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ABSTRACT

Fracture orientation data from boreholes find
widespread use in investigations of the subsurface.
These data invariably are biased, with in situ frac-
tures at low angles to a borehole being under-rep-
resented. Three statistical measures (mean spherical
orientation, spherical variance, and moment of in-
ertia), conventionally used to analyze axial data
distributed on a sphere without corrections for
borehole bias, are used here to analyze fracture pole
orientations distributed on a hemisphere, with bore-
hole bias being accounted for. By assuming a par-
ticular model for the in situ distribution of frac-
tures, such as a uniform distribution, and then
correcting for borehole bias, one can predict the
distribution and statistics of fracture poles a bore-
hole survey would yield. The model can then be
modified based on the mismatch between observa-
tions and predictions. Geologic information on the
kinematics and mechanics of fracturing can be in-
corporated into the model of the in situ distribution.
An analysis of fracture orientation data from a
complexly fractured granite at the Stripa mine in
Sweden shows that this approach provides a useful
and straightforward way to investigate fracture
distributions in the subsurface. Moment of inertia
diagrams and plots of cumulative distribution func-
tions for fracture poles greatly augment equal area
projections in analyzing fracture orientation data
from boreholes.

INTRODUCTION

Fractures profoundly effect fluid flow, rock strength,
and deformation over a broad range of spatial and tem-
poral scales. Where fractures have a preferred alignment,
they can impart a substantial anisotropy to a rock mass.
Where fractures of varied orientation exist, they can form
a well-connected network for fluid flow. As a result, fracture
orientation data are collected for use in a wide variety
of research investigations in geology, rock mechanics,
geophysics, and hydrogeology (e.g., National Academy

of Sciences, 1996). Fracture orientation data also are
collected widely in industry for evaluating hydrocarbon
reservoirs (e.g., Kulander et al., 1990) and the stability
of rock slopes, foundations, and subsurface excavations
(e.g., Goodman, 1976, 1980). Direct information on
fracture orientations in the subsurface commonly is
obtained with boreholes. However, as pointed out by
Terzaghi (1965), boreholes introduce a pronounced ob-
servational bias into the data, with fractures at low angles
to the borehole being under-represented. Properly account-
ing for borehole bias is essential where borehole frac-
ture data are relied upon in evaluating the geology, me-
chanics, or hydraulics of a subsurface rock mass.

This manuscript presents a forward method for evalu-
ating fracture orientation data obtained from boreholes.
It illustrates how three well-known measures of direc-
tional data (the spherical mean direction, the spherical
variance, and the moment of inertia) are affected by
borehole bias. The manuscript also describes how these
measures depend on the format in which the data are
presented. The blend of directional data measures, cor-
rection for borehole bias, and treatment of hemispheri-
cal data is new and complements the work of Terzaghi
(1965) and Priest (1985) on borehole bias.

The manuscript begins by reviewing the formats for
describing fracture orientations. The observational bias
introduced by boreholes is described next. An overview
of a few simple distributions of biased and unbiased ori-
entation data follows, along with an examination of the
associated statistics. The forward modeling approach
is then applied to data from complexly fractured granite
at the Stripa mine in Sweden. This example shows how
geologic data can be used to construct a testable model
for the in situ distribution of fractures. Most of the
mathematical presentation is confined to appendices to
preserve readability, but particularly important concepts
are treated in the body of the manuscript.

FORMATS FOR FRACTURE
ORIENTATION DATA

The orientation of a fracture commonly is described
in terms of the orientation of a vector, or a line, that is
normal to the fracture and that passes through the center
of a (hemi)sphere (Figure 1). A vector intersects a hemi-
sphere in one point, whereas a line intersects a sphere
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Figure 1. Distributions of fracture poles: A) lower hemispherical
distribution; B) upper hemispherical distribution; C) distribution on
a hemisphere with a non-horizontal projection plane; D) spherical
distribution.

in two. In structural geology, orientation data are con-
ventionally displayed using projections of a lower hemi-
sphere with a horizontal diametrical plane (Hobbs et al.,
1976; Goodman, 1976; Priest, 1985; and Fisher et al.,
1987). In a spherical distribution (Fisher et al., 1987),
both the upper and lower hemispheres are involved.
Hemispherical projections with inclined diametrical planes
are useful in analyzing borehole data if the normal to
the inclined plane parallels the borehole axis.

As noted by Fisher and others (1987) lines are un-
directed axes and must be treated differently than vectors,
which have directions. Axial data plot on both hemi-
spheres in a spherical distribution, whereas a single vector
plots on just one hemisphere. Treatment of axial data (e.g.,
Watson, 1965, 1966; Fisher et al., 1987) have focused
on distributions of poles on a sphere rather than a hemi-
sphere. A hemispherical format, however, has an advan-
tage over a spherical format in describing fracture pole
orientations: a single hemisphere allows no redundant
information, unlike the two hemispheres that form a sphere.
Furthermore, as is shown below, certain statistics of the
two distributions differ. These statistics can be interpreted
more readily for the hemispherical distribution.

The orientation of a fracture pole is described in a
variety of ways; a few are used here. One is by its trend
a and plunge n (Figure 2A). Alternatively, the pole can
be described by its co-plunge v, the angle of the pole
relative to a vertical axis. The angles 1 and yrange between
0° and 90°. The terms o and 7y here correspond to ¢ and
0, respectively, of Fisher and others (1987). A second
method is by direction cosines. The direction cosines
<u, v, w> are given here in terms of a reference frame
where the x-, y-, and z-axes point north, east, and down,
respectively (Figure 2A):

u = coso. siny Eq. 1-1

B \2r
z \Br P*

Figure 2. A) Reference frame for spherical coordinates, and B) the
corresponding equal area projection in cross section. The sphere
and hemisphere have a unit radius.

v = sinol siny
w = cosy

Eq. 1-2
Eq. 1-3

The direction cosines of an upper hemisphere pole have
the opposite sign of those for the corresponding lower
hemisphere pole. For a lower hemisphere projection, the
direction cosine w of each data point must have the same
sign. The trend and co-plunge are readily found from the
direction cosines:

-1 T T
o = tan (v/u) +§sgn(u) ) Eq. 1-4

Y = cos™!

w Eq. 1-5
The right side of Equation 1-4 represents the atan2 func-
tion present in several software packages (e.g., The
MathWorks, 1992) and allows a to range from -7 to m.
A third method (Figure 2B) is by equal area projection
(Hobbs et al., 1976; Priest, 1985). The radial coordinate
r of a fracture pole in this projection is r=1/2 sin(y2)
and the angular coordinate is the trend o. The density
of poles in an equal area projection faithfully reflects the
pole density on the surface of a lower hemisphere.
Fracture orientation data from a borehole usually are
collected relative to the orientation of a borehole (e.g.,
Goodman, 1976; Priest, 1985) before being translated to
a geographic reference frame. These data are referred to
as apparent orientation data. In one convenient bore-
hole-based reference frame, the z*-axis parallels the
borehole axis, the x*-axis lies in a vertical plane that
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contains the borehole axis, and the y*-axis is horizontal
(Figure 3A). Two angles describe the fracture orienta-
tion relative to the borehole. The angle y*, the apparent
co-plunge, is the acute angle between a fracture normal
and the down-hole direction of the borehole. The angle
o*, the apparent trend of the fracture pole, is measured
around the hole circumference (Figure 3B). These two
angles can be determined directly either from drill core
samples or from the trace of a fracture on a borehole
wall (Figure 3C). For an inclined borehole, a* is the
angle between a reference line parallel to, and on top
of, the borehole (i.e., the “top line” of Figure 3) and the
uphole end of the major axis of the ellipse formed by
the intersection of the fracture and the borehole. The
direction cosines in the borehole-based reference frame
are <u*, v¥, w*>. The conversion of the apparent orien-
tation data to an absolute reference frame is done readily
using a rotation matrix aij (Gellert et al., 1977):

u Ayr Ayy* a,, u*

V[=|aye Ay Ay || VF
%

w Aer Aoy a.||W

Eq. 2

where, for example, a,« is the cosine between the x-axis
in the absolute reference frame and the y*-axis in the
borehole-based reference frame.

