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Abstract 

New methods for optimizing data storage and transmission are required as orbital imaging 

spectrometers collect and downlink larger data volumes due to increases in optical efficiency and resolution. 

For missions investigating Earth surface reflectance, excising cloud-contaminated data during acquisition 

can significantly improve the overall science yield for a mission with a fixed downlink budget.  Algorithms 

that consider threshold-based screening are able to operate at the data acquisition rate but require accurate 

and comprehensive prediction of cloud and surface brightness. Previous studies have not conducted a 

comprehensive analysis of a global dataset to provide appropriate thresholds for screening or to predict 

performance. To address this concern, the basis of our analysis used the Hyperion imaging spectrometer’s 

historical archive of global Earth reflectance data. We selected a diverse subset that spans space (in 

latitudinal zone including the tropics, subtropics, arctic, and Antarctic), time (2005-2017), and wavelength 

(400 – 2500 nm) to assure that the distributions of cloud data were representative of all cases. We fit models 

of cloud reflectance properties gathered from the subset for the prediction of globally applicable thresholds. 

Distributions relate cloud reflectance properties to various surface types (land, water, and snow) and 

latitudinal zones. Models based on this dataset will be used to screen clouds onboard orbital imaging 

spectrometers, approximately doubling valuable science return per downlink.  
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1 Introduction 

Imaging spectrometers, also known as hyperspectral imagers, collect images in three dimensional 

data cubes: a two-dimensional image in the field of view and swath of the instrument with a continuous 

spectrum (depending on the instrument’s spectral channels) in the third dimension.  With the recent 

decommissioning of Hyperion, an imaging spectrometer onboard NASA’s Earth Observer 1 (EO-1), 

many space agencies are considering or planning new orbital imaging spectrometer missions such as 

HISUI (Guanter et al., 2015), EMIT(Green et al., 2018), and EnMAP (Iwasaki et al., 2011).  NASA is 

currently considering dramatically-enhanced imaging spectrometer architectures to provide measurements 

with global coverage (NASEM 2018).  For all of these cases, it is expected that the instrument duty cycle 

will be limited by data volume.  These instruments are operated with a store-and-forward mode (Williams 

et al., 2002), where the data is stored onboard in a limited “flight recorder” and can only be transmitted 

when a ground station is within view (or in the case of HISUI, when a manual transfer occurs). This limits 

the bandwidth from the satellite to the ground and thus the total data yield of the mission. Optimizing the 

downlink from orbital remote sensing satellites will increase the science yield of these missions. One way 

to avoid storing and downloading irrelevant data is to screen data images for spectral signatures onboard, 

as soon as they are collected (Thompson et al., 2014).  

Previous studies indicate that clouds account for over half of the annual sky cover globally 

(Mercury et al., 2012, Eastman et al., 2011, King et al., 2013). However, neither the coverage nor the 

spectral appearance of clouds is uniform. Clouds cover more (68%) of the oceans on Earth annually than 

land (54%), and tropical regions have been noted to be exceptionally cloudy (Mercury et al., 2012, 

Eastman et al., 2011, King et al., 2013). Moreover, there is considerable zonal variability in cloud optical 

properties due to the different processes involved in their formation and evolution (Thompson et al., 

2018).  Finally, the optimal thresholds for a particular excision scenario also depend on the expected 

brightness of the land in that area of the globe (Thompson et al., 2014).  Considering cloud fractions as a 

function of surface type and latitude could lead to more precise cloud detection.  
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To test this hypothesis, this study refines the cloud-screening algorithm previously introduced in 

Thompson et al. (2014). The original algorithm used three bands of interest to distinguish clouds from 

other surface types (El-Araby et al., 2005, Ackerman et al., 1998, Williams et al., 2002, Griffin et al., 

2003). Here, we analyze the Hyperion global archive to provide globally-applicable models parameterized 

by latitude and surface type, enabling reflectance thresholds to predict the classification of cloud-

contaminated data and non-cloud-contaminated data (land, water and snow). This study provides 

representative models for use by future orbital missions. We find that excising cloud-contaminated scenes 

will reduce onboard storage while at least doubling valuable science yield, per downlink.  

