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Abstract. We use laboratory experiments and numerical models to examine the effects of
volcano loading on the propagation of buoyant dikes in a two-dimensional elastic half-space. In
laboratory experiments we simulate the propagation of buoyant dikes in an isotropic regional
stress field by injecting air into tanks of solidified gelatin. A weight resting on the surface of the
gelatin represents a volcanic load. A numerical model is used to simulate these experiments.
Both experiments and numerical simulations show that as a dike ascends, it begins to curve toward
the load in response to the local stress field imposed by the load. The lateral distance over which
dikes curve to the load increases with the ratio of average pressure at the base of the load to the
dike driving pressure. For realistic volcano and dike dimensions this pressure ratio is going to be
large, suggesting that dikes can converge to a volcano over lateral distances several times the load
width. Numerical calculations involving an anisotropic regional stress field, however, predict that
the lateral extent of dike attraction shrinks as the regional horizontal compressive stress decreases
relative to the vertical compressive stress. Dike focusing will be substantial if the regional
differential stresses are less than the average pressure at the base of the load. If this is the case,
then our models predict a positive feedback between the size of volcanoes and the area of dike
attraction. This feedback may promote the development of large discrete volcanoes and also
predicts a positive correlation between the spacing and sizes of adjacent volcanoes. To test this
prediction, we examine nearest-neighbor pairs of the 21 largest volcanoes in the Cascade Range.
The 14 pairs examined show a large range in volcano spacing (6—115 km) and a statistically
significant correlation between spacing and average volcano height. This result is consistent with
our model results and suggests that the local compressive stress induced by these volcanoes may
be an important factor in controlling magma transport in the lithosphere.

1. Introduction

The geometry of the subterranean “magma plumbing” in a
volcanic province must to a large degree control the
distribution, growth rate, and longevity of activity of
individual volcanoes. For large volcanoes to form and for
eruptions to persist, magma must be focused as it rises from a
broad source region at depth to a localized eruption site at the
surface [Decker, 1987]. In settings where the lithosphere is
thin, such as near mid-ocean ridges, magma transport and
focusing might be dominated by porous flow in the
asthenosphere with flow through fractures, or dikes, occurring
close to the surface [e.g., Turcotte and Phipps Morgan, 1992].
In contrast, where the elastic lithosphere is thicker, such as in
continental or old oceanic settings, dikes may be the
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dominant transport mechanism to much greater depths [Spence
and Turcotte, 1985, 1990; Rubin, 1993]. Several mechanisms
have been suggested for the focusing of dikes, including the
mechanical interaction of propagating dikes [Takada, 1994,
Ito et al., 1997], lithospheric flexure due to volcano loading
[ten Brink, 1991], as well as flexure combined with melt-
induced erosion of the lithosphere [Hieronymous and
Bercovici, 1999].

Gravity supplies the vertical force for buoyant dikes to rise,
but the direction of propagation is not necessarily vertical as
it is controlled by the stress field near the upper dike tip
[Pollard and Segall, 1987] as well as preexisting structures
[Delaney et al., 1986]. The near-tip stress field in turn is
controlled by dike pressure and dike geometry, as well as the
ambient stress field which includes effects of volcano loads.
The studies of ten Brink [1991] and Hieronymous and
Bercovici [1999] utilize thin plate theory, which considers
variations in horizontal stress due to bending but not
variations in vertical stress. As a result, these studies can not
be used directly to predict the propagation direction of dikes.
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Figure 1. Sketch of the experimental apparatus showing the
surface load and the injection of air dikes at the tank base. The
polarization directions of two polarizing sheets are aligned
orthogonally on either side of the tank (indicated by dotted
lines). A white light source shines through the back of the
tank to illuminate the photoelastic stress pattern in the
gelatin.

To quantify the effects of a volcanic load on the
propagation direction of dikes, we use a combination of
laboratory experiments and numerical models. We examine
two-dimensional (2-D) stress solutions in an elastic half-
space. The half-space approach simplifies the problem and is
most suitable for small loads on thick lithosphere. In
laboratory experiments, air-filled dikes are injected into a tank
of solidified gelatin. A load applied on the gelatin surface
causes dikes to curve toward the load; the lateral distance over
which dikes are attracted depends on the load magnitude, load
width, and dike driving pressure. We then use numerical
models to examine the mechanics of the laboratory
experiments and to analyze the potential for dike attraction for
a range of natural loads, dike sizes, and regional stresses in the
lithosphere. The feedback between volcano size and region of
dike attraction is predicted to result in a correlation between
size and spacing of volcanoes within a volcanic province. We
close by testing this prediction by analyzing sizes and
spacing of the largest volcanoes in the Cascade Range of the
western United States.

2. Laboratory Experiments

2.1. Experimental Method and Observations

The experiments are designed to investigate the
propagation of dikes in a 2-D elastic half-space. As shown in
Figure 1, the experimental apparatus includes a gelatin-filled
tank with a Plexiglas base, a pair of polarizing sheets, the
surface load, and a syringe used to inject the dikes. Gelatin has
a small fracture toughness and is transparent, so fractures are
easy to initiate, propagate, and observe; it has therefore been
used in a number of studies of dike mechanics [e.g., Fiske and
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Jackson, 1972; Takada, 1990, 1994; Heimpel and Olson,
1994; Ito et al., 1997]. We use 250A ordnance grade gelatin
from the Kind and Knox Company, prepared at weight percent
of 1.5% for all experiments. The shear modulus u of this
concentration was determined to be 444 + 88 Pa based on
comparisons of laboratory and theoretical dike shapes.
Poisson’s ratio is ~ 0.5.

To simulate a volcanic load, we place a rigid rectangular
weight on the gelatin surface in the middle of the tank and
aligned with short horizontal dimension of the tank. The load
has a half width [ of 1.6x10"2 m and a length of 10.2x10-2 m.
The mass of the load is varied from 4.5x10°2 kg to 12.5x10°2
kg to yield average load pressures of Pjy,q = 135-375 Pa. The
x coordinate is the horizontal distance from the center of a
surface load, as measured parallel to the long axis of the tank
(Figure 1). The y axis is vertical, with y equal to zero at the
surface of the gelatin and becoming more negative with depth.

