Non-Ideality in Chemical Mixtures

Last lecture we discussed that we can estimate γ_i with the Debye-Hückel equation:

$$-\log \gamma_i = A z_i^2 I^{1/2}$$

For sea water, the major ion content is (almost) constant so the same γ_i parameterization works throughout the oceans.

A simple Debye-Hückel parameterization turns out to be inadequate for sea water and higher ionic strength situations, so one or another forms of extended Debye-Hückel theory are used.

TABLE 8.1 Major Dissolved Components of Seawater for a Salinity of 35%

<table>
<thead>
<tr>
<th>Ion</th>
<th>g/kg</th>
<th>mM*</th>
<th>%</th>
<th>Percent Free Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl$^-$</td>
<td>19.354</td>
<td>558</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>10.77</td>
<td>479</td>
<td>31</td>
<td>98</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>1.290</td>
<td>54.3</td>
<td>31</td>
<td>89</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>2.712</td>
<td>28.9</td>
<td>1.2</td>
<td>39</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>0.412</td>
<td>10.5</td>
<td>1.1</td>
<td>99</td>
</tr>
<tr>
<td>K$^+$</td>
<td>0.399</td>
<td>10.4</td>
<td>1.1</td>
<td>98</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>0.12</td>
<td>2.0</td>
<td>0.4</td>
<td>80</td>
</tr>
</tbody>
</table>

* mM = millimoles per liter at 25°C.

Sources: Wilson 1975; Skirrow 1975; Millero and Schreiber 1982.
Non-Ideality in Chemical Mixtures

There are two closely-related γ parameterizations:

a. the "Truesdell-Jones" Equation.

$$-\log \gamma_i = \frac{A z_i^2}{1 + B a_i}$$

where a_i is ionic radius, and A and B are temperature dependent constants.

b. the "Davies" Equation

$$-\log \gamma_i = A z_i^2 \left[\frac{I^{1/2}}{1 + I^{1/2}} - 0.2 I \right]$$

in the Davies equation, the "0.2 I" term attempts to account for the "Ba" term of the Truesdell-Jones equation.

Notice that the Davies approximation has no solute-specific size parameterization (a_i) whereas Truesdell-Jones does.
Non-Ideality in Chemical Mixtures

Let’s calculate true activity of Ca\(^{2+}\) in a 0.05 m solution of CaCl\(_2\) at 25°C using extended Debye-Hückel theory (Truesdale-Jones).

\[
\text{CaCl}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2\text{Cl}^{-} (aq)
\]

a. First, we calculate Ionic Strength:

\[
I = 0.5 \sum m_i z_i^2 = 0.5 \left[0.05(2)^2 + 0.1(-1)^2 \right] = 0.15
\]

```plaintext
Ca^{2+} \quad \text{Cl}^{-}
```

A comparison of the “Truesdell-Jones” and Davies equations for a MgCl\(_2\) solution shows that Debye-Hückel and Davies work best at low I and Truesdale-Jones works better at high I, for this particular salt.
Non-Ideality in Chemical Mixtures

b. next we get $\gamma_{Ca^{2+}}$ using... *(get values from this table)*

\[
- \log \gamma_{Ca^{2+}} = \frac{0.5085(2)^2(0.15)^{\frac{1}{2}}}{1 + (0.3281 \times 10^8)(6 \times 10^{-8})(0.15)^{\frac{1}{2}}} = \gamma_{Ca^{2+}} = 0.357
\]

c. then we get $a_{Ca^{2+}} = \gamma_{Ca^{2+}} m_{Ca^{2+}} = 0.357(0.05) = a_{Ca^{2+}} = 0.018 m$

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>B (10^{-5})</th>
<th>A (10^{-8})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0803</td>
<td>0.5241</td>
</tr>
<tr>
<td>5</td>
<td>0.0801</td>
<td>0.5249</td>
</tr>
<tr>
<td>10</td>
<td>0.0800</td>
<td>0.5258</td>
</tr>
<tr>
<td>15</td>
<td>0.0800</td>
<td>0.5262</td>
</tr>
<tr>
<td>20</td>
<td>0.5062</td>
<td>0.5772</td>
</tr>
<tr>
<td>25</td>
<td>0.5582</td>
<td>0.6418</td>
</tr>
<tr>
<td>30</td>
<td>0.5759</td>
<td>0.6990</td>
</tr>
<tr>
<td>35</td>
<td>0.5778</td>
<td>0.6997</td>
</tr>
<tr>
<td>40</td>
<td>0.5778</td>
<td>0.6997</td>
</tr>
<tr>
<td>45</td>
<td>0.5777</td>
<td>0.6997</td>
</tr>
<tr>
<td>50</td>
<td>0.5779</td>
<td>0.7002</td>
</tr>
<tr>
<td>55</td>
<td>0.5774</td>
<td>0.6995</td>
</tr>
<tr>
<td>60</td>
<td>0.5742</td>
<td>0.6992</td>
</tr>
</tbody>
</table>

Data from Gamble and Christ (1982).