BOREHOLE BIAS

The probability of encountering natural fractures of
a specified orientation with a borehole depends on fac-
tors such as: a) the abundance of fractures in the region
sampled, b) the orientation of the fractures with respect
to the borehole, c¢) the size of the fractures, d) the positions
of fractures relative to the position of the borehole, €)

Borehole trend

the length of the borehole, and f) the diameter of the
borehole. The first two factors are the focus here, and
fracture shape, in-plane dimensions, and spatial distribu-
tion are considered to be uniform.

Terzaghi (1965) presented the first paper in the Eng-
lish literature to focus on the effect of borehole bias on
fracture orientation data. Her paper laid the foundation
for subsequent work by Priest (1985) as well as the
study here. Terzaghi noted that the distance between
fractures of a given set along the length of a borehole
depends on the orientation of the borehole relative to the
fractures. For a set of extensive fractures with a uniform
spacing, d, the number of fractures, N, intersected over
a interval of length, L, along a borehole is (Terzaghi,
1965):

N = (L sin¥)/d Eq. 3-1
where W is the acute angle between the fractures and the
borehole axis (Figure 4). For a vertical borehole, ¥ equals
the plunge of the fracture pole, n (Figure 2). Equation
3-1 applies rigorously only if two conditions apply: a)
fractures do not intersect the ends of the interval, and
b) both ends of the interval are the same distance from
the next fracture in the fracture set (i.e., L must be an
integer multiple of [sinW]/a). If the first condition is not
met, then N should be replaced by N-1. If the second
condition is not met, then [LsinW}/a will not be an integer.
The second condition generally is not met, and the interval
must intersect a large number of fractures for Equation
3-1 to yield a good approximation.

Using the angle v* instead of ‘¥, Equation 3-1 can be
expressed in a more general form useful for boreholes
of arbitrary inclination:

N = (L cosy*)/d Eq. 3-2

Borehole bl y* Fracture
orehole plunge Y 015
Ml -0.1
’ N -0.05}
Fracture )/ P i Of ot =70°
pole o
£ r +0.05
Fracture §. - +0.1
z* T 1N 015 = cot (@ max/)
Borehole wWwL° 0 9 180 270 360
a*

A

Circumferential angle (°)

C

Figure 3. Representations of a fracture intersecting a borehole: A) borehole-based reference frame; B) apparent trend (0*) and apparent co-

plunge (y*). Trace of a fracture on a downhole log.
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Figure 4. Diagram showing how the number of fractures intersected
by a given length of borehole (L) varies with the angle | between
the fractures and the borehole.

The term cosy* serves as a relative probability and ranges
from zero to one. Figure 4 shows that the relative prob-
ability of intersecting a fracture where ¥ = 90° (y* =
0°) is twice that where ¥ = 30° (y* = 60°). A uniform
change in the spacing between fractures or in their size
changes the absolute probability of an intersection but
not the relative probability cosy*.

Terzaghi described a simple inverse technique to
mitigate against this observational bias. She suggested
that the fractures be divided into groups of essentially
the same orientation (approximately the same strike and
same dip) and the number of fractures in a given group
N be replaced by N*, where N* = N/sin't. This, she
contended, should yield a more representative picture of
the in situ distribution of fracture orientations. Some care
must be exercised, however, in defining the number and
size of groups of fractures with essentially the same
orientation, and N* generally will not be a whole number.
Also, Terzaghi cautioned against blind application of
her inverse method for fractures nearly parallel to a
borehole. A single such fracture might represent either
a lone fracture that was sampled just by chance, or a
member of a large set that was poorly sampled just be-
cause of its orientation. The effect of a lone fracture can
affect N* disproportionately, because the correction
factor 1/sinV¥ is large if ¥ is small. In light of these
difficulties, Terzaghi considered fractures oriented at
less than 20°-30° to a borehole to lie in a blind zone
where fracture data would be difficult to interpret.

Forward modeling methods can overcome some of
the difficulties with Terzaghi’s inverse procedures. The
methods are aided by some powerful yet simple statisti-
cal treatments not used by Terzaghi. Some of the more
straightforward techniques are applied in the forward
model here. An understanding of the kinematics and
mechanics of fractures formation also can help in the

forward analysis as is shown in the examination of frac-
tures at Stripa, Sweden.

TYPES OF DISTRIBUTIONS

This section focuses on two types of fracture pole
distributions on a hemisphere: a) the uniform distribution,
and b) the uniform distribution affected by borehole bias.
A clear understanding of these distributions is essential
to understand the remainder of this paper. Neither one,
for example, is obtained by selecting pole trends and pole
plunges at random. Both continuous and discrete approxi-
mations to these distributions are discussed.

These distributions are described using probability
densities and cumulative distribution functions. These
functions usually are represented in terms of a single
variable, but they are introduced here in terms of two
variables. The probability density (p) is a weighting func-
tion and refers here to the abundance of data (e.g., poles)
per unit area of a projection surface. The cumulative
distribution function (cdf) describes the proportion of
data with values less than or equal to some specified
value. Here the cdf represents the proportion of the data
on some portion of the total projection area, A. The
functions p and cdf are related as follows:

| pdA = cdf Eq. 4-1
Evaluated over the entire area of the projection surface,
the cdf equals one:

| paa=1 Eq. 4-2
For a spherical or hemispherical surface, the incremental
area dA depends on the variables o*, the apparent trend,
and y*, the apparent co-plunge (see Appendix A):
dA = siny*do*dy* Eq. 5
Substituting Equation 5 into Equation 4-1 yields the cdf
as:
1y* fOk =
I Eq. 6-1

2n
0 o = P dodyt = cdf

ok =

Substituting Equation 5 into Equation 4-2 yields

p (siny*) do*dy * = 1

Y =m2 pok=2m
| [ Eq. 6-2

=0

The distributions considered here are axisymmetric about
the y* = 0 axis, and so p is a function only of o*. Equation
6-1 thus reduces to:
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s .
fY“ “o 2np (siny*) dy*= cdf Eq. 6-3
Equation 6-2 is solved for p, and then Equation 6-3 is
solved for the cdf (Appendix B). For the distributions
considered here, these functions are plotted in Figure 5.

The Uniform Distribution

For a uniform distribution, fractures poles have a
uniform probability density on a sphere, hemisphere, or
equal area diagram (Figure 6A). This distribution is simple
and a useful standard for comparison. For a continuous
uniform distribution of poles, p is a constant. For a
hemisphere of unit radius, Equation 4-2 shows that p
equals the reciprocal of the area of the hemisphere, so
p = 1/(2w). For a spherical distribution (Fisher et al.,
1987), p = 1/(4m).

A discrete approximation to a continuous distribution
provides a useful comparison to real data. To obtain a
set of discrete points that approximate a uniform orien-
tation distribution on a lower hemisphere, three numbers
are selected independently and at random: —1<x<1, -1<y<1,
and 0<z<1. This gives the x, y, and z coordinates of a
point in the lower half of a cube with an edge half-length
of one. Let d be the distance from the point to the origin.
Points for which d<I lie inside or on a unit hemisphere;
they form set A. Points for which 1<d<3!2 lie outside
the unit hemisphere and inside the half-cube; they form
set B. Points of set B are concentrated in the lower cor-
ners of the half-cube. Both sets of points fill space
uniformly. Dividing the coordinates of a point by its radial
distance d essentially projects the point onto the hemi-
sphere. The projection of set A, the uniform distribution
within the hemisphere, yields a uniform distribution on
the hemisphere. In contrast, the projection of the corner
points of set B yields a non-uniform distribution on the
hemisphere: the projected points cluster in the NE, NW,
SW and SE quadrants of the hemisphere at a plunge of
cos™![(1/3)1”2], or about 35°. For this reason, only the
points of set A are used: if d>1, then the point is rejected.

2 1
Biased .-/,
15 I 0.8 s
~1! Random ke
| 0.6 Il
5 I
1y S |Random #
\ 0.4 /7
091\, Biased Uniform| 02 Uniform
L, 1
o o
0 20 40 60 80 0 20 40 60 80
v* ¥

Figure 5. Diagrams of the theoretical distributions of (A) probabil-
ity density p and (B) cumulative distribution function (cdf) for
poles on a hemisphere. Solid curves are for a uniform distribution.
Dotted curves are for a biased uniform distribution. Dashed curves
are for poles defined by trends and plunges selected at random.