Dikes are injected at the tank base through silicone-sealed
holes spaced 1 cm apart along a line parallel to the long axis
of the tank. To initiate each dike vertically and perpendicular
to the x axis, a small slit is cut with the tip of a syringe. We
use air as the dike fluid because its low viscosity and large
density contrast with the gelatin minimize the dike size
required for sufficiently high propagation rates. All dikes are
injected with an air volume of 2.5x10°® m3. The dikes grow
spontaneously to an average steady state head length L of
3.5x102 m and a maximum width W, of ~0.6x10"2 m (Figure
2) and propagate to the surface. We inject dikes individually
with increasing distance x away from the load. To minimize

Figure 2. Photograph of an experimental air-filled dike
during propagation. The bold grids are centimeters, and
narrow grids are 0.2 mm. The load and dike are shown in cross
section. The dike height L is ~3.8 cm.
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Plate 1. (a) After completion of the experiment, with
propagation paths dyed green to highlight the trajectories of
the buoyant dikes. (b) Photoelastic stress field induced by a
9.9x10-2 kg flat surface load (black bar at top center), P, 4 =
297 Pa. Colors reflect the magnitude of the differential stress
within the gelatin. (c) Numerically calculated differential
stress contours and most compressive principal stress
trajectories beneath a load of the same size and magnitude.
Note that the location of vertical stress trajectories, at x =0,
corresponds to the location of the dark vertical band (isogyre)
at x = 0 in Plate 1b. Red dots indicate dike paths predicted by
numerical models of dike propagation in this stress field.

the influence of previous dike injection, each dike is allowed
to “erupt” at the gelatin surface and close before injection of
the next dike. Approximately 18 dikes are injected per
experiment.

We find that initially the dikes rise nearly vertically (i.e.,
in the direction they are initiated, thus indicating that
propagation paths are influenced little by the injection depth).
As the dikes approach the surface load, however, they begin to
curve towards the load (Plate 1a). As the dikes rise closer to
the load, their lengths L decrease and their widths W, increase
slightly. We also find that only those dikes injected within a
critical lateral distance x, from the load center actually
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intersect the base of the load, whereas those dikes injected at a
distance greater than x, curve little as they propagate and fail
to reach the load.

In addition to dike paths we also image the pattern of
stresses in the gelatin using the gelatin's photoelastic
properties. ~ To do this, polarizing sheets are placed
orthogonally on either side of the tank (Figure 1). White light
is directed through the back polarizer, into the tank, and out
through the front polarizing sheet. If the gelatin is stressed,
then an interference pattern is produced that represents the
magnitude of differential stresses (0,-03) [Timoshenko and
Goodier, 1970] (note that in this paper, we adopt the
convention that compressive stresses are positive). In the
absence of a surface load the photoelastic field is uniformly
dark, indicating that the initial stress state in the gelatin is
isotropic; dikes do not curve as they propagate under these
conditions. Once a load is applied, photoelastic fringes
appear (Plate 1b), indicating the presence of differential
stresses. A bright region beneath the load denotes high
differential stresses. The fringe pattern decreases in intensity
with radial distance from the load, reflecting an associated
decrease in the differential stresses.  The dark region
separating the two bright lobes in Plate 1b is an isogyre. It
does not reflect differential stress magnitude but instead shows
where light fails to penetrate the system because the
orientations of the principle stresses coincide with the
orientations of the crossed polarizing sheets (i.e., horizontal
and vertical).

Below we define pressure and length scales that enable us to
compare laboratory experimental results to those of numerical
models and to make predictions of the behavior of natural
dikes beneath real volcanoes. One aspect of our laboratory
experiments, however, cannot be scaled appropriately to dikes
in the Earth. In our experiments the stress intensity factor K
at upper tip of the dikes is less than the fracture toughness of
the gelatin. This fact is evident in the low ascent rates (0.003
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Figure 3. Relationship between x, and the ratio of the

average surface load stress (Py,,;) and the midheight dike
driving pressure (AP, ). Dashed line shows the best fit line
(equation (2)) passing through the experimental data (circles)
and the point (0,1), the solid line (equation (6)) fits data from
corresponding numerical experiments of dikes without tails
(squares), and the dot-dashed line (equation (7)) fits numerical
experiments of dikes with open tails (triangles).
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(a) Regional Stresses

(b) Volcano Loading Stresses
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Figure 4. The three contributions to the stress field beneath a volcano: (a) regional stresses composed of a
vertical gravitational component and a horizontal tectonic component, (b) a radial volcanic component, and

(c) a perturbation due to the dike.

m s’!) of the gelatin dikes and an observed exponential
increase in ascent velocity with increasing K| (such subcritical
propagation in gelatin is analyzed in more detail by Heimpel
and Olson [1994]). The low propagation rate and the low
viscosity of the dike fluid result in a minimal driving pressure
drop along the dike due to flow of air as this dike rises. As a
consequence, elastic stresses balance with buoyancy of the
dike fluid to achieve momentum equilibrium. In the Earth, by
contrast, the fracture toughness of host rock is exceeded by
magma-filled dikes of minimal height (~102 m) and width
(~10"3 m) [Lister and Kerr, 1991]. Dike ascent rate is therefore
limited by magma viscosity, and equilibrium is achieved by a
balance of magma fluid stresses and magma buoyancy [e.g.,
Spence and Turcotte, 1985; Lister, 1990; Lister and Kerr,
1991; Rubin, 1995].

The above discrepancy between our laboratory and natural
dikes produces differences in pressure distribution along the
dikes. Buoyant dikes can be considered as consisting of two
parts: a dike head of nearly constant length along which
driving pressures are largest and a tail with minimal driving
pressure that lengthens below the head during propagation.
We later refer to a special kind of dike, a Weertman dike
[Rubin, 1998], that only has a head. A Weertman dike is a
buoyant dike that moves upward, even in the absence of
additional magma influx, by fracturing at the top and
squeezing shut at the bottom. The head of our laboratory dikes
contains nearly the entire volume of injected air (Figure 2).
The head maintains a linear driving pressure distribution much
like that of a stationary Weertman dike [Secor and Pollard,
1975; Pollard and Muller, 1976]. This is similar to buoyant
dikes in the Earth, which are predicted to also have an
approximately linear pressure distribution along most of the
dike head, although the pressure gradient changes with dike
volume [Rubin, 1995]. The tail of our laboratory dikes
narrows such that substantial portions appear to close (the
walls have relief and are not perfectly flat), and therefore the
tail may support stresses much like the gelatin. Isolated
natural dikes, on the other hand, are predicted to have a more

even distribution of magma between the head and tail, and the
driving pressure in the tail is predicted to be near zero [Rubin,
1998]. Considering these factors, our laboratory experiments
apply most directly to natural dikes of volume small enough to
produce a head with a driving pressure close to that of a static
dike [see Rubin, 1998, Figure 3] and a tail capable of
supporting stresses much like the host rock. The latter
condition could be met if a substantial area of the tail walls
close or if magma in the tail freezes. For the sake of
completeness we treat both closed and open dike tails in our
analyses.

