Lecture 3
More General Chemistry Review

Please read chapter 1 and 2 of McSween et al. for this week

• Classes of chemical reactions
• Mathematically describing chemical reactions
Chemical reactions

Let's review 6 geochemically pertinent chemical reaction types. \(l, v, s \) and \(aq \) refer to "liquid", "vapor or gas", "solid" and "dissolved aqueous" phases, respectively.

a. **Phase change**

\[
\text{H}_2\text{O}(s) \leftrightarrow \text{H}_2\text{O}(l) \leftrightarrow \text{H}_2\text{O}(g)
\]

These two reactions drive the hydrologic cycle.

\[
\text{CaCO}_3(s) \text{ (aragonite)} \leftrightarrow \text{CaCO}_3(s) \text{ (calcite)}
\]

(important for formation/preservation of carbonate sediments globally)

b. **Bond Reorganization**

The Redfield equation of Photosynthesis/Respiration (most plant matter is made and destroyed by organisms using something very close to this):

\[
106\text{CO}_2 + 16\text{NO}_3^- + 2\text{HPO}_4^{2-} + 122\text{H}_2\text{O} + 18\text{H}^+
\]

\[
\uparrow\downarrow
\]

\[
\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 138\text{O}_2
\]

\[
\text{or} \quad (\text{CH}_2\text{O})_{106}(\text{NH}_3)_{16}(\text{H}_3\text{PO}_4) + 138\text{O}_2
\]

the "Urey" rxn is important for understanding rock weathering and global controls on atmospheric \(\text{CO}_2 \):

\[
\text{CaSiO}_3(s) + \text{CO}_2(g) \leftrightarrow \text{CaCO}_3(s) + \text{SiO}_2(s)
\]
Chemical reactions

c. Dissolution/precipitation & Dissolution/gas release

\[\text{CaSO}_4(s) \leftrightarrow \text{Ca}^{2+}(aq) + \text{SO}_4^{2-}(aq) \]
\[\text{NaCl}(s) \leftrightarrow \text{Na}^+(aq) + \text{Cl}^{-}(aq) \]
\[\text{CO}_2 (g) \leftrightarrow \text{CO}_2 (aq) \]
Chemical reactions

f. Complexation/Chelation

\[
\text{Fe}^{2+}(aq) + 6\text{H}_2\text{O} \leftrightarrow \text{Fe(H}_2\text{O)}^6{}^{2+} (aq)
\]

hydration of Fe\(^{2+}\) in water

aqueous metal complex with dissolved organic carbon

complexation/chelation

Complexes involve ligands and host ions.

Hydration is a specific type of complexation reaction where the ligands are all water:

\[
\text{Fe}^{2+} + 6\text{H}_2\text{O} \leftrightarrow \text{Fe(H}_2\text{O)}^6{}^{2+}
\]

Schematic depiction of water using it’s lone pairs of electrons to stabilize an Fe\(^{2+}\) ion in solution. The hydrate itself involves 5 other water molecules.
ligands:
Other common natural ligands are Cl\(^-\) (chloride) and :NH\(_3\) (ammonia).

These, along with water, are known as *unidentate*.

Unidentate ligands offer electrons from a single site to a complex.

In an aqueous Fe\(^{3+}\) solution with both Cl\(^-\) and :NH\(_3\), many complexes are possible involving these two ligands and H\(_2\)O.

The charge on the complex remains unchanged relative to Fe\(^{3+}\) with H\(_2\)O and NH\(_3\) ligands, but each Cl\(^-\) ligand brings one negative charge.

All of the following complexes are possible in this solution:

\[[\text{FeCl}_6]^{3-}\] \[[\text{FeCl}_3(\text{NH}_3)_3]^0\] \[[\text{FeCl}_2(\text{NH}_3)_4]^+\] \[[\text{Fe}(\text{NH}_3)_6]^{3+}\]

As you might expect, the relative proportions of these complexes will vary with pH since NH\(_3\) + H\(^+\) ↔ NH\(_4^+\) (ammonium is not a good ligand)

At low pH [FeCl\(_6\)]\(^{3-}\) would be favored

ligands:

Chelation is a type of complexation that involves *multidentate* ligands.

A *chelate* is a complex involving such a ligand.

A *multidentate ligand* is one that has more than one electron pair to donate to a cation. The simplest type is a bidentate ligand.