If d<I, each coordinate of the point is divided by d; this
effectively projects the point onto a unit hemisphere. The
new coordinate set represents the endpoint of a pole that
uniquely specifies the orientation of a fracture. The ap-
parent trend o* and co-plunge y* of the fracture are
found using Equations 1-4 and 1-5. The process is re-
peated as many times as desired to produce an approxi-
mately uniform coverage of points on a lower hemisphere
(Figure 6A).

An alternative method (Haneberg, 1999, written com-
munication) for generating a uniform distribution of pole
orientations utilizes concepts of the equal area projection.
Consider a circle of unit area and a smaller concentric
circle inside it. The larger circle represents the primitive
circle of an equal area projection. The ratio, m, of the
areas of the circles equals the square of the radius of the
small circle. Therefore, the square root of a number m
chosen at random from a uniform distribution between
zero and one yields the radius, , of a circle that contains
the proportion of points in a uniform density distribu-
tion equal to m (see Equation E-13). For example, if m
= 0.25, then the probability is 25 percent of a point plot-
ting within a distance of r = 0.5 from the center of a
unit primitive circle. Combining values of m and r with
o* values chosen at random from a uniform distribution
between 0° and 360° yield the co-plunge y* and trend
of poles in a uniform distribution, with ¥* = 2sin™" ("/2) .

A discrete approximation to a uniform distribution is
different from the one obtained by randomly selecting
fracture pole trends between 0° and 360° and randomly
selecting pole plunges between 0° and 90° (Figure 6B).
Such a process yields an over-abundance of steeply
plunging poles, as the cluster of poles near the center
of Figure 6B reveals. For this distribution p = 1/(7? siny*),
as shown in Appendix B. Certain statistics of this dis-
tribution are similar to the one produced by sampling a
uniform distribution with a borehole.

The Biased Uniform Distribution

A biased uniform distribution of fracture poles is
produced by adjusting the density to account for the effect
of borehole bias. As discussed above, the relative prob-
ability for this distribution is cosy*. The probability den-
sity p for a continuous biased uniform distribution over
a unit hemisphere is cosy*/n (see Appendix B).

To produce a discrete approximation to a biased uni-
form distribution, a sample is drawn from a uniform dis-
tribution, as described above, and a series of numbers
N; is obtained by sampling at random between zero and
one. The ith fracture is considered as being intersected
by a borehole if N; < cosy*;. This process is repeated to
produce the desired number of samples. In the resulting
biased distribution, fractures nearly perpendicular to the
borehole are over-represented (Figure 6C) compared to
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Figure 6. Equal area plots of 500 poles taken from A) a uniform orientation distribution, B) by combining randomly selecting pole trends
between 0° and 360° and pole plunges between 0° and 90°, and C) for a uniform distribution affected by borehole bias. The concentric circles

divide the plots into bins where equal numbers of poles are expected.

the uniform in situ distribution (Figure 6A). The clus-
tering of poles in Figure 6C mimics that of Figure 6B.
Sub-horizontal fractures are over-represented if the hole
is vertical (Figure 6C); steeply-dipping fractures are over-
represented if a hole is horizontal (Figure 7A). For in-
clined holes the poles have skewed distributions on equal
area plots (Figures 7B and 7C).

Figure 7 illustrates four key points. First, clustering
of fracture poles about the orientation of the borehole
is a sign of borehole bias. Second, the magnitude of the
borehole bias effect can be so pronounced that a cursory
review of fracture orientation data obtained from a borehole
could lead to a grossly incorrect estimate of the in situ
fracture orientation distribution. Third, a given in situ
distribution of fractures can yield markedly different
absolute orientation distributions if investigated by bore-
holes of different orientation. Fourth, the axisymmetric
nature of a uniform in situ distribution is most clearly
represented where the orientation of the borehole is at
the center of the equal area plot (Figure 6C). This last
point indicates that plots of apparent orientation data can
be useful in visually evaluating the effect of borehole bias
(see also Appendix E).

ANALYSES OF DIRECTIONAL
DATA DISTRIBUTIONS

Directional data distribution are analyzed in the geo-
logical literature (e.g., Scheidegger, 1965; Woodcock,
1977; and Fisher et al., 1987), but have not been inves-
tigated in the context of borehole bias. Three of the most
common measures of directional data are discussed here
in that context: spherical mean direction, spherical vari-
ance, and the principal moments of inertia. This section
also contrasts these measures for data collected in hemi-
spherical and spherical formats.

Spherical Mean Direction and the Spherical Variance

Two useful measures of fracture orientation data are
the spherical mean direction and the spherical mean
variance (Mardia, 1972; Fisher et al., 1987). They are
calculated here by representing each fracture pole with
a single vector of unit length. The vector length could
be scaled to the area of a fracture, however, if the
area were known. The spherical mean direction of a set
of n vectors representing fracture poles is simply the

Figure 7. Equal area plots of poles to fractures formed by probabilistically sampling from a uniform orientation distribution to account for
borehole bias. Borehole orientations are shown by heavy dots. In each case the fracture poles cluster around the orientation of the hole. A)
Horizontal hole; B) hole trends 120°, and plunges 30°; C) hole trends 240°, and plunges 60°.
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direction of the resultant vector R formed by summing
all n unit vectors. The spherical variance S* (0< $* <I)
is defined as 1 — (IRl/n ), where IR| is the length of the
resultant. The quotient R* = IRI/n is the mean resultant
length (Fisher et al., 1987). One would expect that values
of S* near zero should indicate a low degree of scatter
in orientations.

Values for R* and S* for five axisymmetric pole
distributions are presented in Table 1, with the supporting
calculations in Appendix C. The examples involve: a) an
even number of vertical poles, b) a biased uniform dis-
tribution, c) poles with trends and plunges chosen at ran-
dom, d) a uniform distribution of many poles, and e) hori-
zontal poles with a uniform distribution of pole trends.
All of these cases are axisymmetric. In the spherical
distributions, half the poles lie on an upper hemisphere
and the other half on the lower. In each case involving
a spherical distribution, R*; = 0 and S*; = 1. The first
case shows that a high spherical variance, which seem-
ingly should imply a large degree of scatter in the data,
can reflect no scatter at all. In contrast, the normalized
resultant length R*,, and variance S*,, for the lower hemi-
sphere distributions clearly are more indicative of varia-
tions in the data (see Table 1). These examples demon-
strate advantages of a hemispherical format over a spheri-
cal format in examining fracture pole distributions.

For fracture orientation data obtained from nonvertical
boreholes, meaningful hemispherical values of S*, and
R*, are obtained readily using orientations of the fracture
poles relative to the borehole (i.e., the “apparent” ori-
entations of fracture poles). The values are meaningful
because the z* values for the poles pole have the same
signs. If fracture pole orientations in a geographic ref-
erence frame are used directly to find S*;, and R*;, then
the direction cosines for each fracture pole first must be
corrected by multiplying them by the sign of the cosine
of the angle between the borehole and the fracture pole
(i.e., the sign of the dot product between a vector parallel
to the borehole and the fracture pole). Otherwise the effect
is like mixing hemispherical and spherical representations
of the data, and meaningless S* and R* values result.

The Moment of Inertia

The moment of inertia provides a third measure of
fracture orientation data (Mardia, 1972; Fisher et al.. 1987).
It readily indicates whether the orientation data are
distributed in a unimodal, girdle, or uniform fashion (Figure
8). In a unimodal distribution (Figure 8A), the poles are
clustered along one direction, and the moment of inertia
about an axis in that direction is small. A single set of
parallel fractures yields a unimodal distribution on a
hemisphere. In an equatorial distribution poles cluster
along a great circle (Figure 8B), and the moment about
the axis normal to the equatorial plane is large. The poles
to bedding planes in folded rocks commonly form an
equatorial distribution. In a uniform distribution (Fig-
ure 8C) the poles have no preferred orientation, and the
moment about one axis is the same as another. The cha-
otic fracture orientations in some fault zones resemble
uniform distributions.