2 Methods 

Earth-orbiting imaging spectrometers that focus on surface reflectance properties typically ignore data 

contaminated with clouds. Screening spectroscopic data cubes for cloud-contaminated pixels onboard will 

allow for the downlink of more valuable science data. When screening a spectroscopic data cube for 

clouds, it is necessary to define the difference between data contaminated with clouds and data clear of 

clouds. Our data consist of pixels that are single locations within a scene, or image, which contain all the 

wavelengths measured by the spectrometer. The Hyperion hyperspectral imaging spectrometer, onboard 

NASA’s EO-1 satellite, collected a globally representative data set (Thompson et al., 2018) that we used 

for the classification of cloud-contaminated pixels. The Hyperion instrument’s measurement spans the 

400 nm to 2500 nm interval of the electromagnetic spectrum. Top of Atmosphere (TOA) reflectance 

values, whose calculation accounts for observing geometry, were used to classify each pixel into four 

categories: land, water, snow and clouds. We curated and manually classified a sample set of 102 

randomly selected images, producing distributions describing the frequency of observing each 

classification type based on their respective TOA values in each of the following wavelengths of interest: 

447.17 nm, 1245.36 nm, and 1648.90 nm (Thompson et al., 2014). Our procedure is defined by the 

following steps: choose channels or bands that will be used to classify pixels, collect pixel brightness 

distributions of an historical dataset with respect to the factors of interest (surface type and latitude), and 

optimize channel thresholds given the distributions and false alarm requirements. With this information, 
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we can predict optimal TOA values for screening clouds in new scenes based on advance knowledge of 

surface types and viewing geometry. 

2.1 The Data Set 

The Hyperion data set that spans wavelengths from 400 nm to 2500 nm was collected between 2005 

and 2017. We selected three wavelengths of interest, namely 447.17 nm, 1245.36 nm, and 1648.90 nm, 

based on previous studies distinguishing clouds from land, water, and snow (Ackerman et al., 1998, 

Griffin et al., 2003, El-Araby et al., 2005, Thompson et al., 2014). Clouds and snow have a high 

reflectance in the 447 nm band while land and water do not. The near-infrared (1245 nm) and shortwave-

infrared (1650nm) bands depict a difference in reflectance between clouds and snow. Snow has a slightly 

lower reflectance in the 1245 nm band than clouds while the 1650 nm band shows snow as even less 

reflective than clouds (Griffin et al., 2003). A subset of 102 Hyperion images were selected for our study 

over the full time range of the mission. This random set incorporated various sections of latitude to assure 

a global representation of measurements. The following latitudinal zones were included: Tropics (23.5°S 

to 23.5°N), Arctic (66.5°N to 90°N), Antarctic (66.5°S to 90°S), and Subtropics (66.5°S to 23.5°S and 

23.5°N to 66.5°N). In this report, we refer to the Arctic and Antarctic latitudinal zones together as the 

Polar Regions. Due to the nature of the Hyperion data set where most measurements were taken over 

land, a sub set of longitudes ranging the Pacific Ocean (121°E to 180°E and 121°W to 180°W) were 

included to capture the spectral properties of water.  

2.1 Classification  

Accurate ground truth classifications are needed for the success of any statistically motivated 

algorithm. Pixels were hand-labeled to assure accuracy in classifying each surface type (Fig. 1). We use 

these data to relate pixels’ TOA reflectance values to a classification of land, water, cloud or snow. After 

fitting this model, the manual classification of clouds can evaluate model classification accuracy. We only 

label opaque clouds; all pixels bordering various classification types were labeled as “ambiguous” to 

avoid any misclassification.  
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After manual labeling, we associate the surface types with the TOA reflectance value in each of the 

three bands of interest. This association produces three-dimensional frequency distributions of TOA 

reflectance values based on wavelength and surface type (Fig. 2). They describe the conditional 

probability of a pixel’s TOA reflectance value given if it is a cloud or clear sky, c1 and c2 respectively 

(P(y|c1,2)). The non-cloud distribution, containing non-cloud surface types (land, water, and snow), is also 

separable into each surface type. To understand how clouds are classified from various surface types and 

as a function of latitude, we represent the distributions as a function of these parameters, P(y|x,c), where x 

is the surface type or zone of interest. 

 

Figure 1. An example of the one-dimensional distributions of clouds and non-clouds in each 

wavelength (top) created from the hand-labeled pixels in the Hyperion images (bottom). 
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Figure 2. Cloud and non-cloud brightness distributions, with an example marginal distribution in 

one plane.  