A *bidentate ligand* has two active binding sites for a cation.

e.g., ethylene diamine, :NH\(_2\)-CH\(_2\)-CH\(_2\)-H\(_2\)N:

and oxalic acid/oxylate anion, which has the following forms in solution:

\[
\begin{align*}
\text{HO} & - \text{C} = \text{C} - \text{OH} & \text{HO} & - \text{C} = \text{C} - \text{O} \\
\text{HO} & - \text{C} = \text{C} - \text{OH} & \text{HO} & - \text{C} = \text{C} - \text{O} \\
\text{HO} & - \text{C} = \text{C} - \text{OH} & \text{HO} & - \text{C} = \text{C} - \text{O} \\
\end{align*}
\]

Carbon-oxygen double bond delocalized e- in \(\pi\) bond
ligands:

Bidendate ligands can bind in two ways:

- **Cis** next to
- **Trans** across

Here, M is a metal or other cation and N is where the donor electron pairs are in the ligand (squiggly line indicates linked carbon atoms).

A "small" bidentate ligand such as ethylene diamine (\(\text{NH}_2-\text{CH}_2-\text{CH}_2-\text{NH}_2\)) can usually only bind cis for geometric reasons.

Mathematically describing chemical reactions

How do we quantify reactions using chemical equations? All reactions can be described by algebraic equations of reactants and products. They must be material and charge "balanced" to be used quantitatively.

For a generic chemical reaction involving reactants A and B and products C and D, their reaction is mathematically balanced using stoichiometric coefficients a, b, c, d so that the values of these coefficients equalize the matter and electrical charge on both sides of the equation.

\[
aA + bB \leftrightarrow cC + dD
\]
Equilibrium

Chemical reactions involve reorganization of atoms and molecules to form new materials. It is useful to have a numeric description of reactions that will help us predict if and how much it will occur under various circumstances.

For almost any environmental condition there is a unique mix of reactants and products in an assemblage of molecules that doesn't change with time because an energetically favorable balance is achieved.

This condition is chemical equilibrium, wherein the relative proportions of reactants and products are expressed with an equilibrium constant (K):

$$K = \frac{C^c D^d}{A^a B^b}$$

The quantities A, B, C and D are element activities, which are approximately equal to molar concentration (in liquids) or pressure (in the gas phase). We will discuss situations this semester where activity ≠ concentration.

By standard practice activities of solids and pure H\textsubscript{2}O(l) in chemical equations always equal 1 in the formulation of K.

There is only one unique value of K for a given reaction at a certain value of pressure, P, and temperature, T.
Non-Equilibrium

If we find a system that has concentrations of reactants or products that differ from those predicted by K it is not in equilibrium. At non-equilibrium conditions, the reaction coefficient Q is defined as

$$Q = \frac{C^c D^d}{A^a B^b}$$

- $Q < K$: deficit of products.
 reaction proceeds in the direction written to correct this.
- $Q > K$: excess of products.
 reaction will proceed in the reverse direction.

Unfortunately, the value of Q says almost nothing about the rate at which the system will return to equilibrium. This is the domain of another field of chemistry known as *Kinetics* (which we will discuss some during the semester).

Using equilibrium constants

What do the absolute values of K mean?

Consider two solubility reactions (solid \leftrightarrow dissolved (aq) solute). For this type of reaction K is denoted with the subscript "sp" = K_{sp}.

NaCl(s) \leftrightarrow Na$^+$ (aq) + Cl$^-$ (aq) has a large K_{sp} - Products are favored, therefore halite is very soluble in water.

BaSO$_4$(s) \leftrightarrow Ba$^{2+}$(aq) + SO$_4^{2-}$(aq) has a small K_{sp} - Reactants are favored, so barite is sparingly soluble.

Chemical equations and Equilibrium constants can be combined algebraically.

\[
\begin{align*}
(1) \quad A + B & \leftrightarrow AB \quad K_1 = \frac{[AB]}{[A][B]} \\
(2) \quad AC & \leftrightarrow A + C \quad K_2 = \frac{[AC]}{[A][C]} \\
----------------------------- \quad (1 + 2) \quad AC + B & \leftrightarrow AB + C \quad K_3 = \frac{[AB][C]}{[AC][B]} \quad K_3 = K_1 \cdot K_2
\end{align*}
\]
Example: Combining Equilibria in the aqueous CO₂ system

Let’s combine the system of inorganic reactions governing the amount of dissolved CO₂ in natural waters (which bears directly on the amount of CO₂ in our atmosphere, geosphere and biosphere).

CO₂ has 4 forms in water, which are related by a series of chemical reactions shown schematically in the figure below:

a. dissolved gaseous carbon dioxide \(\text{CO}_2(aq) \)
b. carbonic acid \(\text{H}_2\text{CO}_3(aq) \)
c. bicarbonate anion \(\text{HCO}_3^-(aq) \)
d. carbonate anion \(\text{CO}_3^{2-}(aq) \)

Note that CaCO₃ formation (by inorganic precipitation or biogenic precipitation) is the primary upper limit control on dissolved carbon dioxide concentration.