The following treatment of the moment considers points
of unit mass at the endpoints of poles of unit length. The
ith point is represented by the unit vector c¢; (Figure 9).
The direction cosines of ¢; are u; v;, and w;. The moment
of inertia M is taken about an axis whose direction is
given by the unit vector C with direction cosines U, V,
and W. The moment of inertia of the ith point about the
axis is defined as the square of the distance a; between
the point and the axis:

Mi = a,~2 Eq. 7
By the Pythagorean theorem:
M,' = a,‘z = Ciz B b,‘2 Eq 8

where ¢; is the length of ¢; and b; is the length of the
projection of ¢; onto C (Figure 9). Equation 8 also can
be written using vector notation as:

M; = (¢;*¢) — (¢ C) Eq. 9

Table 1. Values of p, R*, S§*, and normalized eigenvalues for five fracture pole distributions, listed by increasing value of S*,, .

Pole Distribution N R*, S*, R¥, sY, T T, T B, B, Bs
Vertical wif |Y¥] =90° 0 1 0 1 0 0 12 12 0
0if | v¥| =90°

Biased Uniform cosy*/n 0 1 2/3 3R 1/4 /4 38 38 /4
Random Trend ——21—* 0 1 2/n 1-2/n 172 1/4 1/4 3/8 3/8 1/4
and plunge T sy

Uniform i 0 1 11 213 1/3 1/3 1/3 1313
Equatorial - 0 1 0 1 112 12 0 12 V4 14
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Figure 8. Distributions of poles: A) unimodal distribution; B) equa-
torial distribution; C) uniform distribution.

or, because ¢; is a unit vector, as:

M; =1 — (¢;* C)? Eq. 10
The cumulative moment of all » points is the sum of
the individual moments, so in light of Equations 9 and
10 the total moment can be written either as:

M= 1= wU+vV+wWw’

i=1 i=1

Eq. 11

or n
M=n=Y wU+vV+wW):>

i=1

Eq. 12

The total moment also can be cast using matrix algebra:
M=C®wmI - T)C Eq. 13
where I is a 3x3 identity matrix, and T = (z;) is a 3x3

orientation matrix containing the sums of products of the
direction cosines associated with the pole vectors c;:

Eq. 14

The 3x1 column vector C gives the orientation of the
axis, and C' is the 1x3 row vector that is the transpose
of C. Noting that:

CnIC = n(U? + V2 + W?) =n Eq. 15
one can demonstrate quickly that Equations 12 and 13
indeed are equivalent. An alternative expression of
Equation 13 is:

M = C'(B)C Eq. 16

where the moment of inertia matrix B = (nI -T).

Figure 9. Diagram showing quantities used to define the moment of
inertia. C is the axis about which the moment is taken, and ¢; (in
bold) is the unit length pole to a fracture.

The form of Equations 12 and 13 reveal some im-
portant aspects of the moment of inertia. First, the moment
can be decomposed into separate terms associated with
the number of poles (), the orientation of the axis about
which the moment is taken (C), and orientation of the
poles (T). The information on the orientation of the poles
is contained completely and solely in orientation matrix
T. Second, T and M do not depend on whether the poles
are distributed on a hemisphere or a sphere. The reasoning
is as follows. If the lower hemisphere representation of
a pole were ¢; = (u;, v;, w;), then the corresponding upper

Equation 14 all the products in T will have the same sign
and magnitude independent of the pole representation
format. This behavior of T contrasts sharply with the
spherical variance and resultant direction, which depend
strongly on the representation of the poles.

The three eigenvectors and three eigenvalues of
moment matrix B bring the underlying form of a pole
distribution into focus. Let 3, B,, and B be the maximum,
intermediate, and minimum eigenvalues (principal mo-
ments) of B, respectively, with by, b,, and b; being the
corresponding eigenvectors (principal directions). The
principal moments ; can be calculated readily from the
eigenvalues (7;) of T. First, an inspection of Equations
12, 13, and 15 shows that the trace of T equals the number
of points n:

ty +ipp + 33 = n Eq 18
It follows that the sum of the eigenvalues of T also equals
n:

TIL+ T +T3=n Eq. 19
where 7;<7,<7;. Second, in light of the relationship between
the components of B and T:

Bi=n -1 Eg. 20

where [(3;>,2B;. Equations 19 and 20 then yield:
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Bi+ B+ B3 =2n

The 7 eigenvalues are usefully normalized by the num-
ber of points n (T; =7T;/n ) with the B eigenvalues being
normalized by 2n (B; = B; /2n). Each set of normalized
eigenvalues sum to one.

The normalized eigenvalues for five axisymmetric
pole distributions are presented in Table 1, with the sup-
porting calculations in Appendix D. At least two of the
three normalized principal moments are equal for these
axisymmetric distributions. For a unimodal distribution,
such as the first three rows of Table 1, the poles are
clustered in the direction of bs, which has the smallest
associated principal moment (B5). For a single set of paral-
lel fractures, PBs is distinctive, equaling zero, and by
coincides with the pole to the fractures. Surprisingly, the
normalized eigenvalues for a biased uniform distribu-
tion match those for a distribution where pole trends and
plunges are chosen at random, even though the respective
R* and S* values differ. The match occurs because the
smallest moments are equal; axisymmetry and the inter-
dependence of the eigenvalues (Equation 21) require the
other two values then to match as well. For a uniform
distribution, the normalized principal moments are equal.
For an equatorial distribution, the first principal moment
is twice the second and third moments. Different distri-
butions thus can have the same eigenvalues and eigen-
vectors, so two statistical tests are considered for exam-
ining fracture orientation data.

Eq. 21

STATISTICAL COMPARISON
OF MODELS AND DATA

Two statistical treatments are used here to quantify
differences between model predictions and observed
fracture orientation distributions: the chi-square test and
the Kolmogorov-Smirnov test. These tests provide ways
to examine differences between observations and a model
that S*, R*, and eigenvalues do not.

Chi-square Test

The chi-square test is a standard method for comparing
two sets of discrete data or for comparing discrete data
to continuous data (Davis, 1986; Press et al., 1990). It
is used here to compare discrete fracture orientation data
with a continuous distribution.

Chi-square tests require subdividing the sets being
compared into bins. Let Q; and g; be the number of points
observed and expected, respectively, in the ith bin, where
the total number of bins equals k. Values of Q; are integers,
but values of g; need not be. The chi-square statistic is
calculated as (Fisher et al., 1987; Press et al., 1990):

xt= i [(Q.-—q,-)z/q,-]

i=1

Eq. 22

A small value of 2 indicates that the two populations
can not be distinguished (i.e., the hypothesis cannot be
rejected that the differences between the populations are
due to random effects), whereas a large value of ¥? indi-
cates that two populations most likely represent different
distributions (Kreyszig, 1983). The bins should be sized
such that for no bin is g; = 0; ideally g; should be greater
than five (Hoel, 1963). The number of degrees of free-
dom, v, is one less than the number of bins k. Ideally
k also should not be less than five (Hoel, 1963; Fisher
et al., 1987, pp. 76-77).

A key factor in conducting a chi-square test is de-
termining the bins in a consistent and useful manner.
Appendix E and Figure 6 show how to partition a lower
hemisphere such that an equal number of points is ex-
pected in ring-like bins for: a) a uniform distribution, b)
a biased uniform distribution, and c¢) a distribution where
pole trends and plunges are chosen at random.

A series of chi-square tests were conducted to compare
discrete samples drawn from different distributions with
a continuous biased uniform distribution. Several hundred
poles were used in the comparisons. In the tests involving
a sample drawn from a biased uniform distribution, to
no surprise the differences between the populations could
be ascribed to random effects. This held when the number
of bins was either small (20) or large (100). When a
sample of poles with trends and plunges chosen at ran-
dom was compared to the biased uniform distribution,
the chi-square values were typically about two orders of
magnitude greater than when a biased sample was com-
pared to the biased uniform distribution. This is inter-
esting given the similarity of R*, S§*, and the eigen-
values for the two distributions. Apparently the chi-
square tests is a more sensitive indicator of differences
between populations than the other three measures.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (or K-S) test allows com-
parisons of unbinned distributions of discrete data to a
continuous theoretical distribution (Davis, 1986; Press et
al., 1990). The test compares the cumulative distribution
functions of two distributions, here an observed distri-
bution and a model distribution, that are cast in terms
of a single variable. The single variable here is the angle
of a fracture pole relative to a borehole (i.e., the apparent
co-plunge y*). The K-S statistic D is the maximum value
of the absolute difference between the two cumulative
distribution functions (i.e., D is a measure of the mis-
match). A high D value is associated with a low prob-
ability P(D) that the differences between the observed
and theoretical distributions are due solely to random
effects. I refer to the value of y* at which D occurs as
Y¥p. At least twenty discrete data points are used to en-
sure that probabilities based on D are significant. The
K-S test avoids difficulties associated with binning
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continuous data and so has an advantage over the chi-
square test. The K-S test also is more sensitive than the
chi-square test to deviations in the parts of distributions
where probability densities are low (Davis, 1986), such
as where fractures are nearly parallel to a borehole.

