SUBSIDENCE MECHANICS: HEAT FLOW ANALOG (38)

I Main Topics
 A Motivation: Why investigate heat flow?
 B Development of 1-D heat flow equation as analog for consolidation
 C Finite-difference interpretation of heat flow equation
 D Dimensional analysis

II Motivation

A Heat flow equation has the same form as the consolidation equation but is easier to grasp
B Diffusion of heat analogous to diffusion of excess pore pressure
C Many analytic solutions for heat flow (e.g., Carslaw and Jaeger, 1984)
D Many analogous equations of great use
E Flow analogs

<table>
<thead>
<tr>
<th>Flowing quantity</th>
<th>Incompressible Fluid</th>
<th>Heat</th>
<th>Chemical Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conserved quantity</td>
<td>Mass</td>
<td>Heat Energy</td>
<td>Molecules</td>
</tr>
<tr>
<td>1-D flux law</td>
<td>Darcy’s law $q = -k \frac{\partial H}{\partial x}$</td>
<td>Fourier’s law $q = -k \frac{\partial T}{\partial x}$</td>
<td>Fick’s law $J = -D \frac{\partial c}{\partial x}$</td>
</tr>
<tr>
<td>Flux term</td>
<td>$q =$ volume flux density $m^3/(m^2 \cdot sec)$</td>
<td>$q =$ heat flux density joules/(m$^2 \cdot sec)$</td>
<td>$J =$ diffusion flux moles/(m$^2 \cdot sec)$</td>
</tr>
<tr>
<td>Coefficient</td>
<td>$k =$ hydraulic conductivity m/sec</td>
<td>$k =$ thermal conductivity joules/(m$^2 \cdot K \cdot sec$)</td>
<td>$D =$ diffusivity m^2/sec</td>
</tr>
<tr>
<td>Potential term</td>
<td>$H =$ head (m)</td>
<td>$T =$ temperature ($^\circ \text{K}$)</td>
<td>$c =$ concentration (moles/m3)</td>
</tr>
<tr>
<td>1-D diffusion law</td>
<td>$\frac{\partial H}{\partial t} = \frac{\partial^2 H}{\partial x^2}$</td>
<td>$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}$</td>
<td>$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$</td>
</tr>
<tr>
<td>Coefficient</td>
<td>$\alpha =$ hydraulic diffusivity m^2/sec</td>
<td>$\alpha =$ thermal diffusivity m^2/sec</td>
<td>$D =$ diffusivity m^2/sec</td>
</tr>
<tr>
<td>Steady state flow (Term on left side of diffusion law = 0)</td>
<td>$\nabla^2 H = 0$</td>
<td>$\nabla^2 T = 0$</td>
<td>$\nabla^2 c = 0$</td>
</tr>
</tbody>
</table>

III Development of 1-D heat flow equation as analog for consolidation

A Isotropic, uniform material

B Definition of terms

1. $U =$ heat energy (joules)
2. $x =$ position (meters)
3. $t =$ time (seconds)
4. $q =$ heat flux (joules/(meter$^2 \cdot$ sec))
 a. Rate of heat energy transfer per unit area per unit time
 b. Heat flux can vary with time and position, so $q = q(x,t)$
5. $T =$ temperature ($^\circ$)
 Temperature can vary with position and time, so $T = T(x,t)$
C Fourier's Law of Heat Conduction (1-D)

\[q = -k \frac{\partial T}{\partial x} \]

1. Heat flow (q) scales with the temperature gradient (\(\partial T/\partial x \))
2. \(k \) = coefficient of thermal conductivity
 a. Dimensions: Joules sec\(^{-1}\) m\(^{-1}\) K\(^{-1}\)
 b. \(k \) assumed to be constant
3. Dimension check
 \[\frac{\text{Joules}}{m^2 \text{ sec}} = \frac{\text{Joules} \cdot \circ K}{m \cdot \text{sec} \cdot \circ K \cdot m} \]

4. The minus sign
 a. For heat to flow from \(x_1 \) to \(x_2 \), where \(x_1 < x_2 \), \(T(x_1) > T(x_2) \).
 b. Positive heat flow corresponds to a drop in temperature, requiring \(k \) to be negative
5. Partial derivative used because \(T \) is a function of \(x \) and \(t \).
6. Finite difference approximation:
 \[q = -k \frac{\Delta T}{\Delta x} \]
D Fluid flow analog (slow laminar flow)

\[q = -k \frac{\partial H}{\partial x} \]

1. Volumetric flux (q) scales with the head gradient (\(\partial H/\partial x \))
2. \(k \) = hydraulic conductivity
 a. Dimensions: m/sec
 b. \(k \) assumed to be constant
 c. \(k \) depends on the intrinsic permeability of the material, the degree of saturation, and on the density and viscosity of the fluid
3. Dimension check

\[\frac{m^3}{m^2 \text{ sec}} = \frac{m}{\text{ sec m}} \]

E Heat Flow Equation
(Conservation of energy)

- Change in heat energy = heat in – heat out

\[\Delta U_{\text{heat}} = (\Delta T)(\text{mass})(\text{specific heat}) \]
\[\Delta U_{\text{heat}} = (A)(\Delta x)[q(x = x_1) - q(x = x_2)] \]
\[(\Delta T)(\text{mass})(\text{specific heat}) = (A)(\Delta x)[-\Delta q] \]
\[(\Delta T)(\rho A \Delta x)(c) = (A)(\Delta x) \left[-\frac{\partial q}{\partial x} \Delta x \right] \]
\[\frac{(\Delta T)(\rho)(c)}{\Delta t} = \left[-\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) \right] \]
\[\frac{(\Delta T)(\rho)(c)}{\Delta t} \cdot k = \frac{\partial^2 T}{\partial x^2} \]
\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]
\[\alpha = \text{thermal diffusivity} = \frac{k}{\rho c} \]
F Heat Flow Equation