2.2. Experimental Results

Here we derive a scaling law that relates the maximum
distance from which surface loads attract dikes x to three key
parameters: the load half width /, the average load stress Py,
and the dike driving pressure at the midheight of the dike head
AP,. The distance x,. is the x position of the base of the
outermost dike to reach the surface load (Plate 1a). We scale x,
by the load half width / to define a dimensionless critical
distance x*, (see Table 1 for definition of all variables). We
scale the average pressure at the base of the load P 4 by a
characteristic dike driving pressure AP,, which we define as
the difference in dike fluid pressure and the isotropic pressure
in the gelatin at the midheight of the dike’s head. On the basis
of the analysis of Secor and Pollard [1975] on 2-D buoyant
dikes on the verge of propagation

AP, = ApgL/4. ey

Here, Ap = 1015 kg m3 is the density contrast between the
host material (the gelatin) and the dike fluid (air), and g = 9.8
m s°2 is the acceleration of gravity. Equation (1) indicates that
changes in a dike’s length L during propagation would change
the midheight driving pressure. In the experiments we found
this length change to be minimal (<10%) and therefore assume
that the midheight dike head driving pressure remains
constant.
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Table 1. Notation

Parameter Units

Ay matrix of influence coefficients Pam’!
Bj stress on boundary element
D flexural rigidity
E Young's modulus Pa
g acceleration of gravity ms?
h maximum volcano height m
k regional stress factor
K opening-mode stress intensity Pam!'?
Ky shear mode stress intensity Pa m'?
1 half width of the load m
L dike length m
n number of volcano pairs
P pressure along the dike Pa
P, dike pressure term used to account for surface load Pa
P, .4 @average normal stress of load Pa
P .. maximum normal stress of load Pa
AP, driving pressure at midheight of the dike head Pa
r correlation coefficient
t statistical test parameter
T, effective elastic thickness of the lithosphere m
Yo applied surface load magnitude Pam
w deflection of elastic plate beneath a line load m
W, maximum dike width m
x horizontal position relative to the load center m
X, distance of dike attraction m
x*, dimensionless distance of dike attraction
X; displacement discontinuities on boundary element m
y depth beneath the surface and base of load m
Vm depth of dike center m
a flexural wavelength m
n viscosity Pas
v Poisson's ratio
u shear modulus Pa
o load density kg m’3
2, ambient lithosphere density kgm?3
Ap density contrast between dike fluid and ambient kg m3
o maximum principle compressive stress Pa
(oA minimum principle compressive stress Pa

max  Maximum horizontal stress of a flexed elastic plate  Pa
oxxf horizontal stress within a flexed elastic plate Pa
o,  regional horizontal compressive stress Pa
o,/ regional normal stress along the dike Pa
oxy’ regional shear stress Pa
ayy’ regional vertical compressive stress Pa
T viscous relaxation time years

Experimental values of x*. are plotted in Figure 3 as a
function of the ratio P4 /AP, (circles). The experimental
values of x*,  are well described as a linear function of
P load/ AP m’

x*_ = 0.86(P,,4/AP,) + 1 )

(in deriving the coefficient of 0.86 we found the best fit slope
while constraining the intercept to be 1). This relation
indicates (1) that for a surface load of zero, only dikes injected
within one load half width of the load centerline will intersect
the load and (2) that increasing surface loads will attract dikes
from greater lateral distances.
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3. Numerical Experiments

3.1. Dike Mechanics

Dikes are opening-mode fractures that propagate normal to
the direction of minimum compression (0;) ahead of the dike
tip [Ingraffea, 1987; Pollard and Segall, 1987]. In two
dimensions, propagation is in the direction of the maximum
compression (0;). The stress field near the tip of a dike has
contributions from three main sources (Figure 4). The first
source is the regional, or far-field, stress (Figure 4a). If the
vertical (O'yyr) and horizontal (o,,”) components of the regional
stress field are the principal stresses and are equal, the stress
state is isotropic; if the differential stresses are nonzero, then
the stress field is anisotropic. In this paper, we will analyze
the propagation of dikes in both isotropic and anisotropic
regional stress conditions. The second contribution is from
the load of the volcano (Figure 4b). In an elastic half-space
the most compressive stresses due to a surface load will tend to
form an approximately radial pattern [Johnson, 1985]. We
refer to the stress field formed by superposing the regional and
the volcano load contributions as the ambient field. The third
contribution is the stress perturbation associated with the dike
itself (Figure 4c).

If the differential stress of the ambient field is substantially
greater than the dike driving pressure, then the dike will
propagate along the most compressive stress direction of the
ambient stress field [Olson and Pollard, 1989], provided a
preexisting anisotropy or weakness is absent. On the other
hand, if ambient differential stresses are small compared to the
dike driving pressure, then the stress field produced by
opening of the dike walls dominates near the dike tip and the
dike will propagate essentially in-plane. Finally, if the
magnitudes of the ambient differential stress and the dike
driving pressure are similar, then a dike that is oriented
obliquely with respect to o, will tend to curve gradually as it
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Figure 5. (a) Normalized pressure in dike without a tail
(dashed) and with an open tail (solid) as a function of vertical
distance normalized by the length of the dike head (L). (b)
Half thickness of dike with and without tails (solid and dashed,
respectively) for corresponding pressure distributions in
Figure 5a. The term W), is the maximum dike thickness.
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Figure 6. Magnitude of scaled differential stress (shaded and
contoured), trajectories of the most compressive principal
stress (ticks), and potential dike propagation paths (solid
lines) beneath a triangular normal load distribution for a
regional differential stress that increases with depth.
Differential stress parameter (1-k)pgl/P) .4 is equal to (a) -
0.743, (b) 0.371, and (c) 0.743.

propagates before becoming parallel to o, [Emerman and
Marrett, 1990]. Thus the directions in which the dikes are
likely to propagate will be a function of the dike driving
pressure and the ambient principal stress magnitudes and
orientations. This is consistent with the observed dependence
of x, on AP, P, .4 and ! in Figure 3.