FRACTURES FROM STRIPA, SWEDEN

The methods discussed above are applied now to
fractures at the Stripa mine in Sweden. Stripa hosted a
series of international large-scale rock mechanics experi-
ments from the 1970s to early 1990s (Organization for
Economic Co-operation and Development, 1994). Much
of the research revolved around rock mass characteri-
zation and methods for constructing nuclear waste stor-
age vaults. Numerous experiments addressed fluid flow
along fractures and the geophysical characteristics of
fracture zones. The in situ distribution of fractures thus
was relevant to many research efforts at Stripa.

A series of geophysical experiments and fluid flow
tests were conducted at the SCV block (Figure 10). The
boundaries of the SCV block were defined to form a cube,
centered 355 m below the ground surface, with edges

150 m long. A right-handed coordinate system described
locations in this block. The x-, y-, and z-directions
corresponded to mine north, mine east, and down, re-
spectively; mine north was 10° west of true north. The
mine level exceeded the depth below the surface by
30 m (McKinnon and Carr, 1990, p. 7), so, for example,
the 360 level was 330 m below the surface. Several tun-
nels transected margins of the SCV block, and several
borehole arrays extended from these tunnels into the
block.

Geologic, geophysical, and hydrologic data gathered
from the boreholes and tunnels were used to identify
several fracture zones within the SCV block (Black et
al., 1990): zones A, B, H, Hb, I, M, and K (Figure 10).
Zones A and B strike ~N45E and dip 40°-50° to the
southeast. Zones H, Hb, and I strike roughly NSW and
dip 63°-76° to the east. Zones M and K strike N6OW
and dip 65°-87° to the northeast.

Zone H probably is the largest fracture zone, and Black
and others (1990) considered it to extend to the surface.
Zone H was the best-characterized fracture zone at the
site, being pierced by three tunnels and several bore-
holes. Observations of zones H and Hb in the tunnel walls
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Figure 10. Map showing the location of drifts (outlined/shaded), boreholes (light lines), and fracture zones (heavy lines) near the SCV block
at the Stripa mine. Boreholes and drifts are projected orthogonally onto the horizontal plane. The fractures zone traces are shown where they
would intersect the 360-m level of the mine. Angles denote overall inclination of the boreholes. Borehole C3 is not shown; it projects along
the line of the D-holes. The north arrow points in the direction of mine north, not true north. The reference grid (in meters) for the mine is

shown also.
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showed no discernible boundary between the zones (Martel,
1992), and they are considered in the remainder of this
report to be part of the same zone. Based on contour plots
of fracture pole data obtained from boreholes piercing
zone H, Gale and others (1990) concluded that the zone
contained a pronounced set of steep, north-striking frac-
tures and a more weakly defined set of subhorizontal
fractures. Driftwall exposures of zone H revealed short
fractures of many orientations, whereas the longest frac-
tures parallel the zone as a whole and are faults (Martel,
1992). Scanline data were not collected for fractures with
trace lengths less than 0.5 m, however (Gale et al., 1990);
this would have required an inordinate amount of time
owing to the great number of fractures.

Many of the fractures with trace lengths of less than
0.5 m that branch from the faults of zone H most likely
formed as a result of fault slip (see Martel et al., 1988;
Martel, 1990). The highly varied orientations of these
short fractures probably reflect many different senses of
slip along the faults (Martel, 1992). Examinations of these
fractures were important in understanding the mechanics
and kinematics of faulting at Stripa, even though these
fractures were not part of the scanline data.

Gale and his co-workers used cluster analyses (e.g.,
Priest, 1985) of borehole and scanline data to characterize
the gross orientation distribution of individual fractures
within the SCV block. Based on preliminary data, Gale
and Strahle (1988) concluded: a) that fractures could be
grouped into three major clusters (one steeply-dipping set
that strikes N-S, another that strikes NW, and a sub-
horizontal set), and b) that “the north-south striking frac-
ture set has a much higher density than the other sets
or clusters.” Gale and others (1990) analyzed a larger data
set and inferred that the fractures fell into one large clus-
ter (N-S strike), one intermediate-size cluster (WNW
strike), and ten small clusters. They also noted that the
orientation data did not define these fracture sets very
crisply.

My approach to analyzing fractures in the SCV block
differs from that of Gale and co-workers. First, a model
of fracturing in and adjacent to zone H is constructed
based on geologic data and geomechanical concepts. That
model then is tested against borehole observations. The
goal is not to produce a perfect reference model, but
rather to see how the observations depart from the model.
Second, rather than using cluster analysis, I describe
explicitly how the in situ distribution of fractures is af-
fected by borehole bias and analyze the data in terms
of spherical mean direction, spherical variance, and prin-
cipal moments of inertia.

Analysis
My reference model is a uniform orientation distri-

bution. It is motivated by the numerous fracture orien-
tations observed in the driftwalls and boreholes and by

evidence for several senses of slip along the north-striking
faults (Martel, 1992). This model does not contain a
concentration of fault zone-parallel fractures, but it is
consistent with the secondary fracturing one might expect
along a fault zone that had been reactivated repeatedly
under varied stress conditions. Gale and co-workers
provided the fracture orientation data.

Figures 11, 12, 13, and 14 compare observed fracture
orientations from the W, N, C, and D boreholes, respec-
tively, with model predictions. The predictions were
obtained in the manner of Figure 7, with the number of
fractures in a given model plot matched to the number
of fractures in the corresponding observed distribution.
These figures reveal three key points. First, the data reveal
a broad range of fracture orientations in the SCV block.
Second, the model results are grossly similar to the
respective observations for nearly all of the boreholes.
The observations reveal a diffuse cloud of fracture poles
clustered about the orientation of the respective borehole.
This pattern holds no matter what the orientation of the
hole. The gross similarity between observations and
predictions suggests that fractures in the SCV block are
oriented in a largely uniform manner, with the observed
distributions being strongly influenced by borehole bias.
Third, the degree of similarity between observations
and predictions, especially with regard to the degree of
clustering, varies depending on the orientation of a
borehole. The match is best for the N holes (Figure 12),
with the N4 observations best resembling the predic-
tions of the biased uniform model. The N holes do not

Model

Observations

Figure 11. Equal area projections of poles to fractures observed
(left) and modeled (right) in the W-holes at the SCV block: A) W1;
B) W2. In this figure, and the next three, borehole orientations are
shown by heavy dots.
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Observations

Figure 12. Equal area projections of poles to fractures observed
(left) and modeled (right) in the N-holes at the SCV block: A) N2;
B) N3; C) N4.

penetrate zone H (Black et al., 1990). For all the other
holes, which do penetrate zone H, the observed poles
clearly cluster more tightly about the respective borehole
than the model predicts (see Figures 11, 13, and 14). All
of these holes have westerly trends, relatively gentle
inclinations, and intersect a distinctly higher proportion
of fractures with northerly strikes and steep dips than a
uniform in situ model predicts. These observations sug-
gest that the orientations of fractures in the SCV block
outside zone H are distributed in a rather uniform manner,
whereas north-striking fractures are more highly concen-
trated in zone H.

A review of the fracture orientation measures, sum-
marized in Table 2, bears out these conclusions. Figure
15 shows S* values for data from the various holes. The
N-holes show S* values most consistent with sampling
from a uniform in situ distribution (S*=1/3). The other
holes reveal significantly less scatter, especially the D-
holes. Figure 16 shows that the resultant pole orientations
are close to the orientation of the respective borehole.

Observations

E

Figure 13. Equal area plots comparing poles for observed (left) and
modeled (right) fracture orientations from the C-holes: A) C1; B)
C2; C) C3; D) C4; E) C5.
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Observations

F

Observations

Figure 14. Equal area plots comparing poles for observed (left) and modeled (right) fracture orientations from the D-holes: A) D1; B) D2;

C) D3; D) D4; E) DS; F) Dé6.