The 4 forms of CO₂ in water are related by 5 chemical reactions: (disregarding for now photosynthesis and respiration)

1. \(\text{CO}_2(g) \leftrightarrow \text{CO}_2(aq) \)
 This is a gas solubility reaction (sometimes called a Henry's law reaction. \(K \) is given the subscript "H": \(K_H \))

2. \(\text{CO}_2(aq) + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3(aq) \)
 This is a bond reorganization reaction. It is also a type of hydration (reaction with water). \(K = K_{eq} \) (no "special" nomenclature)

3. \(\text{H}_2\text{CO}_3(aq) \leftrightarrow \text{HCO}_3^-(aq) + \text{H}^+ \)
 An acid dissociation reaction. Commonly given equilibrium constant notations of \(K_a \) if it is a *monoprotic* acid, or \(K_{a1} \) for the first acid dissociation of a *polyprotic* acid

4. \(\text{HCO}_3^-(aq) \leftrightarrow \text{CO}_3^{2-}(aq) + \text{H}^+ \)
 Another acid dissociation reaction. This is the second dissociation of *diprotic* carbonic acid, so we call it or \(K_{a2} \)

5. \(\text{CaCO}_3(s) \leftrightarrow \text{Ca}^{2+}(aq) + \text{CO}_3^{2-}(aq) \)
 This is a solubility/dissolution reaction. \(K \) is \(K_{sp} \).
Many texts use the simplifying assumption that reactions "2" and "3" (on the prior slide) can be combined. This is because so little $\text{H}_2\text{CO}_3(\text{aq})$ is found in natural waters.

Because of this last point, the reaction sequence is shortened to

1. $\text{CO}_2(\text{g}) \leftrightarrow \text{CO}_2(\text{aq})$ \hspace{1cm} K_H
2. $\text{CO}_2(\text{aq}) + \text{H}_2\text{O} \leftrightarrow \text{HCO}_3^-(\text{aq}) + \text{H}^+$ \hspace{1cm} K'_{a1}
3. $\text{HCO}_3^-(\text{aq}) \leftrightarrow \text{CO}_3^{2-}(\text{aq}) + \text{H}^+$ \hspace{1cm} K_{a2}
4. $\text{CaCO}_3(\text{s}) \leftrightarrow \text{Ca}^{2+}(\text{aq}) + \text{CO}_3^{2-}(\text{aq})$ \hspace{1cm} K_{sp}

Let's mathematically combine them to determine an expression for the CaCO_3 solubility in a natural water (in terms of $[\text{Ca}^{2+}(\text{aq})]$).

The water is open to gas exchange with the atmosphere and we assume there are no other reactions affecting Ca^{2+}, H^+ or $\Sigma \text{CO}_2(\text{aq})$ (carbon dioxide in all of its aqueous forms).

Working backward from reaction 4:

$$K_{sp} = [\text{Ca}^{2+}][\text{CO}_3^{2-}]$$
we can rearrange to:

$$[\text{Ca}^{2+}] = K_{sp}/[\text{CO}_3^{2-}]$$ \hspace{1cm} A.

from reaction 3:

$$K_{a2} = [\text{H}^+][\text{CO}_3^{2-}]/[\text{HCO}_3^-]$$
we can rearrange to:

$$[\text{CO}_3^{2-}] = K_{a2}[\text{HCO}_3^-]/[\text{H}^+]$$
substituting into A. gives:

$$[\text{Ca}^{2+}] = K_{sp}/[\text{H}^+]/K_{a2}[\text{HCO}_3^-]$$ \hspace{1cm} B.

the same type of rearrangement of equation 2 in terms of $[\text{HCO}_3^-]$ yields:

$$[\text{HCO}_3^-] = K'_{a1} [\text{CO}_2(\text{aq})][\text{H}^+]$$
substituting into B. gives:

$$[\text{Ca}^{2+}] = K_{sp} [\text{H}^+] [\text{HCO}_3^-]/K'_{a1} [\text{CO}_2(\text{aq})]$$ \hspace{1cm} C.

Finally rearrangement of equation 1 gives:

$$K_H = [\text{CO}_2(\text{aq})]/P_{\text{CO}_2}$$
$$P_{\text{CO}_2} = K_H [\text{CO}_2(\text{aq})]$$ \hspace{1cm} D.

substituting into C. gives:

$$[\text{Ca}^{2+}(\text{aq})] = \frac{K_{sp} [\text{H}^+]^2}{K_H \cdot K'_{a1} \cdot K_{a2} \cdot P_{\text{CO}_2}}$$

What does this equation tell us? $[\text{Ca}^{2+}(\text{aq})]$ will depend on the amount of CO_2 present in the atmosphere and the pH (= -log[\text{H}^+]) of the water. We will discuss the absolute values of these equilibrium constants and the predictions that can be made with the expressions on this page later in the semester.