3.2. Numerical Simulations of Laboratory
Experiments

Here we use a numerical method to examine how the above
stress contributions influence dike focusing beneath
volcanoes. We start by simulating the gelatin experiments,
which have an isotropic remote stress, and then extend the
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models to consider cases in which the regional stress field is
anisotropic.

The boundaries of the elastic body in the model include the
surface of the elastic material as well as any dike walls. These
boundaries are approximated by a series of elements with
constant displacement discontinuities. Using influence
coefficients A, derived from the analytical solution for a
single displacement discontinuity, the method we employ
(TWODD (Crouch and Starfield, 1983]) relies on the principle
of superposition to solve for the displacement discontinuity
X, at each boundary element such that the prescribed stress
conditions B; are met for each element:

[A4,]IX,)=[B,]. ©)
The displacement discontinuities X; can then be used to
calculate stresses and displacements at any point within the
body.

We idealize the body of gelatin as a 2-D elastic half-space.
We treat the "regional stresses” within the gelatin with the
following far-field boundary conditions:

ayy’ = pgy; nyr =0; o, =ka, 4)
where k is a prescribed constant. Setting & equal to one yields
an isotropic stress condition, such as is present within the

gelatin prior to surface loading. Compression again is
positive.

We numerically simulate the surface of the body with a
series of boundary elements extending along y = 0 away from
the surface load. A total length of 75 times the load half width
is sufficient to simulate an infinite surface surrounding the
load. To represent the surface load, normal stress boundary
conditions are applied such that they produce uniform vertical
displacements along the load base [Johnson, 1985]. We
specified zero shear stress along the load elements because we
lubricated the base of the load in the laboratory. Boundary
conditions of zero normal and shear stress are applied along
the remainder of the surface boundary.

To simulate the laboratory experiments, we first consider
dikes with tails that are completely closed. To do this,
boundary elements along only the dike head are specified.
Along these dike head elements, we prescribe a normal stress
boundary condition P that varies according to

P=Apg(y-ym)+APm+P0+a”’. ®))

Element midpoint depth is given by y, the middle of the
entire dike is at a depth y,,, and the remote stress at y is o0, ".
We approximate the effect of the load by adding a term P,
which is continually updated such that the dike maintains a
constant volume as it ascends. The driving pressure function
(Apg(y - y,,) + AP, + P) yields a tear-shaped dike head (dashed
line in Figure 5b), consistent with the laboratory dikes and
predictions of Secor and Pollard [1975]. The dike walls are
prescribed to have no shear stress. Comparable to the
experimental dikes, each numerical dike head has a height
equal to 1.1 times the surface load width. Dike propagation is
carried out incrementally by adding one element to the upper
tip of the head and subtracting one element from the lower tip.
In this manner the dike length is constant throughout
propagation as is generally the case in the gelatin
experiments. We assign the orientation of each new element
to be that which yields the minimum resolved shear stress
along the new element [Cotterell and Rice, 1980; Olson and
Pollard, 1991]. This direction will be approximately normal
to the maximum tensile hoop stress about the dike tip.
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Plate 1c shows the numerically calculated stress field for the
same load as the laboratory experiment in Plates la and 1b.
The color scheme used in the theoretical stress field (Plate 1c)
is designed to simulate the photoelastic image and shows a
general pattern of stress similar to the laboratory
experiments. The ticks in Plate 1c show the orientation of the
most compressive principal stress. All of these trajectories
point toward the load, and therefore the numerical dikes curve
toward the load (Plate 1c). Differential stresses are predicted to
be largest directly beneath the load and to decrease with radial
distance away from the load. This prediction is consistent
with the photoelastic image (Plate 1b) which shows greatest
intensity close to the load (Plate 1b). Both the photoelastic
and numerical stress fields account for why the experimental
dikes initially propagate vertically and then curve as they
approach the load.

Like the laboratory experiments, the numerical models
indicate that x*_ increases in proportion to P, ,/AP,. The
numerical results are best fit by the function

x* = 3.38(P,,4/AP,)" 7! + 1 (6)

(again subject to the constraint that x*. = 1 for no load). One
difference from the scaling law obtained from the laboratory
results (equation (2)) is that (6) predicts a nonlinear increase in
x*_ with P, /AP, . Scatter in the laboratory results, however,
is too large to resolve any curvature in the observed trend; thus
we use a simple linear fit. More importantly, the numerical
models predict dikes to reach the load over greater distances
x*_ than the laboratory experiment. This difference is most
likely to be due largely to two our 2-D numerical
approximation of the 3-D laboratory dikes. While a numerical
dike extends infinitely in the out-of-plane direction, the head
of a laboratory dike is only approximately as wide as it is tall.
Since the shear mode (mode II) stress intensity factor K will
decrease as you move from the upper tip of the head to the
sides there may be a reduced tendency for laboratory dikes to
curve as compared to the numerical dikes. Both the numerical
and laboratory results, however, indicate an increase in
connection distance with load pressure and width and a
decrease with midheight dike driving pressure.

3.3. Simulations of Dikes With Fluid-Filled Tails

We now examine propagation of dikes with tails that
remain open. Propagation direction depends on the ratio of
the opening-mode (Kj) and shear mode (Ky) stress intensity
factors for the upper dike tip [Lawn, 1993]. Because the
driving pressure along the tail is likely to be near zero [e.g.,
Rubin, 1998], it is unlikely to change the opening-mode
stress intensity factor (Kj) at the upper dike tip. The mode II
stress intensity factor, however, may be affected because a tail
filled with a viscous fluid may support less shear stress than
the surrounding rock. Any shear displacements of the dike
walls will contribute to the shear-mode stress intensity (Ky) at
the upper tip and therefore affect the propagation path.

We now add tail elements beneath the dike head. Solving
the coupled equations of viscous flow in elastic fractures is
inappropriate for this study, and therefore the driving pressure
distribution specified along the dike is an approximation to
the asymptotic distribution predicted by Rubin [1998] for
viscous flow in a dike of constant volume. Figure 5a shows
the driving pressure in the dike head (y/L>0) and in the dike
tail (y/L<0). The boundary condition along the upper 75% of
the dike head is given in (5). In the lower 25% of the dike head
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the driving pressure becomes negative and decreases to a
minimum that is 50% of the minimum for the dike without a
tail (dashed line). Just below the dike head, the driving
pressure tapers to zero. Again, shear stress is zero along the
entire dike. We propagate only the upper tip of the dike and
keep the lower tip fixed. As a result, the tail below the dike
head remains open and lengthens as the head portion ascends
(Figure 5b). Note in Figure 5b that the opening profile near
the top of a dike head is virtually identical for dikes with and
without tails; this is consistent with the tail contributing
little to the opening mode stress intensity factor at the tip of
the dike head.