For five D-holes, however, the resultants trend slightly
west of the holes, whereas for the C- and N-holes the
resultants plot slightly to the east. This reflects the pres-
ence of more steep, north-striking fractures in those holes
than a random distribution would yield. The same pattern
shows up in the orientation of the axis for the smallest
moment (Figure 17). Figure 18 shows the ratios of
normalized principal moments (eigenvalues), respectively.
Data for the N-holes once again most closely reflect a
uniform biased distribution. Data from the other holes
reveal a mixture of uniform, unimodal, and girdle com-
ponents, with the unimodal component generally becom-
ing more pronounced for the boreholes that completely
penetrate zone H/Hb.

Chi-square statistics (Table 3, Figure 19), calculated
for 19 degrees of freedom, reflect a similar pattern: the
best fit (lowest 2 values) to a uniform distribution occurs
for the N-holes, and the worst fit for the W-holes. The
chi-square values for all the holes, including the N-holes,
are well above the range of 30 to 45 at which the differ-
ences can be attributed solely to random effects (Fisher

et al., 1987). All the data sets contain a statistically sig-
nificant non-uniform component.

The K-S tests provide additional quantitative insight
into the fracture distribution. Figure 20 shows represen-
tative cumulative distribution functions for six of the six-
teen holes. The W1, CI1, and D1 data plot everywhere
above the theoretical curves for a biased uniform distri-
bution (Figure 20A, D, and F). The mismatch between
the functions on those plots increases with increasing y*
for angles less than y*p, and decreases for greater angles.
This means that, relative to a uniform in situ distribution,
the fracture poles of the W1, C1, and DI data are
concentrated for y* less than 34°, 51°, and 35°, respec-
tively, and are relatively sparse at greater angles. This
quantitative conclusion is not readily obtained from a
casual inspection of the equal area plots, especially for
an inclined hole such as C1 (Figure 13A). The cluster-
ing is apparent in Figures 11A, 13A, and 14A, and it
reflects a concentration of steep north-striking frac-
tures. In contrast, the N3 data (Figure 20B) plot every-
where below the theoretical curves for a biased uniform
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Table 2. Eigenvectors and normalized eigenvalues for moments for fracture poles detected by the SCV boreholes.

Hole Hole _ _ _ b, b, b, b, b; b,
Hole trend plunge B, B, B4 trend plunge trend plunge trend plunge
W1 270.6 4.7 0.454 0.436 0.110 188.4 8.3 60.3 76.7 280.0 10.3
w2 270.5 4.1 0.436 0.422 0.142 182.8 30.8 9.7 59.1 274.6 3.0
N2 0.5 18 0.413 0.372 0.215 229.2 78.1 124.2 3.1 33.6 11.5
N3 1.1 17.7 0.399 0.352 0.249 2134 70.6 121.2 0.8 30.9 194
N4 0.6 18.3 0.405 0.354 0.241 193.5 68.0 293.5 4.0 25.1 21.6
Cl1 268.6 38.1 0.430 0.425 0.145 156.1 13.7 57.2 32.5 265.8 54.1
C2 305.9 40.4 0.428 0.388 0.184 201.0 16.1 95.1 43.4 306.1 422
C3 288.2 14.7 0.456 0.438 0.107 173.8 51.4 31.8 322 289.3 19.0
C4 290.9 35.6 0.461 0.379 0.161 180.1 34.0 62.3 34.7 300.7 37.1
C5 317.6 42.7 0.424 0.380 0.196 184.8 51.5 85.1 7.6 349.2 37.5
D1 287.9 33 0.467 0.456 0.077 52.4 80.8 187.9 6.6 278.6 6.4
D2 287.8 33 0.458 0.443 0.099 24.2 64.9 1924 24.6 284.5 4.5
D3 287.6 3.1 0.471 0.444 0.085 14.2 44.0 182.4 45.4 278.4 6.0
D4 287.8 35 0.462 0.441 0.097 19.1 38.8 181.9 499 282.2 8.6
DS 287.9 34 0.462 0.453 0.086 8.3 19.1 171.5 70.1° 276.5 5.4
D6 288 3.2 0.466 0.450 0.084 28.8 27.0 161.7 53.1 286.3 23.1

distribution. The N3 poles are relatively sparse for y*
less than 50° and are relatively concentrated at greater
angles. This nonuniformity is not obvious in Figure 12C,
but it is reflected in the distribution of principal moments
(see Figure 18). Figure 18 shows that the N3 data reflect
a distinct secondary contribution from a girdle compo-
nent, rather than just a unimodal component. This com-
ponent reflects fractures with a northerly strike and a
range of dips. These might have developed in response
to dip slip along north-striking faults (Martel, 1992).
The N4 and C5 data (Figure 20C and E) hug the theo-
retical curves, meandering above and below them. For
N4, the model and observations match well for y*<16°
and y*>51°, poles are concentrated between 16° and 42°,
and poles are relatively sparse between 42° and 51°. For
C5, the model and observations match well for y*<40°,
poles are concentrated between 40° and 51°, and poles
are relatively sparse between 51° and 75°. Finally, Table
3 shows that the D-values for all data sets correspond
to a low probability P that the boreholes sample a uniform
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Figure 15. Histogram showing S* values for fracture orientation
data from the N,W,C, and D-holes.
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distribution in situ. Table 3 also shows the smallest
mismatch between the data and a uniform in situ dis-
tribution for the N-holes, consistent with the results of
the chi-square test, the R* and S* values, and the results
of Figure 18. In general, D and %2 increase as the uni-
modal character of the data increases (Figure 18). The
plots of the cumulative distribution functions (Figure
20), however, are much more useful than the D-values
alone for characterizing departures of the data from the
model.

The comparisons thus suggest that the SCV fractures
have both a uniform component and a component of
steeply-dipping fractures that strike north, roughly par-
allel to zone H. The N-holes indicate the uniform com-
ponent is most pronounced outside zone H, and the other
holes indicate the zone-parallel component is most pro-
nounced within zone H. This pattern is consistent with
the fracturing having accompanied repeated slip along
steep north-striking faults during distinctly different epi-
sodes of deformation, and with the north-striking faults

Figure 16. Equal-angle (stereographic) plot showing orientation of
the resultant (+) for each SCV borehole (¢).
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Figure 17. Equal-angle (stereographic) plot showing orientation of
the axis of the smallest moment (+) for each SCV borehole (°).

being concentrated in zone H. The borehole data are thus
compatible not only with the driftwall observations but
also with the inferred history of faulting and fracturing
at the mine.

DISCUSSION

The conclusions reached here regarding the orienta-
tions of fractures in the SCV block are compatible with
those of Gale and Strdhle (1988) and Gale and others
(1990) but have a slightly different emphasis. As is found
here, Gale and his co-workers detected fractures of
numerous orientations and concluded that steep, north-
striking fractures formed the most prominent set. Their
cluster analysis indicated eleven subsets of fracture
orientations (Gale et al., 1990), but they noted that those
sets were not sharply defined and directly reflected limi-
tations in the method of sampling. They concluded that
two fracture clusters were more appropriate, one set rep-
resenting fractures that strike to the north, the other
set containing fractures that strike to the northwest.
Dispersion of fractures within these sets is necessary to
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Figure 18. Ternary diagram showing normalized principal moments
for fracture orientation data from the N-, W-, C-, and D-holes.
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Table 3. Spherical variance (S*), normalized resultant length (R*), resultant trend and plunge, )(2 values, D-values, and probabilities P(D)
Jor fracture pole data from the SCV boreholes. The probabilities reflect the likelihood that the observations differ from a biased uniform model

due solely to random effects.