2.2 Algorithm 

Our cloud-screening approach predicts scene-specific thresholds in three bands of interest for real-

time use onboard (Thompson et al., 2014). In general, a cloud-screening algorithm must define an 

exclusion region R ⊆ ℝd, i.e a range of TOA reflectance values for which the pixel is considered to be 

cloudy. The cloud-screening approach maps the pixel brightness values to a binary classification c=f(y): 

ℝd  ↦ {c1,c2}. A vector y is representative of a spectrum from a given pixel. Thus, the decision rule for 

this classification is, 

𝑓(𝒚) = {
𝑐1, 𝑖𝑓 𝒚 ∈ R

𝑐2, 𝑖𝑓 𝒚 ∉  R
  

where R is defined with a set of thresholds, φ (in this case a triplet). Any pixel exceeding all three 

thresholds simultaneously is classified as cloud-contaminated (Fig. 3).  

The following expected loss function considers αFP and αFN as the false positive and negative 

penalties, respectively,  

𝐸[ℒ] = ∫ α𝐹𝑃𝑃(𝑐1|𝒚, 𝒙)𝑑𝒚 + ∫ α𝐹𝑁𝑃(𝑐2|𝒚, 𝒙)𝑑𝒚
ℝ𝑑/𝑅𝑅
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A false positive penalty considers the cases where clear pixels are classified as cloud contaminated. 

P(y|c1) and P(y|c2) are the probability of encountering a cloud-contaminated pixel and a clear pixel, 

respectively. P(c1) and P(c2) are the prior probability of clouds and clear sky based on an historical 

average, respectively. Minimizing this function yields the optimal threshold for any given factors, defined 

by x. Using Bayes’ rule and assuming independence (Thompson et al. 2014), the expected loss function 

can be decomposed into the respective likelihoods and priors for the posterior described above, 

𝐸[ℒ] = ∫ α𝐹𝑃𝑃(𝒚|𝒙, 𝒄𝟏)𝑃(𝑐1)𝑑𝒚 + ∫ α𝐹𝑁𝑃(𝒚|𝒙, 𝒄𝟐)𝑃(𝑐2)𝑑𝒚
ℝ𝑑/𝑅𝑅

 

Thus, we can use the likelihood, or sampling distribution, created from the Hyperion sample set to 

minimize our expected loss and produce predictive thresholds for screening.  

 

Figure 3. Depiction of the exclusion region, in the 1650.90 nm band, for which to classify cloud-

contaminated data. A pixel with a TOA reflectance exceeding the threshold, φ, is classified as 

cloudy and anything below the threshold is classified as non-cloudy. Note that this is one-

dimensional, and to be classified as cloudy in our algorithm, the TOA reflectance must exceed the 

threshold in each band simultaneously. 

3 Results 

The model used for cloud-screening was developed using cloud brightness distributions in TOA 

values as a function of time, space, and wavelength. The brightness distributions collected from the 
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Hyperion sample set represent cloud and non-cloud brightness values in TOA units, for each band (447.17 

nm, 1245.36 nm, 1648.90 nm). The breadth of the scenes in the dataset span the globe (Table 1).  

Table 1. The number of images in the Hyperion sample set (102 images) collected in each global 

region. The ocean category includes images taken in the regions of Tropics, Subtropics, and Polar 

Regions. 

Hyperion Image Dataset Breakdown 

Global Region Number of Images 

Tropics 30 

Subtropics 51 

Polar Regions 21 

ALL 102 

Ocean Sub Set 19 

 

The output of the algorithm is a threshold triplet that defines the region of TOA reflectance values 

that classify cloud-contaminated data, i.e. the exclusion region (discussed in section 2.3). The penalties in 

the expected loss function determine our tolerance for errors; a higher false positive penalty yields a more 

conservative threshold and a smaller exclusion region. Minimizing this penalty requires that the exclusion 

region consider the expected surface properties. For example, since clouds and snow have similar reflective 

properties in two of the bands used, one could use a more conservative threshold triplet to screen clouds in 

Polar Regions. The repercussions of a conservative threshold (αFP=1000) calculation, a moderate threshold 

(αFP=100) calculation, and a less conservative threshold (αFP=10) calculation are shown in a two-

dimensional histogram representing all scenes in the dataset (Fig. 4). 
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Figure 4. A Two-dimensional histogram of cloud and non-cloud distributions for the Hyperion 

dataset. The exclusion region for various false positives are shown as colored rectangles; 

αFP=1000 (red), αFP=100 (blue), αFP=10 (green). The color gradient of the data indicates relative 

frequency. 