Figure 3 (triangles) shows the predicted dependence of x*,
on P, . /AP, . The best fit function is

x* =449, . /AP, )07 + 1. @)

The load of a volcano is able to attract dikes with open tails
over greater horizontal distances than the dikes with closed
tails. This result is consistent with the anticipated increase in
K associated with the tail. The above results suggest that
dike focusing will be even greater for dikes with tails that
remain fluid. We note, however, that we have assumed the
extreme case in which the tail fluid is perfectly inviscid. Tails
filled with viscous fluids will be capable of sustaining shear
stress over finite time scales. Thus we may be overpredicting
the effects of dike tails on propagation direction.

3.4. Realistic Scales

In order to relate the analysis above to the Earth we consider
realistic values of P, ., AP,, and surface load dimensions.
The example we consider is Mount Shasta in northern
California. Considering Mount Shasta's approximate volume
of 3.5x10!! m3 [Wood and Kienle, 1990] and assuming an
average density and basal radius of 2600 kg m3 and 1.3x10%
m, respectively, Py .4 is ~17 MPa. To estimate AP, we
consider the range expected of dikes arising from a partially
molten source in the mantle. A minimum estimate is made by
assuming that K; at the upper tip of the dike head equals the
ambient fracture toughness. For a fracture toughness of 3 MPa
m!’2 and a density contrast between magma and lithosphere of
Ap=300 kg m>, AP, = 0.15 MPa. This driving pressure
corresponds to a Weertman dike that is 200 m tall and 0.78
mm thick (using equations (4) and (5) of Rubin [1998] and
assuming an elastic stiffness of 50 GPa). A maximum estimate
of AP, is based on the largest dike heads predicted by Rubin
[1998] in his Figure 6. These dikes are fed by porous flow.
These dike heads have a midheight driving pressure of ~2
times the value of AP, for the 200 m tall dike (i.e., ~0.3 Mpa).
The dike head fed by porous flow corresponding to this driving
pressure is about 12 times the Weertman dike half height
(~1200 m tall). Figure 6 and equation (5) of Rubin [1998] give
a scaling factor between the Weertman dike maximum
thickness and the thickness scale W equal to 14/0.65 or about
20. Multiplying our Weertman dike maximum thickness (0.78
mm) by 20 yields a thickness of 16 mm. Thus for these two
different modes of dike growth P, ., /AP, is expected to be 50-
100. From (2), (6), and (7), this range of pressure ratios
predicts values of x, many times (50-100) the width of the
load. Due to thermal considerations, however, we expect this
estimate for x, to be an upper bound. In order to traverse the
lithosphere before freezing, dikes would have to be much
thicker (~ 1 m) [Lister, 1994] and would likely have a greater
driving pressure. The general conclusion is that large
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volcanoes are capable of attracting dikes over lateral distances
many times their basal width. Even though our analyses are
based on 2-D surface loads, we anticipate this conclusion to
hold for 3-D volcanic loads provided regional stresses are
isotropic.

4. Effects of Regional Differential Stresses
on Dike Propagation

Several investigators have suggested that tectonic stresses
within the lithosphere can affect the distribution of surface
eruptions [Hughes et al., 1980; Rogers, 1985; Weaver and
Michaelson, 1985; Guffanti and Weaver, 1988]. In this
section we examine how a range of anisotropic regional stress
states may influence deep focusing of dikes. ~When the
regional stresses are isotropic, as in the above experiments, k
=1 in equation (4). This condition applies best where the
mantle or crust deforms viscously over long time periods to
alleviate any differential stress [Anderson; 1951; McGarr,
1988]. This condition, however, is not the only accepted
reference state of stress. A reference state of lateral
confinement (no horizontal displacement) has also been
employed [e.g., Jaeger and Cook, 1979; Savage et al., 1985;
McGovern and Solomon, 1993]. In this case the horizontal
normal stress, 0, is a fraction of the vertical stress, g,
caused by gravity,

O =(%}ryy’, ®)

where v is Poisson’s ratio. For crustal and mantle rock, where
v is typically near 0.25, the horizontal stress would be ~1/3
the vertical stress (i.e., ¥ = 1/3). This is a substantial
difference from the isotropic condition of (4). Indeed, the
existence of thrust faults demonstrates that o, can exceed
o, so k can also exceed one.

We now test the effects that differential regional stresses
within the lithosphere would have on the trajectories of
buoyant dikes beneath volcanoes. We establish an
anisotropic regional stress field by setting k in the range from
0.8 to 1.1. As we will show, this range is sufficient to
illustrate the key effects of anisotropic regional stresses. The
absolute magnitude of the regional differential stress |(0'yy’-
o,)| increases with depth in accord with (4). The
dimensionless variable with which we parameterize the results
is the regional differential stress at a depth equal to one
surficial load half width, normalized by the average magnitude
of the surficial load; that is the ratio (1-k)pygl/P,y,4, in which
Py is the density of the lithosphere. The regional stress field
is isotropic when the differential stress is zero (i.e., k =1). To
more realistically simulate a volcano load, we apply a
triangular distribution of normal compressive stresses at the
ground surface

pgh{l—|x
Ryl = 208 ®

where |x| <! and p, is the density of the load. The average
normal load stress, P, 4, is 0,gh/2. The shear stress along the
ground surface is set to zero. For simplicity, we assume that
dikes track the most compressive stress trajectories; this will
be the case where P, ,4 /AP, is very large. This simplification
will lead to a slight overestimate of the influence of the load to
the degree that AP, affects dike propagation direction. (For
example, in the case of isotropic remote stresses, x*. will be
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infinite. ~ This result, however, would not be a poor
approximation of x*, = ~50, which is predicted from (6) for
Pjo,q /AP, = 102) We use streaklines parallel to the most
compressive stress as a proxy for potential dike paths beneath
amodel volcano. The outermost streakline to reach the load
determines x,.