Hole Hole 12

Hole trend plunge S* R* Trendg Plungeg (20 bins) D P(D)

w1 270.7 4.7 0.137 0.863 278.2 10.1 786.6 0.4323 1.31e-80
w2 270.6 4.1 0.175 0.825 272.1 2.9 576.7 0.3375 3.31e-57
N2 0.5 18.0 0.311 0.690 17.7 12.1 81.8 0.1282 0.0012
N3 1.1 17.7 0.360 0.640 12.3 18.3 54.3 0.0815 0.0138
N4 0.6 18.3 0.332 0.668 12.7 21.2 70.0 0.0649 0.0113
C1 268.6 38.1 0.176 0.824 266.3 52.1 231.1 0.2555 6.22e-20
Cc2 305.9 404 0.230 0.770 306.4 422 108.8 0.2094 1.49e-14
C3 288.2 14.7 0.133 0.868 289.4 16.9 436.3 0.4966 1.50e-56
C4 290.9 35.6 0.193 0.807 296.0 34.6 94.6 0.2993 8.33e-07
C5 317.6 42.7 0.259 0.741 342.1 39.1 86.6 0.1132 0.0044
D1 287.9 33 0.086 0914 278.0 6.8 321.2 0.5470 3.08e-48
D2 287.8 33 0.113 0.887 283.5 4.3 254.0 0.4709 2.34e-28
D3 287.6 3.1 0.096 0.905 278.3 5.9 267.3 0.4908 7.34e-33
D4 287.8 35 0.122 0.878 282.1 7.5 328.1 0.4965 2.19e-42
D5 287.9 34 0.102 0.898 276.7 4.4 329.9 0.5215 1.95e-34
D6 288.0 32 0.098 0.903 286.5 229 139.7 0.4037 6.98e-13

account for the variety of orientations observed. The
somewhat simpler interpretation presented here is that
one prominent set strikes nearly north-south and dips
steeply, and that the other fractures collectively repre-
sent a nearly uniform distribution of fracture orientations.
This model is consistent with the data I am aware of.

Heterogeneity in the spatial distribution of fractures
complicates interpretation of the borehole data. For
example, even though the N4 hole was only about 6
percent longer than N2 (219 m versus 207 m), it inter-
sected almost three times as many fractures (Figure 12).
These holes are parallel and spaced about 115 m apart.
Even among the D-holes, which are parallel, the same
length, and are spaced within 2 m of one another, the
number of fractures intersected varies by more than a
factor of two (Figure 13). The fracture distribution clearly
is heterogeneous spatially. One could argue on philo-
sophical grounds that, given the spatial inhomogeneity
and complications from borehole bias, the model pro-
posed here might be preferable to the model of Gale and
others (1990) because it is simpler. The differences be-
tween the models appear small, however, and might prove
insignificant in a rigorous comparison.

Differences between the approaches are more signifi-
cant than differences between the models. The study here
was motivated by a desire to understand the fracture
distribution data in light of the inferred geologic history.
Information on the geologic history was used directly in
preparing a forward model, and that was analyzed with
relatively simple statistical methods. Gale and his co-
workers were motivated primarily to characterize the
SCV block from a statistical sense and applied a much
more sophisticated statistical analysis. The availability of
good exposures, excellent borehole data, and, ironically,
the complicated geology allowed both approaches to

converge on similar models for the fracture distribution
within the SCV block.

Gale and his co-workers emphasized the need to
carefully collect and analyze borehole orientation data
in order to avoid introducing errors into an analysis of
fracture orientation data. This point should not be taken
lightly. A variety of errors can compound or obscure
borehole bias effects. Orientation errors can be introduced
in evaluating the orientations of fractures on televiewer
or borehole camera logs. Errors can also be introduced
when fracture orientations are measured in cores and when
these measurements are transformed to give the in situ
orientations.

Finally, the in situ orientations of individual segments
of core must be determined accurately in order to properly
transform the fracture orientation data obtained from core
measurements, and this is not a trivial matter. Core
orientation errors will tend to randomize the orientation
data, increasing the difficulty of detecting fracture sets
in largely chaotic fracture distributions.

CONCLUSIONS

Fracture orientation data from a borehole invariably
are biased. In situ fractures at low angles to the borehole
are under-represented. For a continuous uniform in situ
distribution of fractures sampled by a borehole, the mean
hemispherical orientation of fracture poles is along the
borehole, and the hemispherical variance is 1/3. The
ratio of the principal moments of the fracture poles
is 3/8:3/8:1/4, with the eigenvector associated with
the smallest principal moment paralleling the borehole.
These measures, along with those for unimodal and
equatorial distributions, provide useful standards for
comparison.
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Statistics could also be calculated for other distribu-
tions affected by observational bias. A prime candi-
date is the Watson distribution (Fisher et al., 1987),
which describes dispersed girdle and bipolar (unimodal)
distributions of axial data. The treatment of a biased Watson
distribution, however, is rather formidable and beyond
the scope of this paper.

By assuming a particular model for the in situ dis-
tribution of fractures, such as a uniform model, and then
correcting for borehole bias, one can predict the distri-
bution of fractures a borehole would encounter. The
mismatch between observations and predictions can be
evaluated visually, using equal area projections, or quan-
titatively with chi-square tests or K-S tests.

An analysis of fracture orientation data from a com-
plexly fractured granite at the Stripa mine in Sweden
shows that geologic information on the kinematics and
mechanics of fracturing can be used in conjunction with
fracture orientation data from boreholes to understand the
in situ fracture distribution. Inspection of fractures in
tunnel exposures at Stripa revealed that repeated fractur-
ing occurred along old faults. This resulted in a great
variety of fracture orientations, but the most prominent
fractures are faults parallel to the fault zones. The fracture
orientation statistics for holes that did not pierce the main
fault zones are consistent with a biased uniform distri-
bution, whereas those that did pierce the main fault zones
show a greater presence of zone-parallel fractures than
a uniform distribution would predict. The statistical data
thus are consistent with the geologic interpretation of
the fracturing history. Many of the fractures used to
infer the history of fracturing were sufficiently short that
they would not be included in scanline survey records
of tunnel walls.
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APPENDIX A
INCREMENTAL AREA ON THE
SURFACE OF A SPHERE

If a surface in space can be described using the following
parametric expression:
u=uwLy,v=(y,w=w(y Eq Al

then the area of a surface is (Kreyszig, 1983):

a= ™ f’“ JEG=F? dody Eq. A2
where: noga
ou\> [ov)’ 8w)2
E=|~— _— - Eq. A3
(av) *(av) *(av 4
ou ou oOv ov ow ow
_gwouw ovVvov dwor Eq. A4
F_ayaoc+8y8a+ayaa .
and 2 2 2
ou dv ow
oulaa) <[5 + (5] Eas

By substituting the expressions for u, v, and w in Equa-
tions 1-1, 1-2, and 1-3 into Equations A3-AS5 one ob-
tains:

F=0 Eq. A7
G = sin%y Eq. A8

Substituting the reduced expressions for E, F, and G into
Equation A2 yields:

A= [Yz ‘-al (siny) dody
Jyp Jon

Eq. A9

So if:
A= JAdA Eq. A10
then the element of area dA is given by:
dA = (siny)dody Eq. A1l

This agrees with the solution of Priest (1985).

APPENDIX B
PROBABILITY DENSITY FOR
POLES ON A HEMISPHERE

Let p be the probability density of fracture poles over
the surface of a hemisphere. The function p is analogous
to the function A of Fisher and others (1987) that de-
scribes the distribution of points on the surface of a
sphere. For a uniform pole distribution, p is a constant
that equals the reciprocal of the area of a hemisphere of
unit radius (i.e., Puniform = 1/27). Substituting this ex-
pression into Equation 6-3 yields the cumulative distri-
bution function (cdf) for a uniform distribution in terms
of the acute angle between the fracture pole and the
borehole axis y* (i.e., the ap-parent pole co-plunge):

cfyniform = (1 — cosy*) Eq. Bl

For a uniform distribution affected by borehole bias:

Ppias = ccosy* Eq. B2

To find ¢, one substitutes Equation B2 into Equation
6-3:

fy*zn/zZn(ccosy*) (siny*) da*dy* =1 Eq. B3
=0
Solving for ¢ yields:
c=1ln Eq. B4
hence:
Prias = COSY*/TC Eqg. BS

Substituting this expression into Equation 6-3 yields
the cumulative distribution function (cdf) for a biased
uniform distribution in terms of the apparent pole co-

plunge y*:

1
Cdﬁias = 5 (1 —COos 2'Y*) Eq B6
Consider now the case where fracture pole trends and
plunges are chosen at random from the intervals 0°-360°
and 0°-90°, respectively. The density of poles along any
horizontal small circle is inversely proportional to the
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circumference, and radius, of the small circle. The radius
of the small circle is siny* (Figure 2A), so here:

1

P random = € random W Eq B7
Solving for ¢,4q0m Using Equation 6-2 yields:
1
Crandom = ) Eq B8
T
hence:
P . Eq. B9
random 752 sitr 'Y* q-.