The optimal (i.e. minimizing the loss) thresholds at various false positive rates using the Hyperion 

sample set are shown in Table 2. The thresholds are defined differently for each latitudinal zone. The 

Discussion section (Section 4) describes statistical validation tests used to ensure the size and breadth of 

our subset, or sampling distribution, to predict these thresholds for future scenes. 
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Table 2. Optimal Thresholds in TOA (Top of Atmosphere) reflectance values using a false 

negative of 1 for each latitudinal zone. 

Optimal Thresholds for Screening Clouds 

False Positive Value Latitudinal Zone 447.17 nm 1245.90 nm 1649.36 nm 

 Tropics 0.31 0.34 0.13 

 Subtropics 0.52 0.36 0.24 

1000 Polar Regions 0.47 0.57 0.30 

 Ocean 0.41 0.37 0.30 

 ALL 0.51 0.56 0.29 

     

 Tropics 0.27 0.25 0.13 

 Subtropics 0.31 0.51 0.23 

100 Polar Regions 0.55 0.27 0.22 

 Ocean 0.39 0.34 0.28 

 ALL 0.31 0.51 0.22 

     

 Tropics 0.26 0.21 0.11 

 Subtropics 0.28 0.45 0.22 

10 Polar Regions 0.54 0.26 0.20 

 Ocean 0.32 0.25 0.22 

 ALL 0.28 0.46 0.22 

 

4 Discussion 

The study of a globally representative sample set of imaging spectroscopy data provided a deeper 

understanding of TOA reflectance for various surface types in space, time, and wavelength and a 

prediction model for screening cloud-contaminated data onboard orbital imaging spectrometers. This 

section discusses our findings concerning cloud brightness, including a literature comparison concerning 

cloud fractions in our dataset, the empirical error of our dataset, and the potential improvement yield of 

downlink using this cloud-screening algorithm. 

4.1 Cloud Brightness 

The Hyperion global dataset was sampled and manually classified to understand cloud brightness 

as a function of time, space, and wavelength. We collected the TOA values in a 3-dimensional histogram, 

one axis for each wavelength studied. This yields a probability distribution of TOA values of clouds 

globally that we can use to predict the classification of TOA values for future scenes. In order to verify if 
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classifying clouds depending on their global region would produce a lower false alarm rate, we subset our 

scenes into latitudinal zone and surface type. 

Table 3. Mean values of the distributions of TOA reflectance for each classification type, at each 

selected wavelength. The change in values across this table verifies the advantage of presenting 

screening thresholds as a function of latitudinal zone. 

Cloud Brightness mean values 

Longitudinal Zone 447.17 nm 1245.36 nm 1650.90 nm 

Tropics 0.47 0.61 0.50 

Subtropics 0.57 0.61 0.45 

Polar Regions 0.75 0.47 0.45 

Ocean 0.49 0.49 0.44 

ALL 0.49 0.61 0.48 

 

Our results show that mean cloud TOA brightness differs in the bands studied in the Tropics, 

Arctic, Antarctic, Subtropics, and Pacific Ocean zones. The mean TOA reflectance values for each global 

region, in each wavelength is presented in Table 3. The difference in these mean values indicates that the 

optimal thresholds assigned for the classification of clouds in each area should also differ (Table 2). 

Further statistical analysis is necessary to properly quantify and interpret these differences and will be 

carried out before submitting for publication. 

The distributions show that TOA reflectance differs with surface type concerning the wavelength 

bands used. Cloudy pixels have higher TOA reflectance values in the wavelengths given while non-

cloudy pixels have generally lower TOA values. Specifically, pixels with snow have low TOA reflectance 

values at 1250 nm and even lower TOA reflectance values at 1650 nm, while having strong TOA 

reflectance properties at 447 nm. Generally, our data aligns with the general properties of non-cloud 

surface types discussed in Ackerman et al., 1998. Again, further statistical analysis is necessary to 

properly quantify and interpret these differences and will be carried out before submitting for publication. 