Non-Ideality in Chemical Mixtures

What quantitative effect does ionic strength have on overall solubility of ionic compounds?

Solubility is defined as the total amount of a material that will dissolve into a fixed amount of solvent. If we assume ideal behavior, each mole of a salt that dissolves in a liter of water will result in stoichiometric molal units of solute concentration.

In the case of “ideal” CaCl$_2$:

\[K_{sp} = m_{Ca^{2+}} m_{Cl^{-2}} \]

But with non-ideal ions, the solution upon dissolution reflects ion activities:

\[K_{sp-ia} = a_{Ca^{2+}} a_{Cl^{-2}} \]

note: I’ve renamed the equilibrium constant for the non ideal case with the “ion-activity” subscript so we can keep track of it in equations on the next page.
Non-Ideality in Chemical Mixtures

To quantify the effect of I, we need to calculate $\gamma_{Cl^-} = 0.720$ (in the same manner we used for $\gamma_{Ca^{2+}}$, but using $z = 1$ and $a = 3 \times 10^{-8}$).

$$K_{sp-ia} = a_{Ca^{2+}} a_{Cl^-} = (\gamma_{Ca^{2+}} m_{Ca^{2+}})(\gamma_{Cl^-} m_{Cl^-})^2$$

$$K_{sp-ia} = \gamma_{Ca^{2+}} \gamma_{Cl^-}^2 \cdot m_{Ca^{2+}}m_{Cl^-}$$

$$K_{sp-ia} = \gamma_{Ca^{2+}} \gamma_{Cl^-}^2 \cdot K_{sp}$$

$$K_{sp} = (0.357) \cdot (0.720)^2 \cdot K_{sp}$$

$$K_{sp-ia} = 5.40 K_{sp-ia}$$

Thus, at $I = 0.15$ (a typical stream water value) we predict that the solubility of CaCl$_2$ is 5.4 times higher due to non-ideality than it would be if the dissolved ions behaved ideally.

Non-Ideality in Chemical Mixtures

The last example we looked at was a simplified case, where all of the Ionic Strength of a solution came from one salt.

Systems with multiple salts are more common in nature. Nevertheless, the parameterizations of γ_i work the same.

Our parameterizations predict that double charged ions would have much lower activities than singly charged ones, so that these are the ions that have the biggest non-ideality effects (e.g., Ca$^{2+}$ and Mg$^{2+}$ more so than Na$^+$ or K$^+$, and the same for negatively charged ions).

Relative γ_i as a function of I (e.g., going from $I = 0.15$ to $I = 0.7$)

γ_i depends on I differently in each parameterization. However, in general, one can show with these various equations that activity for the same ions goes down by roughly

- 10% for single charged ions
- 35% for doubly charged ions
Thermodynamics of Chemical Mixtures

Other Types of Solubility

Solutions are not limited to aqueous/gaseous examples.

Mixtures apply to the solid state as well.

We can use chemical potential arguments and solubility relationships any time a solute (or group of solutes) is dissolved in a solvent (the dominant phase in the mixture),..
Thermodynamics of Chemical Mixtures

Other Types of Solubility

One common use of this theory is to solubility of ions in mineral phases. This applies to:

1. **Trace element** substitution into minerals.

2. **Solid solutions** such as in the olivine system of Forsterite, Mg$_2$SiO$_4$ -- Fayalite, Fe$_2$SiO$_4$

Such solubility is often temperature or pressure dependent, giving us a means to estimate temperature (thermometry) or pressure (barometry) or both (thermobarometry) in some cases.

Thermodynamics of Chemical Mixtures

1. **Trace element** substitutions are typically at high dilution. Take the example of Co solubility in the minerals biotite and hornblende.