Substituting this expression into Equation 6-3 yields the
cumulative distribution function (cdy) for this distribution
in terms of the apparent pole co-plunge v*:

2
Cdﬁandom = E(’Y*) Eq B10
APPENDIX C

SPHERICAL VARIANCE

For a series of n discrete unit pole vectors, the spheri-
cal variance S* is defined as:

S* =1 - R* Eq. C1
where R* is the normalized length of the resultant vector
formed by summing all the unit pole vectors. The resultant
length is zero for a continuous uniform distribution on
a sphere. This is a direct consequence of the symmetry
of the poles about the center of the sphere.

For a distribution on a lower hemisphere, the maxi-
mum value of $* occurs for a series of vertical fractures
with a uniform distribution of strikes. Here $* = 1 and
R* = 0. The minimum value of S* is obtained for a series
of horizontal planes. Here $* = 0 and R* = 1.

For a continuous uniform pole density distribution on
a lower hemisphere the resultant will point straight down:
no poles have an upward component, and the distribution
is axisymmetric. Here, S* is given by:

§*= 1—JA (cos¥*) (p) (aA)

The cosy* term is the downward contribution of a given
pole, and the pdA term is a weighting term for poles in
area dA. Casting Equation C2 in terms of angles o* and
Y*yields:

Eq. C2

P J“Y“=1t/2 [a*=2n (COS'Y*) (P) (siny* do* dy*)

=0 Jar=0
Eq. C3

If p =5 (ie., the distribution is uniform), then:

S*=1-

1 1
D) 5 Eq. C4
For this case R* = 1/2.

For a biased uniform distribution p = (1/m)cosy* (Equa-
tion B4). This distribution is axially symmetric about a
borehole. Solving Equation C3 for this case yields:

Eq. C5

For this case R* = 2/3.
The mean apparent co-plunge ¥* could be defined as:

?*=fA wpdA:J**”/Z [a*=2n

v =0 Jar=0 (Y*) (P) (Siny* da*dy*)

Eq. C6

For a uniform distribution ¥* equals 1 radian, or ~57°,
and not 45° or cos™!(R*) = 60°. The mean apparent co-
plunge Y* for a biased uniform distribution equals 45°,
and not cos !(R*) = 48°.

For fracture orientation data obtained from a bore-
hole, if S*>1/3, or R*<2/3, then the mean in situ co-
plunge should exceed the 57° mean of a uniform dis-
tribution. If $*<1/3 , or R*>2/3, then the mean in situ
co-plunge should be less than the 57° mean of a uniform
distribution.

Where fracture pole trends and plunges are chosen at
random from the intervals 0°-360° and 0°-90°, respec-
tively, the value for p is given by Equation B7. Solving
Equation C3 for this case yields:

2

* — _——
§*=1-2~0363 Eq. C7

with R* = 2/n = 0.637.

APPENDIX D
PRINCIPAL MOMENTS OF INERTIA

For points on a surface, the moment of inertia about
a particular axis is defined by the following equation:

1= | paad Eq. DI
where p is the pole density within incremental element
of area dA, and d is the distance from dA to the axis
of rotation. The integral is over the surface of the object
in question, which here is a lower hemisphere. Recasting
(D1) in terms of o and v:
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Y*¥=m2 po*=m2 2
I- [ | o siny* dovkdy*d

Jy*¥*=0 Ja*=

Eq. D2

A continuous biased uniform pole distribution on a
unit lower hemisphere is axially symmetric about a vertical
axis, which is the z-axis here. The moment of inertia about
the z-axis is termed I,. The x- and y-axes lie in a horizontal
plane that divides the lower hemisphere from the upper
hemisphere. Given the axial symmetry of the distribution,
the moments of inertia about these two axes are equal
(ie. I, = I).

To find I, p = cosy/x, and d = siny. Substituting these
values into Equation D2 yields:

=1

=3 Eq. D3

For the moment about a horizontal axis, consider the
y-axis. As above, p = cosy/n, and dA = (sinYy) dyda, but
d = [(siny cosa)? + (cosy)?]'2. Substituting these values
into Equation D1 yields:

Eq. D4

Comparing Equations D3 and D4 reveals the principal
moments are related as follows for a biased uniform
distribution:

3
Iy= L= 31, Eq. D5

For a perfect girdle distribution about a vertical axis,
the poles will lie in a horizontal plane and will intersect
a lower hemisphere along a great circle of unit radius.
The expression for the moment differs from that of Equa-
tion DI:

roL=21 2
1=J prdo. d

a=0

Eq. D6

where r =1 and the pole density p is measured around
the girdle circle.

To find I, for an axially symmetric girdle distribution
with a uniform density, set p = 1/(2m) , the reciprocal
of the circle circumference, and d = 1. Substituting these
values for p and d into Equation D6 yields:

=1 Eq. D7

For the moment about the y-axis, d = cosa. Equation
D6 yields:

Eq. D8

Again, given the axial symmetry of the distribution, I,
= ;. The principal moments for a girdle distribution then
are related as follows:

1
Iy = I=51, Eq. D9

For the case where fracture pole trends and plunges
are chosen at random from the intervals 0°~360° and 0°—
90°, respectively, p is given by Equation B7. Moment
I, is found using d = siny. Substituting these values into
Equation D1 yields:

I = 1
= 3 Eq. D10
For the moment about the y-axis, d = [(siny cosot)? +
(cosy)?]'2. Substituting the appropriate values into Equa-
tion DI:

Eq. DIl

Again, given the axial symmetry of the distribution, I, = I,.

APPENDIX E
BOUNDING ANGLES FOR BINS FOR
CHI-SQUARE ANALYSES

Bin rings are defined here such that the total prob-
ability of a pole being in a given ring is the same for
each of the N rings into which the lower hemisphere is
divided:

i 1
| pdA= Eq. El

where the area of integration is the area of the “edge”
of the ith ring. The ith ring is bounded below by and
above by angles y*,_; and y*; respectively, where the
angles are measured with respect to the borehole (see
Figure 2).

For a uniform distribution p equals 1/2m. Recasting
Equation El in terms of angles o* and y*, and substituting
Equation A1l for dA and 1/2r for p:

"7*,’ "Zn Lsin * dat *d'y*—l Ea. E2
bei ) Jo S N a-
Solution of Equation E2 yields:
* -1 * 1
V¥ =cos|cosy¥ - Eq. E3
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Examining the first few terms of y*; reveals a simple
iterative pattern:

—cos 1oL
¥, =cos (1 N) Eq. E4

For a biased distribution p = (1/m)cosy* and Equation
El becomes:

J‘V*i r" (cosY*
Y*i =1 J0 n

Solving for y*;

) (siny*don*dy*) = % Eq. E5

1

12
¥, = sin”’ (sin2 Y +IT/) Eq. E6

The first few terms of y*; again reveal a simple iterative
pattern:

v = sinH{[i/N]"2} Eq. E7
Where fracture pole trends and plunges are selected at

random, p = (1/n? siny*). Substituting this value of p into
Equation E1 yields:

T
Y=oyt i Eq. E8
The angle Ay* = v*; — y*_; defining the rings widths
is a constant. Equation E8 reduces to the following ex-
pression:

Y*; = i2n/N) Eq. E9
Equations E4 and E7 yield simple expressions for

bin ring radii. Let the radius of the equal area diagram
be r. The relationship between the radial distance r;

on an equal area diagram and angle Y*; is (see Figure
2B):

ri=y2r sin% Eq. E10
Using the half-angle relation:
e /1
sin - = E(l—cosy“) Eq. El1
Equation E10 yields:
rp =r,/l1-cos¥¥; Eq. E12

Substituting the expression for y*; in Equation E4 into
Equation E12 gives the radii for bin rings for a uniform
distribution:

To find the bin radii for a biased uniform distribution,
Equation E12 is recast:

ri =1y 1=4/ l—sinzy"‘i

Substituting the expression for y*; in Equation E7 into
Equation E14 gives the radii for bin rings for a biased
uniform distribution:

Eq. E13

Eq. El4

Eq. EI5

Examples of bin rings segregating fracture pole distri-
butions representing uniform and biased uniform distri-
butions are shown in Figure 6.
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