10-Mar-09 DS3 

HUM 045 31.72 10-Mar-09 DS3 

HUM 046 36.78 10-Mar-09 DS3 

HUM 047 35.11 10-Mar-09 DS3 

HUM 048 31.73 10-Mar-09 DS3 

HUM 049 34.66 10-Mar-09 DS3 

    

HUM 063 14.11 13-Mar-09 DS4 

HUM 064 13.63 13-Mar-09 DS4 

HUM 065 13.41 13-Mar-09 DS4 
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HUM 066 13.49 13-Mar-09 DS4 

HUM 067 12.25 13-Mar-09 DS4 

HUM 068 13.60 13-Mar-09 DS4 

    

HUM 029 6.29 8-Mar-09 DMM1 

HUM 030 6.83 8-Mar-09 DMM1 

HUM 031 5.74 8-Mar-09 DMM1 

HUM 032 6.98 8-Mar-09 DMM1 

HUM 033 6.32 8-Mar-09 DMM1 

HUM 034 3.41 8-Mar-09 DMM1 

HUM 035 4.19 8-Mar-09 DMM1 

    

HUM 050 38.11 11-Mar-09 DMM2 

HUM 051 38.65 11-Mar-09 DMM2 

HUM 052 38.11 11-Mar-09 DMM2 

HUM 053 36.62 11-Mar-09 DMM2 

HUM 054 35.23 11-Mar-09 DMM2 

HUM 055 40.15 11-Mar-09 DMM2 

    

HUM 069 7.12 16-Mar-09 DMM3 

HUM 070 7.69 16-Mar-09 DMM3 

HUM 071 7.51 16-Mar-09 DMM3 

HUM 072 6.69 16-Mar-09 DMM3 

HUM 073 6.19 16-Mar-09 DMM3 

HUM 074 7.31 16-Mar-09 DMM3 

    

HUM 075 5.95 17-Mar-09 DMM4 

HUM 076 6.01 17-Mar-09 DMM4 

HUM 077 4.76 17-Mar-09 DMM4 

HUM 078 5.76 17-Mar-09 DMM4 

HUM 079 5.92 17-Mar-09 DMM4 

HUM 080 4.63 17-Mar-09 DMM4 

HUM 081 5.82 17-Mar-09 DMM4 

    

HUM 082 6.86 17-Mar-09 DMM5 

HUM 083 6.66 17-Mar-09 DMM5 

HUM 084 5.85 17-Mar-09 DMM5 

HUM 085 7.23 17-Mar-09 DMM5 

HUM 086 6.95 17-Mar-09 DMM5 

HUM 087 6.74 17-Mar-09 DMM5 

HUM 088 6.40 17-Mar-09 DMM5 

    

HUM 089 6.10 17-Mar-09 DMM6 

HUM 090 6.00 17-Mar-09 DMM6 

HUM 091 6.22 17-Mar-09 DMM6 

HUM 092 6.30 17-Mar-09 DMM6 

HUM 093 5.88 17-Mar-09 DMM6 

HUM 094 4.49 17-Mar-09 DMM6 

HUM 095 3.90 17-Mar-09 DMM6 



 
 

79 

    

HUM 096 4.73 17-Mar-09 DMM7 

HUM 097 5.40 17-Mar-09 DMM7 

    

HUM 022 5.72 7-Mar-09 DMM_DS1 

HUM 023 5.31 7-Mar-09 DMM_DS1 

HUM 024 4.95 7-Mar-09 DMM_DS1 

HUM 027 7.94 7-Mar-09 DMM_DS1 

HUM 028 6.12 7-Mar-09 DMM_DS1 

    

HUM 056 22.20 11-Mar-09 DMM_DS2 

HUM 057 32.23 11-Mar-09 DMM_DS2 

HUM 058 32.70 11-Mar-09 DMM_DS2 

HUM 059 29.53 11-Mar-09 DMM_DS2 

HUM 060 34.60 11-Mar-09 DMM_DS2 

HUM 061 32.86 11-Mar-09 DMM_DS2 

HUM 062 32.80 11-Mar-09 DMM_DS2 

    

HUM 098 21.48 18-Mar-09 DMM_DS3 

HUM 099 20.73 18-Mar-09 DMM_DS3 

HUM 100 22.27 18-Mar-09 DMM_DS3 

HUM 101 18.21 18-Mar-09 DMM_DS3 

HUM 102 21.18 18-Mar-09 DMM_DS3 

HUM 103 17.22 18-Mar-09 DMM_DS3 

HUM 104 19.86 18-Mar-09 DMM_DS3 

HUM 105 19.19 18-Mar-09 DMM_DS3 
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APPENDIX C: Lewisite Production and Chemical Behavior 
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(Pechura & Rall, 1993) 
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