13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

Main Topics (see chapters 14 and 18 of Means, 1976)

A Fundamental principles of continuum mechanics
B Position vectors and coordinate transformation equations
C Displacement vectors and displacement equations
D Deformation
E Homogeneous and inhomogeneous strain

Transition From Particle Mechanics to Continuum Mechanics

Newton’s Pendulum
http://www.lhup.edu/~dsimanek/scenario/collision-r.jpg

Sheep Mountain Anticline, Wyoming
http://www.geology.wisc.edu/~maher/air/air07.htm
II Fundamental principles of continuum mechanics

A Number of particles is sufficiently large that the concept of bulk material behavior is meaningful

B Relates natural world to the realm of mathematics

C Densities of mass, momentum, and energy exist (no "holes")
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

II Fundamental principles of continuum mechanics

D Examples of continuous properties
 1 Density \(\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V} \)

So certain derivatives have to exist

10/3/12

13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

II Fundamental principles of continuum mechanics

D Examples of continuous properties (cont.)
 2 Hydraulic conductivity ("permeability")

E Scale matters

Note that the concept of derivatives becomes difficult at certain scales

10/3/12
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

II Fundamental principles of continuum mechanics
F Variability
 1 Heterogeneity: material property depends on position

Hand sample of gneiss

10/3/12
GG303
7
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

III Position vectors and coordinate transformation equations
A \(\mathbf{X} = \) initial (undeformed) position vector
B \(\mathbf{X}' = \) final (current, or deformed) position vector (at time \(\Delta t \))
C Coordinate transformation equations
1 \(\mathbf{X}' = f(\mathbf{X}) \)
 Lagrangian: final position a function of initial position
2 \(\mathbf{X} = g(\mathbf{X}') \)
 Eulerian: initial position a function of final position

IV Displacement vector (\(\mathbf{U} \))
A \(\mathbf{U} = \mathbf{X}' - \mathbf{X} \)
1 \(x \)-component: \(u_x \) or \(u \)
2 \(y \)-component: \(u_y \) or \(v \)
3 \(z \)-component: \(u_z \) or \(w \)
B Lagrangian \(\mathbf{U}(\mathbf{X}) \):
 displacement in terms of initial position
C Eulerian \(\mathbf{U}(\mathbf{X}') \):
 displacement in terms of final position
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

V Deformation: rigid body motion + change in size and/or shape

A Rigid body translation

1. No change in the length of line connecting any points
2. All points displaced by an equal vector (equal amount and direction); no displacement of points relative to one another
3. \[X' = [U] + [X] \]
 matrix addition (U is a constant)

B Rigid body rotation

1. No change in the length of line connecting any points
2. All points rotated by an equal amount about a common axis; no angular displacement of points relative to one another
3. \[X' = [a][X] \]
 matrix multiplication; rows in [a] are dir. cosines!
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

V Deformation: rigid body motion + change in size and/or shape

C Change in size and/or shape (distortional strain)
1 At least some line segments connecting points in a body change lengths (i.e., the relative positions of points changes)
2 \ddot{u} is not a constant throughout the body (i.e., \ddot{u} varies)

13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

C Change in size and/or shape (distortional strain) – cont.
3 Change in linear dimension
 A Extension (or elongation): ε
 $\varepsilon = \frac{\Delta L}{L_0} = \frac{L_1 - L_0}{L_0}$
 B Stretch: S
 $S = \frac{L_1}{L_0} = \frac{L_1 - L_0 + L_0}{L_0} = 1 + \varepsilon$
 C Quadratic elongation: λ
 $\lambda = \left(\frac{L_1}{L_0}\right)^2 = S^2$
 D All are dimensionless

Elongation

$\varepsilon = \frac{L_1 - L_0}{L_0}$
$S = \frac{L_1}{L_0}$
$\lambda = \frac{L_1}{L_0}^2$
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

C Change in size and /or shape (distortional strain) – cont.

3 Shear strain: γ
 a Describe change in right in angle between originally perpendicular lines
 b $\gamma = \tan \psi$
 For small ψ, $\tan \psi \approx \psi$
 c Dimensionless

Shear Strain

$\gamma = \tan \Psi$

D Change in volume (dilational strain)

1 Dilation (Δ)
 \[\Delta = \frac{\Delta V}{V_0} = \frac{V_1 - V_0}{V_0} \]
 2 Dimensionless

\[\Delta = (V_1 - V_0) / V_0 \]
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

D Change in volume (dilational strain) – cont.

3 Example

\[\Delta = \frac{V - V_0}{V_0} \]

\[V_0 = \begin{bmatrix} a_0 & 0 & 0 \\ 0 & b_0 & 0 \\ 0 & 0 & c_0 \end{bmatrix} \]

\[V_1 = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & b_1 & 0 \\ 0 & 0 & c_1 \end{bmatrix} \]

\[\Delta V_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[\Delta V_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[\Delta V = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[V_1 = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & b_1 & 0 \\ 0 & 0 & c_1 \end{bmatrix} \]

For small strains (\(\varepsilon << 1 \))

VI Homogeneous and inhomogenous strain

Example of homogeneous strain in one dimension

\[u = u(x) = x' = 2x - x \]

Lagrangian

\[\varepsilon = \frac{\Delta L}{\Delta x} = \frac{\left((x' - x_1) - (x_2 - x_1) \right)}{(x_2 - x_1)} \]

\[= \frac{\left((x' - x_2) - (x_1' - x_1) \right)}{(x_2 - x_1)} \]

\[= \frac{\left(x_1 - u_1 \right)}{(x_2 - x_1)} = \Delta u/\Delta x \]
13. BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

VI Homogeneous and inhomogenous strain

Example of inhomogeneous strain in one dimension

\[x' = x^2 \]

\[u = u(x) = x' - x = x^2 - x \]

\[\varepsilon = \lim_{\Delta x \to 0} \frac{\Delta L}{L_0} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx} = 2x - 1 \]