14 
 

4.2 Empirical Error Tests 

Quantifying cloud excision performance is essential. Based on parameters such as latitudinal zone 

and surface type, we can determine the achievable performance window of the algorithm; where the most 

clouds are excised with the least amount of mistaken classification. Screening classification depends largely 

on the false positive parameter (Fig. 5). 

We performed a leave-one-out cross-validation experiment, recalculating thresholds 102 times and 

excluded a different validation scene from each trial. Every test conducted (102) resulted in the same 

thresholds presented in Table 3. This is one validation that a single scene does not define the optimal margin 

for the distribution for the brightness resolution of our lookup table. This confirms that our dataset is 

sufficient in space, time and wavelength to predict optimal thresholds for future scenes. 

 

Figure 5. An example of pixels classified as cloudy being excised from the image. The top image 

is the raw image with no screening, the second image is cloud-screening with αFP=1000, the third 

image is cloud-screening with αFP=100, and the fourth image is cloud-screening with αFP=10. 

4.3 Potential Improvement yield of screening 

A case study of the EMIT (Earth Surface Mineral Dust Source Investigation) mission quantified 

the improvement achievable, specifically for similar Earth orbiting imaging spectrometers (Table 4). The 

EMIT mission will be launched to the International Space Station, with an orbit dominated by low-

latitude regions (Green et al., 2018). We simulated cloud cover fractions using pre-calculated global cloud 
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probabilities (x) from historical MODIS data (Mercury et al., 2012), defined as an annual average cloud 

cover probability at a spatial resolution of one degree. We simulated ISS observations at a 10 second rate 

for one year, starting on February 1st, 2022. The high improvement yields indicate the significance of 

screening cloud-contaminated data for missions concerned solely with ground reflectance data. Using the 

cloud-screening tool presented, we predict at least double the current return of useful data in all specific 

regions, and overall. It is important to note the difference in improvement yield when considering all 

regions at once and when considering one region at a time. The difference in improvement yield shows 

that some areas of the globe are cloudier than others, so the benefit of using a cloud-screening tool is 

particular to the region(s) of interest.  

Table 4. A case study of EMIT (Earth Surface Mineral Dust Source Investigation) concerning a 

global cloud fraction simulation was used to determine the improvement yield of the cloud-

screening tool in terms of latitudinal region. 

Improvement Yield based on Case Studies 

Case Study Simulated Cloud 

Coverage Observed (%) 

Improvement Yield 

(Factor of increase in 

usable data) 

 

 

EMIT 

Tropics: 65% 

Subtropics: 57% 

Arctic: 52% 

Antarctic: 50% 

All Regions: 58% 

x2.38 

x2.85 

x2.32 

x2.08 

x2.04 

 

As previously discussed, past literature presents cloud cover fractions that are greater over land 

than water and that tropical regions are more cloudy than other global regions (Eastman et al., 2012, 

Ackerman et al., 1998). The EMIT case study cloud fractions show that cloud cover in the tropics is 

greater than any other region studied. We cannot present cloud fractions for the Ocean region since the 

simulated data only occurred at coordinates over land. Before submitting for publication, we will also 

conclude a case study for another future mission by ESA (European Space Agency). 
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5 Conclusion 

The newly improved method described in Thompson et al. (2014) for screening cloud-

contaminated data onboard orbital imaging spectrometers will at least double the downlink of more useful 

data. This was done by collecting and studying a globally representative data set and producing screening 

thresholds based on latitude and surface type. Using latitude and surface type as a parameter in screening 

clouds will help correctly classify could-contaminated pixels while reducing misclassifications of other 

surface types. The overall yield of useful data doubles when using this screening algorithm. Thus, the 

newly improved cloud screening tool is an important improvement in reducing storage and downlink 

onboard orbital imaging spectrometers.  

In all, this method introduces the optimization of onboard data storage and downlink from orbital 

imaging spectrometers using a cloud-screening tool (Table 4) with optimized thresholds (Table 2). We 

also developed a subsequent representation of cloud brightness (TOA reflectance values) in the 447.17 

nm, 1249.36 nm, and 1650.90 nm wavelengths that change with latitude and surface type (Table 3). 
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