 $\mu_{Co} = \mu_{Co}^* + RT \ln a_{Co}/a_{tot}$ at high dilution, $a_{tot} \approx 1$ so $\mu_{Co} = \mu_{Co}^* + RT \ln a_{Co}$

 at chemical equilibrium between biotite and hornblende:

 $\mu_{Co}^{Bi} = \mu_{Co}^{Hbl}$ and $\mu_{Co}^{Bi}/\mu_{Co}^{Hbl} = 1$

 Thus

 $1 = (\mu_{Co}^{Bi} + RT \ln a_{Co}^{Bi})/(\mu_{Co}^{Hbl} + RT \ln a_{Co}^{Hbl})$

 rearranging...

 $1 = (1 + (RT \ln a_{Co}^{Bi})/(\mu_{Co}^{Bi}))/(1 + (RT \ln a_{Co}^{Hbl})/\mu_{Co}^{Hbl})$

 μ_{Co}^{Bi}, μ_{Co}^{Hbl}, and R are constants, so at constant T this reduces to

 $1 = (1 + C_1 \ln a_{Co}^{Bi})/(1 + C_2 \ln a_{Co}^{Hbl})$

 then

 $(1 + C_2 \ln a_{Co}^{Hbl}) = (1 + C_1 \ln a_{Co}^{Bi})$

 $C_2 \ln a_{Co}^{Hbl} = C_1 \ln a_{Co}^{Bi}$

 $C_2/C_1 = \ln a_{Co}^{Bi}/\ln a_{Co}^{Hbl}$

 raising both sides to the e power yields:

 $e^{C_2/C_1} = K \rightarrow K = a_{Co}^{Bi}/a_{Co}^{Hbl}$
Thermodynamics of Chemical Mixtures

The resulting K is denoted K_D and is referred to as a "distribution coefficient" or "partition coefficient" of an element between the phases present. In this case, it is the K_D for Co between biotite and hornblend (K_D^{Co}).

K_D is also sometimes called a "Henry’s law distribution coefficient" because the equation above is a generalization of $K = P_i/n_i$ (aka Henry’s Law).

We will use such K_D relationships frequently this semester.

Non ideality:

We do not have a simple theory for predicting γ_i in mineral systems.

We rely on experimentally determined a_i or on values estimated from like-charged elements parameterized as a function of atomic radius and mineral lattice strain considerations (discussed later this semester).

Thermodynamics of Chemical Mixtures

2. Solid solutions The K_D formulation of chemical potential also applies here. Take for example the minerals garnet and mica, which form mineral solid solutions of the type:

<table>
<thead>
<tr>
<th>Common</th>
<th>Biotite mica - $K(Z_3)AlSi_3O_{10}(OH)_2$</th>
<th>garnet - $Z_3Al_2Si_3O_{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>igneous forms</td>
<td>phlogopite $K(Mg_3)AlSi_3O_{10}(OH)_2$</td>
<td>pyrope $Mg_3Al_2Si_3O_{12}$</td>
</tr>
<tr>
<td></td>
<td>annite $K(Fe_3)AlSi_3O_{10}(OH)_2$</td>
<td>almandine $Fe_3Al_2Si_3O_{12}$</td>
</tr>
</tbody>
</table>

Because a range of stoichiometric and non-stoichiometric forms of either mineral are possible (e.g., $(Mg_3Fe_{1-x})_3Al_2Si_3O_{12}$), we think of the solid solution as arising from an exchange reaction with

$$K_D = \left(\frac{a_{Fe}}{a_{Mg}}\right)_{garnet} / \left(\frac{a_{Fe}}{a_{Mg}}\right)_{biotite}$$
Thermodynamics of Chemical Mixtures

Here’s how we derive that equilibrium constant expression:

The simplified chemical reaction is

\[\text{Mg-garnet} + \text{Fe-biotite} \leftrightarrow \text{Fe-garnet} + \text{Mg-biotite} \]

By the definition of equilibrium constant, we know:

\[
K_{eq} = \frac{a_{\text{Fe}\text{garnet}} a_{\text{Mg}\text{biotite}}}{a_{\text{Mg}\text{garnet}} a_{\text{Fe}\text{biotite}}} = \frac{(a_{\text{Fe}}/a_{\text{Mg}})_{\text{garnet}}}{(a_{\text{Fe}}/a_{\text{Mg}})_{\text{biotite}}} = K_D \text{ as on the prior slide.}
\]

Thermodynamics of Chemical Mixtures

Pressure and Temperature Effects

Most chemical reactions have temperature and pressure dependent \(K_{eq} \):

\[
\frac{d(\ln K)}{dT} = \frac{\Delta H^o}{RT^2}
\]

The change in \(K_{eq} \) as a function of temperature is related to the enthalpy change inversely related to Temperature-squared.

