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TERZAGHI’S 1-D CONSOLIDATION EQUATION (40)

I Main Topics
A The one-dimensional consolidation equation analog to heat flow
C Calculating consolidation for double-sided drainage

I I The one-dimensional consolidation equation analog to heat flow
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At time t=0, a pressure P is applied to the top of our sand-clay-sand
sandwich.  The increase in load will be initially born by the water; the                    
water pressure in all the layers goes up.  This excess pore pressure (water                                                  
pressure above the hydrostatic [equilibrium] level) will dissipate quickly                                                                               
in the sand layers because the water flows rapidly through the high-
permeability sand (it flows sideways in a "violation" of our one-
dimensional assumptions).  The excess pore pressure will dissipate slowly
in the clay.  The water in the clay has to flow vertically because of the
long, slow horizontal flow path in the clay.  Experience shows that the
sand will consolidate little.  Individual sand grains are stiff, and their               
volumes change little with the applied loads.  Unless the sand grains
change their packing, the collective volume of the sand won’t change
significantly either.  The clay, however, will consolidate significantly.
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We start by looking at how the water flows, using Darcy’s Law.

Q k i A =  -    (40.1)
Q=discharge; k=conductivity; i=head gradient; A=Area

Dimensions                  
Q: L3/t k: L/t i: L/L (dimensionless) A: L2

q Q A flux ki =  /  =   =  - (40.2)

q = unit discharge (discharge/unit area).  Dimensions of velocity.
Now we investigate the head gradient, which drives fluid flow:
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The excess pore pressure (uexcess) in (40.3) is the difference between the
actual pore pressure (u) and hydrostatic pressure (uhydrostatic).  The rate

of change in the elevation head (z) and the hydrostatic pressure head
cancel each other out exactly:            
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Without this cancellation, then water at the bottom of a still swimming
pool might flow to the top of the pool!  So equation (40.3) simplifies:
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The head gradient at the base of the slice (i.e., at elevation “z”) is:
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The head gradient at the top of the slice (i.e., at elevation “z+dz”) is:

i
g z

ue ue g z
ue

ue
z

dz
g

ue
z

ue
z

dz2
2

2
1 1 1= + = + = +( ) 
















ρ

∂
∂ ρ

∂
∂

∂
∂ ρ

∂
∂

∂
∂

∆
(40.6)

The change in unit discharge [i.e, the net flow of water out of the clay                                                            
slice (per unit area)] reflects the water loss                                in the slice (per unit area):       
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Two comments.  First, we have held k, the hydraulic conductivity, constant
- is that OK?  Second, the right hand side of (40.7) looks somewhat like
one side of the heat equation.  What about the left side?  The change in
unit discharge of the slice times the area (A) of the slice gives the water
volume loss with respect to time:
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(40.8)
The water volume loss is also the void volume loss in the clay.  If both                                                                                                  
sides of (40.8) are divided by the area A, then the right side is the change
in void volume/unit area with respect to time, or in other words, the
height change of the slice with respect to time.  The height change, in
turn, is the product of the vertical strain (εz) and the original slice height

h0 = dz, so
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Let's substitute this into the left side of equation (40.7):
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This looks even more like the heat equation, but note that εz ≠ ue.

Equation (40.10b) expresses how the vertical strain changes with time
relative to the second partial derivative of the excess pore pressure with
respect to position.  We seek to find how the vertical strain changes as a
function of the effective stress.  The coefficient of compressibility (mv) ,

also known as the coefficient of volume change, is defined as the change
in volumetric strain divided by the change in effective stress.  For our 1-D
case:
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In our case here, the change in effective stress is exactly opposite to the
change in the excess pore pressure (i.e., the increase in load picked up by           
the soil skeleton equals the decrease in the excess water pressure).  So:
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Solving for the strain, which appears on the left side of (40.10b), gives

εz mv ue u= − −( )0 (40.13)
Inserting (40.13) into (40.10b) yields
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Now differentiate the left side of (40.14), noting that u0 is a constant:
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This can be simplified by grouping all the constants:
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The term Cv is called the coefficient of consolidation.  This equation is

exactly analogous to the heat equation:
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So the diffusion of heat in an insulated bar is analogous to the diffusion of
excess pore pressure in a soil.  A key difference between the two
phenomena is that the hydraulic conductivity of earth materials generally
decreases as the porosity or void ratio decreases; this effect would
increase the consolidation time.

I I I Calculating consolidation for double-sided drainage
At this point we return to some practical questions: How much will a

clay layer will consolidate?  What is the ultimate consolidation?  How
does the consolidation relate to the pore pressure?  We start with our
definition for strain, and focus on the thickness of the clay layer (H).
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The change in void volume can be expressed in terms of the void ratio e:
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So putting (40.18) and (40.19) together:
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This provides a way to limit the ultimate consolidation.  We know that ∆e
cannot exceed the initial void ratio, so
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If we know the ultimate change in effective stress, then the coefficient

of volume change can be used to get the thickness change.  In our 1-D

situation, volume changes occur as a result of height changes, so
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Solving for Ho in the above expression yields

H m Hv0 ∆ ∆σ' = (40.23)
This not only can be used to give the ultimate consolidation, but because
we can calculate the change in effective stress in a layer from the change
in excess pore pressure, we can calculate how the consolidation varies as
a function of time.  The excess pore pressure will vary through a layer, so
the average excess pore pressure (with the overbar) in the layer is what is
used:
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This ratio is known as the consolidation ratio U.  One note of caution in
the use of equations (40.23) and (40.24): they yield unrealistically large
values of settlement for large values of ∆ σ’.  For example, if (∆ σ’)( mv) >1,
then ∆H > H0.  The layer obviously cannot achieve a negative thickness, so
mv should only be considered a constant for a finite range of ∆ σ’.
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At a given instant in time, this consolidation ratio can be visualized in the
following plot, where the horizontal axis is position across a layer, and
the vertical axis is the excess pore pressure.
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These curves show how the excess pore pressure decays with time.  The
ratio of the area above a curve to the area of the entire box is the
consolidation ratio U at a given time.  The lower the curve, the longer the
time for the excess pore pressure to diffuse.