Figure 6 shows differential stress fields (0,-03), normalized
by P4 for cases in which the regional horizontal
compressive stress exceeds the vertical regional compression
(Figure 6a) and two cases in which the regional horizontal
compression is less than the vertical compression (Figures 6b
and 6¢). In the Figure 6a the differential stress parameter, (1-
k)Po8ll Pygq =-0.743. This case corresponds to k = 1.09,
P/py = 0.87, and a value of P, appropriate for Mount Shasta
(17 MPa). The trajectories of most compressive stress are
nearly horizontal except for a small region beneath the load.
In this case, vertical propagation of buoyant dikes is inhibited
by the horizontal compression and an extensive vertical feeder
dike system is unlikely to develop. Figures 6b and 6¢ show
cases where the differential stress parameter is 0.371 (k =
0.96, P, ,4= 17 MPa) and 0.743 (k = 091, P, 4 =17 MPa),
respectively. A comparison of the two figures shows that as
the vertical regional compressive stresses increase relative to
the horizontal regional stresses, the vertical gradient in
differential stresses increases, and the most compressive
stresses as well as the dike trajectories everywhere become
more vertical. Thus, as (1-k)pygl/P, 4 increases, the regional
stress field becomes increasingly important relative to the
surface load in controlling dike trajectories.

The relationship between the distance of dike attraction x*,
and differential stress parameter (1-k)pygl/P,,4 is summarized
in Figure 7. As (1-k)pygl/P 4 increases from 0.0 to ~0.50,
the distance of dike attraction x*,. decreases very rapidly. As
(1-k)pygll/P\y,q increases beyond ~0.50, x*_ decreases more
gradually and eventually tapers to an asymptotic value of 1.0.
The numerical results are well described by the scaling law

X’c=0.703[(1-K)pogl/Pioad] ©7%% +1.0|-

(1-Kpo g/ R

Figure 7. The maximum normalized distance that dikes will
reach a load x*_ is predicted to decrease with increasing
differential stress parameter (1-k)pygl/P,,,4- The numerical
predictions (dots) are well explained by the above relationship
(equation (10)).
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a) (OW”GXXI)/PM =0.20
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Figure 8. Magnitude of scaled differential stress (shaded and

contoured), trajectories of the most compressive principal

stress (ticks), and potential dike propagation paths (solid

lines) beneath a triangular normal load distribution for a

constant regional differential stress.  Differential stress
parameter (ny’ - 0, )P .4 18 equal to (a) 0.20 and (b) 0.60.

0.735
P =0.703{w‘ﬁ] + 10,

load
indicating a nearly inverse relation between x*, and the
differential stress parameter (1-k)pogl/P, 4 Thus the distance
of dike attraction is very sensitive to a regional differential
stress that increases with depth (i.e., k < 1), particularly when
the stress state is close to isotropic (i.e., k = 1).

We now consider the alternative possibility that the
magnitude of differential stress is constant throughout the
lithosphere as might be the case of a uniform tectonic stress.
In this case, we define the regional differential stress
parameter as (0, /-0, ")/P, 4 Figure 8a shows the normalized
differential stress field beneath the same volcano load as in
Figure 7 but where (0y,"-0 ) Pgq = 0.20. The predicted dike
trajectories indicate that dikes will be attracted to the volcano
from ~5 times the load half width for this case. As the
differential stress parameter (cryy’-crxx’)/Pload is increased
(Figure 8b), stresses and dike trajectories become everywhere
more vertical. Increasing the magnitude of (O'Yy’-O'm')/Pload to
0.60 reduces the extent of dike attraction to approximately
two times the load half width.

The predicted dependence of x*, on (cryy’-cn’)/Pk,ad is
summarized in Figure 9. Similar to the case in which
differential stress increases with depth (Figure 7), x*,
decreases rapidly as (0,,"-0,,")/P,g,4 increases from 0.0 to ~0.5
and decreases more gradually to an asymptotic value of 1.0 for

10
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larger differential stresses.  The results are described as
follows:

, , 0.861
(6x"-0,")

xc=0.84
P load

+ 1.0, an

a scaling law very similar to that for the vertical gradient in
differential stress (equation (10)). The similarity between the
two equations indicates that in either the case of a depth-
dependent (equation (10)) or a constant differential stress
(equation (11)), the normalized differential stress at a depth
equal to the load half width characterizes the potential of dike
attraction. The ability of large volcanoes to attract dikes from
abroad area at depth will be greatest when the regional stress
state is nearly isotropic. Dikes are attracted from a narrow
region where the region differential stress is large relative to
the surface load.

5. Stresses Due to Flexure of an Elastic Plate

It is widely recognized that the elastic portion of the
lithosphere has finite thickness and over long timescales
behaves as an elastic plate that bends in response to surface
loads [e.g., McKenzie and Bowin, 1976; Banks et al., 1977,
Burov and Diament, 1995, 1996]. Bending of a plate of finite
thickness contributes additional stresses that are not
considered in our models of an elastic half-space. These
stresses may influence magma transport as suggested by an
apparent global relationship between volcano spacing and
effective elastic plate thickness T, [ten Brink, 1991]. The
magnitude of the flexural stresses in the plate increases with
load size and decreases with T,. For relatively small loads and
thick elastic plates, bending stresses will be small and the
dominant source of anisotropic ambient stress will be due to
local compression beneath the load, as in our above models.
For larger loads and thinner plates, however, bending will be
more important.

Here we use thin plate theory to examine the relative
magnitudes of bending stresses and the local compressive

(o W x¢)/Pload

Figure 9. The numerical predictions of x*, (dots) decrease
with differential stress parameter (o, '- 0, )P\ saq according to
the relationship at top (equation (1‘1’)5).
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Figure 10. Relationship between the ratio of the maximum
horizontal stress due to flexure to the maximum stress at the
base of the load o, /P, .. and effective elastic thickness of

the lithosphere (T,) for different surface load widths (21).