- 1-D form: $K \frac{dT}{dt} = \frac{\partial^2 T}{\partial x^2}$\hspace{1cm}parabolic differential equation
- 2-D form: $K \frac{dT}{dt} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$
- 3-D form: $K \frac{dT}{dt} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$

G Laplace equation

- Applies to steady state distribution of temperature
- Temperature does not change as a function of time
- $\frac{\partial T}{\partial t} = 0$

- 1-D: $\frac{\partial^2 T}{\partial x^2} = 0$
- 2-D: $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$
- 3-D: $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$
- General: $\nabla^2 T = 0$

$Curvature(T_{v,w}) = \frac{d^2 T}{dx^2} \left[\frac{d^2 T}{dx^2} \right]^{3/2} + \frac{1}{\sqrt{1 + \left(\frac{d^2 T}{dx^2} \right)^2}}$, so $d^2 T = 0$ means curvature($T_{v,w}$) = 0
H Relationship between 1-D temperature profile and heat change

\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]

- To a good approximation, the rate of temperature change with time scales with the curvature of the temperature profile
- If the 1-D temperature profile isn't curved, then no change in heat energy occurs in the slab (i.e., steady state exists)

I Fluid Flow Equation

(Conservation of mass for incompressible fluid)

- Change in fluid mass = mass in – mass out

\[
\Delta \text{mass} = \frac{\Delta \text{volume}}{\Delta t} \cdot (\text{density})(\Delta H) \\
= (A)(\Delta t)(\text{density})[q(x=x_1) - q(x=x_2)] \\
= \frac{\Delta \text{volume}}{\Delta t} \cdot \frac{\Delta H}{\Delta t} = \frac{\Delta t}{\Delta H} \cdot \frac{\Delta H}{\Delta t} = \left(-\frac{\partial q}{\partial x} \right) \Delta x \\
S(\frac{\Delta H}{\Delta t}) = \left[-\frac{\partial H}{\partial x} \right] \Delta x \\
S = \text{storativity} \\
\Delta H = k \frac{\partial^2 H}{\partial x^2} \\
\frac{\partial H}{\partial t} = \alpha \frac{\partial^2 H}{\partial x^2} \\
\alpha = \text{hydraulic diffusivity} = k/S \]

\[
Q = \text{volumetric flow rate} \\
\Delta H = \text{height} \\
H_1 > H_2 \\
\alpha = \frac{\partial H}{\partial t} = \alpha \frac{\partial^2 H}{\partial x^2} \\
S = \text{storativity} \\
\Delta H = k \frac{\partial^2 H}{\partial x^2} \\
\frac{\partial H}{\partial t} = \alpha \frac{\partial^2 H}{\partial x^2} \\
\alpha = \text{hydraulic diffusivity} = k/S \]
J Relationship between head profile and fluid volume change

\[\frac{\partial H}{\partial t} = \alpha \frac{\partial^2 H}{\partial x^2} \]

- To a good approximation, the rate of fluid content change with time scales with the curvature of the head profile
- If the head profile isn’t curved, then no change in fluid content occurs in the slab

IV Finite difference interpretation of heat flow equation

- \(\nabla^2 T = 0 \)
- The value of \(T \) (here \(T = \) temperature) at a given point is the average of the values at the nearest neighboring points on a square grid (see notes on wave eqn)

\[T_0 = \frac{T_1 + T_2 + T_3 + T_4}{4} \]
V Dimensional analysis

\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]

A Question: How does the thickness \(H \) of a plate control the time the plate takes to cool?

B Consider the dimensions of the terms in the heat flow equation and the plate thickness \(H \)

\[[t_c] = \text{cooling time} \]
\[[T] = ^\circ \text{K} \]
\[[\alpha] = (\text{length})^2 (\text{time})^{-1} \]
\[[H] = [x] = \text{length} \]

C Now consider the cooling time at a point in the plate

D The equation for the cooling time \(t_c \) must be dimensionally consistent, and can only depend on the relevant factors. So

\[t_c = CT^a \alpha^b H^c, \]

\[[t_c] = \text{time} \quad [T] = ^\circ \text{K} \]
\[[\alpha] = (\text{length})^2 (\text{time})^{-1} \quad [H] = \text{length} \]

where \(C \) is an unknown dimensionless constant

Hence

\[[t_c] = [T]^a [\alpha]^b [H]^c \]

\[(\text{time})^1 = (^\circ \text{K})^a \left(\frac{\text{length}^2}{\text{time}} \right)^b (\text{length})^c \]

\[(\text{time})^1 = (^\circ \text{K})^a (\text{length})^{2bc} (\text{time})^{-b} \]

By inspection

\[a = 0; b = -1; c = 2 \]

So

\[t_c = C \alpha^{-1} H^2 \]
V Dimensional analysis

\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]

F Meaning of solution \(t_c = \frac{C}{\alpha^{\frac{1}{2}}} H^2 \)

1. The time for cooling the plate to some fraction of its initial temperature is proportional to \(1/H^2 \)
2. Doubling the plate thickness quadruples the cooling time
3. If \(C \approx 1 \), then \(t_c = \frac{H^2}{\alpha} \)

This can be used for rough estimates of the cooling time

References