When \(\Delta H^o \) is independent of temperature, this becomes

\[
\ln K_2/K_1 = \frac{\Delta H^o}{R} \cdot (1/T_2 - 1/T_1)
\]

The change in \(K_{eq} \) as a function of temperature is related to the enthalpy change divided by the change in Temperature times \(R \).

and

\[
\frac{d(\ln K)}{dP} = \frac{\Delta V^o}{RT}
\]

The change in \(K_{eq} \) as a function of pressure is related to the volume change divided by the Temperature times \(R \).
Thermodynamics of Chemical Mixtures

These P and T relationships give us a geochemical means for determining the temperatures (Geothermometry) and pressures (Geobarometry) in which minerals were formed.

3 classes of reactions are used as P-T indicators

a. solid solution substitutions in minerals (e.g., like we were just discussing)

b. phase boundary changes

c. phase exsolution from a mixture (“unmixing”)

The first two types are useful for determining temperatures (or pressures) of many igneous; all three are useful in metamorphic systems.

Thermodynamics of Chemical Mixtures

For instance, the exchange reaction of Fe and Mg between the minerals garnet and biotite is used as a geothermometer because K_D is temperature dependent @ $\ln K \propto 1/T$.

$$K_D = \frac{(a_{Fe}/a_{Mg})_{garnet}}{(a_{Fe}/a_{Mg})_{biotite}}$$

It is difficult to calculate the temperature dependence of this exchange from first principles, because of ion non-ideality, and because other elements besides Fe and Mg (i.e., Ca and Ti) can appreciably substitute into these minerals as “Z”.

Instead…
Thermodynamics of Chemical Mixtures

Instead, the temperature dependence is parameterized using experimental measurements of K_D^{Mg-Fe} at different temperatures, pressures and ion mixtures (for Z). The resulting data are plotted in a $1/T$ vs. $\ln K$ diagram (i.e., assuming ΔH_T is not a function of temperature), and a best-fit line through the data is then calculated.

![Graph showing K_D as a function of temperature](image)

We are not limited only to mineral-mineral substitution reactions.

We can also use certain mineral-melt reactions for geothermometry or geobarometry.

For example, another useful geo-thermometer is the Fe-Mg exchange reaction between basaltic melt and olivine.
Thermodynamics of Chemical Mixtures

Solid solution geothermometry is not limited to igneous and metamorphic systems.

For instance, the substitution of Sr\(^{2+}\), Mg\(^{2+}\) and U\(^{6+}\) into biogenic CaCO\(_3\) (both calcite and aragonite) is T-dependent, from which one can estimate past sea surface temperatures (SST) in paleo-oceanographic studies.

![Diagram of divalent metal partition coefficients (K\(_{d}\)) as a function of metal cation properties.](image)

Relationships between the Sr/Ca ratios in *Porites* spp. colonies against (a) incubation temperature for 5 coral colonies cultured at five temperature settings between 21°C and 29°C. The error bar indicates the deviation of triplicate analysis. The formula obtained for the Sr/Ca-temperature relationship was Sr/Ca = 10.31 – 0.057 T\(^\circ\)C; \(r = -0.83; P < 0.01\).

(b) Diagram of divalent metal partition coefficients (K\(_{d}\)) as a function of metal cation properties. The latter are represented by \(\Delta G_{f}^{n,M} \) the standard non-solvation energy of cation \(M^{2+}\), \(r_M^{2+}\) the ionic radius of \(M^{2+}\), and \(\Delta G_{f}^{f,M} \) the standard Gibbs free energy of formation of cation \(M^{2+}\) (from Inoue et al. 2007, Geophys. Res. Lett., vol. 34).

GG325 L6, F2013

Thermodynamics of Chemical Mixtures

Mineral phase boundary change example:

The presence of just one, any two, or all three of these three phases in a rock gives useful constraints on P and T of formation. This is a very useful system in metamorphosed pelitic (i.e., clay-rich) sediments.

![Phase diagram for Al\(_2\)SiO\(_5\) (kyanite-sillimanite-andalusite) as determined by Holdaway (1971).](image)

Due to sluggish reaction kinetics, the exact position of these phase boundaries remains somewhat uncertain.

\[
\text{Al}_2\text{SiO}_5 \text{ (s) (sillimanite)} \leftrightarrow \text{Al}_2\text{SiO}_5 \text{ (s) (andalusite)} \leftrightarrow \text{Al}_2\text{SiO}_5 \text{ (s) (kyanite)}
\]

GG325 L6, F2013