100

stresses due only to volcano loads. The symmetric deflection
w of an elastic plate beneath a line load is

3
Voo p(—x)( x . x)
exp| — || cos— +sin— |,
8D a a a

where V,, is the force per unit length of a surface line load at
x=0, D is the flexural rigidity

w=

(12)

D= ETE} (13)
T 12a-v3y
and « is a quantity that defines the flexural wavelength
/4
a= 4D (14)
Ap,g

Turcotte and Schubert, 1982]. In (13), Eis Young's modulus,
and Ap, in (14) is the density contrast between the mantle
beneath the plate and the material infilling the downwarp of
the plate’s upper surface. Since the only load on the surface
that we consider is the line load, 4p, = p,- This bending
generates horizontal stresses in the plate. Their magnitude
increases with plate curvature d*w/dx? and vertical distance
from the midplane (y =-T,/2) of the plate. At the top and
bottom of the plate the horizontal stress magnitudes are
greatest with absolute values given by

o -xY . x x
5-expl — || sin=—cos=
2T; a o o

Where curvature is positive, as it is beneath the load, axxf is
compressive at the top of the plate and tensile at the bottom of
the plate. Directly beneath the load, Gxxf is maximum and equal
to

f=

xx

. (15)

of =
max 2T2 :
e

(16)

We consider a triangular load with V=P . [ where P, =
2P, qis the maximum normal force at x=0. The ratio between
the maximum horizontal stress due to flexure ofmax and P, is
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f
o
max — _ 3! [ E an

1/4
P 2T 3(1—v2)pog]

We use this ratio to determine the importance of flexural
stresses relative to the local compressive stresses due only to
the load. Equation (17) shows that o’fmax/Pmax increases with
load half width [ and decreases with elastic plate thickness.
Values of Gfma)/inx for a range of plate thicknesses 7, and
applied load half widths are shown in Figure 10. Roughly
speaking, when volcano half widths are less than a quarter of
the effective elastic plate thickness, loading stresses P are
comparable to or larger than bending stresses. The above
results suggest that our model of an elastic half-space is most
applicable to regions where small volcanoes load thick and
old lithosphere (i.e., T, > 4l). Alternatively, in environments
where volcano widths are large compared to the effective
elastic plate thickness, our models are only applicable during
the early stages of volcano growth when volcanoes are small
and/or when anisotropic stresses in the viscous portions of
the crust and mantle are still supporting anisotropic stress and
are thus contributing to the effective elastic strength of the
lithosphere. We also note that flexural stresses will cause
dikes to focus toward loads [Hieronymous and Bercovici,
1999] and thus influence dike propagation in the same sense
as our model.

6. Volcano Size and Spacing in the Cascade
Range

Our model of volcano loads attracting feeder dikes has two
main implications for the evolution of volcanic provinces.
First, the direct relationship between volcano size and lateral
distance of dike attraction predicts a positive feedback
between volcano size and magma supply rate. This positive
feedback will selectively favor the growth of large discrete
volcanoes over densely spaced small volcanoes. The second
implication is that if all magma within a volcano’s region of
dike attraction only feeds that volcano, then this will limit the
growth rate of neighboring volcanoes and/or set a minimum
distance at which new volcanoes will form. For example, one
possible scenario is that a volcanic province begins with a
random distribution of small volcanoes. Those volcanoes that
are spaced far apart will be least likely to compete for the
magma supply from below and therefore begin to grow faster
than volcanoes that are closely spaced. Ideally, the system
evolves such that the volcanoes with the greatest spacing will
be the largest, and the volcanoes with the closest spacing will
be the smallest. We therefore predict a dependence of volcano
spacing on volcano size.

Previous studies of arc volcanoes on active continental
margins have found that the spacing between volcanoes is
fairly uniform within a given province [Vogt, 1974; Marsh
and Carmichael, 1974]. Models to explain a uniform spacing
include volcanism through lithospheric fractures with spacing
controlled by lithospheric thickness [Vogt, 1974], as well as
periodic mantle upwellings with spacing controlled by the
thickness of the buoyant asthenospheric layer [Marsh and
Carmichael, 1974; Davies and Stevenson 1992]. In contrast,
a more recent study, which includes a larger number of
volcanoes and greater range of volcano sizes, shows large
variations in volcano spacing within several arc volcano
provinces [de Bremond d'Ars et al., 1995). de Bremond d'Ars
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Table 2. Cascade Volcano Data
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Volcano Lat. Long. Edifice Height, m Diameter, km  Volume, km?
Baker 48.79 121.82 25000 260 -
Glacier Peak 48.12 121.12 12002 - -
Rainier 46.85 121.75 24402, 2150P 172, 18° 2702
Goat Rocks 46.5 121.45 11502 112 -
St. Helens 46.2 122.19 19502, 1500°, 1450° 8.52, 10.4° -
Adams 46.2 121.5 27002, 1920° - 200?
Hood 4537 121.7 21807, 1800° - 502
Jefferson 44.66 121.8 1675¢ - 252
Washington 44.33 121.84 1200* 52 -
Broken Top 44.08 1217 780° 82 -
North Sister 44.17 121.77 1370¢ - -
South Sister 44.1 121.77 14004 - -
Bachelor 4378 121.58 1460? - 40?
Crater Lake 4294 122.1 2400 © 270 1302
Pelican Butte 4251 122.06 11702 - 202
McLoughlin 4244 122.31 1200% - 132
Brown Mountain 42.36 122.27 7308 - 58
Newberry 43.68 121.25 1100° 440 4502
Medicine Lake 41.6 121.6 1200 © 40° 600?
Shasta 41.4 122.18 3500? - 3502
Lassen 40.5 1215 19072, 1380, 1130° 122, 23b 802

2Wood and Kienle [1990].

Pike and Clow [1981].

CList of the World Active Volcanoes [1971].

4USGS topographic maps.

“Extrapolated values of ancestral volcano.

et al. [1995] demonstrated that this large range of spacing is
statistically well represented by a random distribution.
However, they did not investigate if volcano spacing
correlates with volcano size.

To test for a correlation between volcano spacing and size,
we now examine volcanoes in the Cascade range of
Washington, Oregon, and northern California. Data on
volcano width are sparse, presumably because the very gradual
slopes of their bases introduce large uncertainties in basal
diameters. We therefore use edifice height A above the
surrounding topography as a measure of volcano size
(differences in volcano heights will be proportional to
variations in widths to the degree that the volcanoes have
similar shapes). In cases that multiple height estimates are
cited for a single volcano, we simply use the average value.
To ensure that the volcanoes represent significant
topographic anomalies we select only those volcanoes with
heights exceeding 700 m. We include the pre-1980 height of
Mount St. Helens as well as the extrapolated heights of the
ancestral volcanoes of Crater Lake and Medicine Lake craters.
With these criteria we produce a list of 21 volcanoes (Table 2).
Each volcano is paired with its nearest neighbor to produce 14
unique volcano pairs (Table 3). We measure the separation
distance between the two volcanoes in a pair and compute the
average of their heights.

In Figure 11 we plot spacing and average volcano height
for each pair. We use the average height in each volcano pair
because both volcanic loads are predicted to control the
spacing between them. The first major observation is that
volcano spacing varies substantially from as small as 6 km
(South Sister-Broken Top) to 115 km (Lassen-Shasta). In fact,
the standard deviation of 33.4 km is comparable to the average
spacing of 47.9 km. This result is consistent with figures
from de Bremond d'Ars et al. [1995] for the Cascades. They
show a standard deviation comparable to their mean (29.6

km), though their mean is less than ours because they use a
larger number of volcanoes. The average spacing in our
volcano pairs is significantly less than the average (~80 km)
suggested by Marsh and Carmichael [1974], but their data set
also includes volcanoes from the Aleutian Islands and the
Alaska Peninsula. Most importantly, our finding that there is
a broad range of spacing is contrary to previous studies that
suggest that the spacing is uniform [Vogt, 1974; ten Brink,
1991]. A uniform spacing would be expected if spacing is
controlled by lithospheric flexure [ten Brink, 1991;
Hieronymous and Bercovici, 1999]. The large range in
nearest-neighbor spacing that we see suggests that flexure is
not the primary factor controlling spacing in the Cascades.
Indeed, ten Brink [1991] found the Cascades to lie well away
from the prediction of his lithospheric flexure model.

The second major observation in Figure 11 is a correlation
between volcano spacing and average volcano height. The

Table 3. Volcano Spacing Data

Average

Nearest Volcano Pair Spacing, km  Height, m
Baker-Glacier Peak 91 1850
Rainier-Goat Rock 45 1723
Adams-St. Helens 53 1970
Hood-Adams 94 2150
Jefferson-Washington 37 1440
Washington-North Sister 19 1290
North Sister-South Sister 8 1385
South Sister-Broken Top 6 1090
Bachelor-Broken Top 35 1120
Newberry-Broken Top 57 940
Crater Lake-Pelican Butte 48 1780
Brown Mountain-McLaughlin 10 965
Shasta-Medicine Lake 53 2350
Lassen-Shasta 115 2490
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Figure 11. Observed relationship between the spacing

between nearest-neighbor Cascade volcanoes and the average
of their edifice heights. The best fit line has a linear
correlation coefficient r = 0.74.

best-fit line through the data has a slope of 489 (0.0489
km m!) and a correlation coefficient r = 0.74. The quantity ¢
= [(n-2)/(1-1)]}2, where n is the number of pairs, provides a
test for the significance of the correlation [Swan and
Sandilands, 1995]. The computed value of 7 = 3.19 exceeds the
0.5% significance level of 3.055 [Swan and Sandilands, 1995]
thereby indicating that the correlation between spacing and
average height is significant. The best fit slope is likely to
depend on factors that affect the size of the region of dike
attraction for each volcano. These factors include the sizes of
volcanoes as well as the remote differential stress field.
Further modeling efforts are necessary to constrain these
relationships. In general, the observed trend is consistent
with the prediction of our model that the region of dike
attraction will increase with load size. Lithospheric stresses
associated with volcanic loads may therefore be an important
factor in focusing magma transport in the Cascade region.

On the basis of our comparison of flexure stresses and load
magnitude (07, /P, ) the above results suggest that the
effective elastic plate thickness beneath the Cascade
volcanoes is several times greater than the radii of the
volcanoes. If the effective elastic plate thickness is a factor of
4 times the basal radius of 10-15 km for Mount Shasta, then
this would suggest an effective elastic plate thickness of the
order of 40-60 km. This thickness is several times that
estimated by Bechtel et al. [1990] (T, = 8-16 km). The
estimate of Bechtel et al. [1990], however, was based on
coherence between the regional topography and gravity field
and therefore includes structure that was formed well before the
Cascade volcanoes at a time when the lithosphere was younger
and most likely thinner. This estimate may therefore be
biased to low values of T,.

Another factor that should be considered is the timescales
of volcano loading compared to the viscous response time of
the lower crust and mantle. Many Cascade volcanoes such as
Mount Shasta, Mount St. Helens, Crater Lake, and Medicine
Lake have experienced episodes of growth followed by
catastrophic avalanches and sector collapses over periods of
10° years [e.g., Crandell et al., 1984; Wood and Kienle,
1990]. During these periods of loading and unloading, the
rheologically weak portions of the crust and lithosphere will
support anisotropic stresses and therefore contribute to the
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strength of the lithosphere. Calculations by McGovern and
Solomon [1998] show that the time it takes for these
anisotropic stresses to decay is of the order of 103 7,, where 7
= 2(1+V)1)/E is the Maxwell timescale. A viscosity 7 of 102
Pasand E= 10!! Pa suggests a relaxation time of ~10° years
which is also consistent with estimates by Burov and Diament
[1996]. The viscous portions of the crust and mantle may
therefore be contributing to the strength of the lithosphere
over an appreciable portion of the growth period of many
Cascade volcanoes. Thus effective elastic plate thickness
during volcano growth may be larger than the long-term,
steady state value.

Finally, we recognize that our simple model omits features
such as preexisting faults or material heterogeneities that can
affect dike propagation; nor do our models consider the effects
of other topographic loads. Indeed, we expect that factors such
as these may contribute to the scatter about our linear
prediction. In addition, we have only quantified the effects of
a single 2-D surface load; therefore the extrapolation of our
results to the spacing of many 3-D volcanoes is essentially
qualitative. Nonetheless, an apparent dependence of volcano
spacing on volcano size (Figure 11) suggests that volcano
loading may indeed be a factor controlling magma transport.

7. Conclusions

Volcanic surface loading can focus dikes initiated at depth
to individual volcanoes over lateral distances proportional to
the volcano width and weight and inversely proportional to
the driving pressure of dikes. The attraction of dikes toward
volcanoes will be most significant where the lithospheric
regional stress is nearly isotropic. The region of attraction
shrinks as the difference between the vertical and horizontal
far-field compressive stress in the lithosphere increases. In
addition, our models of an elastic half-space apply most to
small volcanoes on thick elastic plates, whereas flexural
stresses will be more important when volcano widths exceed
the elastic plate thickness by a factor of 4 or more. The
predicted influence of volcano size on distance of attraction is
a mechanism that promotes a positive feedback between
volcano size and growth rate. The above dependence also
suggests that the sizes of a volcano will be influenced by the
proximity to other volcanoes. Nearest-neighbor pairs of the
largest volcanoes in the Cascade range in spacing suggesting
that the importance of lithospheric flexure, which predicts
uniform spacing, is not applicable in this region. Moreover,
the spacing of Cascade volcanoes correlates positively with
average height. This correlation supports our model and thus
suggests that the local stresses associated with volcano
loading is an important factor in controlling magma transport
in the Cascade volcano province.
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