A COMPUTER INTERFACED HIGH TEMPERATURE/KNUDSEN CELL QUADRUPOLE MASS SPECTROMETER DATA ACQUISITION SYSTEM: APPLICATION TO THE INVESTIGATION OF THE VOLATILE ABUNDANCE OF SUBMARINE BASALTS FROM THE MARINA ISLAND-ARC AND TROUGH

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN CHEMISTRY

AUGUST 1978

By

Norman Wai Kwong Liu

Thesis Committee:

David W. Muenow, Chairman
John J. Naughton
Michael O. Garcia
We certify that we have read this thesis and that in our opinion it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Chemistry.

THESIS COMMITTEE

David W. Muenow, Chairman

John J. Naughton

Michael O. Garcia
ACKNOWLEDGEMENT

I thank my research advisor, Dr. David W. Muenow, for his guidance and for granting me an enjoyable degree of freedom and supports in my research efforts.

I thank emeritius Professor John J. Naughton who served as a member of my thesis committee in his retiring years.

I thank Dr. Michael O. Garcia for providing me sample and helpful discussion in the geology aspect of my research.

I am grateful to Mr. Gerald Gulden who has given me technical assistance in the development of the instrumentation portion of my research.

My thanks to Mr. Bill Barnes for his assistance in the construction of the Knudsen cell heating control circuit, Ms. Diana G. Graham for providing helpful suggestions during the development of the QMS program, and Mrs. Wendy Harrison for her assistance in repairing the interface electronics in the time of trouble.

I am grateful to the University of Hawaii and the Hawaii Natural Energy Institute for financial support.
ABSTRACT

A method for the controlled heating of a high temperature Knudsen-cell effusion source and an automatic data acquisition system for an interfaced quadrupole mass spectrometer are described. The method of controlled heating (with variable heating rates, 1.25 to 20°C/min. from 25°-1300°C) has been shown to allow accurate and precise heating of the high temperature vaporization source required for quantitative extraction of volatiles from igneous rocks. The automatic data acquisition system provides the accurate measurement of signals from the mass spectrometer and allows one to collect large quantities of data (e.g. 150-250 mass scans per experiment) and make the data available quickly (15 to 20 minutes) for examination. The system eliminates the necessity of repeating the same experiment many times.

The utility of the heating control and automatic data acquisition system is demonstrated by providing quantitative mass pyrograms for the complete characterization of the vaporization and degassing of glass samples selected from the rims of pillow basalts dredged from the Mariana island-arc and interarc basin. The mass pyrograms allow clear distinction of samples from different geologic environments and show the effects of alteration of samples from seawater contamination. The abundance of the volatiles H\textsubscript{2}O, CO\textsubscript{2}, SO\textsubscript{2}, F, and Cl in the matrix glasses and phenocrysts of plagio-
close have been obtained. The results of this study demonstrate the power of the automated high temperature/Knudsen cell mass spectrometer system to provide important new data for the characterization of the volatiles in samples of geochemical interest.
TABLE OF CONTENTS

ACKNOWLEDGEMENT .. iii
ABSTRACT .. iv
LIST OF TABLES .. viii
LIST OF FIGURES .. iv

CHAPTER I. INTRODUCTION

A. Background .. 1
B. Proposed Research 3

CHAPTER II. HIGH TEMPERATURE MASS SPECTROMETRY

A. Instrumentation 5
 1. The High Temperature Mass Spectrometer System 6
 2. The Knudsen Cell Assembly 9
 3. The Operation of and Theory of the Quadrupole Mass Filter 11
B. Analytical Techniques 15

CHAPTER III. IMPLEMENTATION OF THE TEMPERATURE CONTROL AND AUTOMATIC DATA ACQUISITION SYSTEM

A. Heating and Temperature Control 19
B. Method of Automatic Data Acquisition 21
C. Data Reduction and Analysis 23
 1. QRDAMS -- Data Work Program 23
 2. QMS -- Data Analysis Program 26
D. System Performance 27
 1. The High Temperature Vaporization Unit 27
 2. The Automatic Data Acquisition Systems 29
 3. Limitations of the System 31

CHAPTER IV. APPLICATION: INVESTIGATION OF THE VOLATILE ABUNDANCE OF SUBMARINE BASALTS FROM THE MARIANA ISLAND-ARC AND TROUGH

A. Importance of the Volatile Content in Submarine Basalts 35
B. Sample Description 38
C. Method of Analysis 44
 1. Sample Preparation 44
TABLE OF CONTENTS (Continued)

2. High Temperature Vaporization of Matrix Glass
3. High Temperature Vaporization of Phenocrysts
D. Results and Discussion.

CHAPTER V. SUMMARY

A. The Automatic Data Acquisition System.
B. Application.

APPENDIX A MASS PYROGRAMS.

APPENDIX B SAMPLE CALCULATIONS OF VOLATILE ABUNDANCE FROM MATRIX GLASS.

APPENDIX C INSTRUCTIONS FOR THE OPERATION OF THE DATA ACQUISITION SYSTEM (DAS).

APPENDIX D QUADRUPOLE MASS SPECTROMETER DATA ACQUISITION SYSTEM SOFTWARE DOCUMENTATION.

APPENDIX E QUADRUPOLE MASS SPECTROMETER INTERFACE ELECTRONIC CIRCUITS.

REFERENCES.
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QMS Subroutine Code Names and Functions</td>
<td>28</td>
</tr>
<tr>
<td>2a</td>
<td>Precision and Accuracy of the Interface electronics</td>
<td>32</td>
</tr>
<tr>
<td>2b</td>
<td>Accuracy of Ion Intensity Measurement</td>
<td>32</td>
</tr>
<tr>
<td>3a</td>
<td>Sample Localities and Description</td>
<td>40</td>
</tr>
<tr>
<td>b</td>
<td>Major Elemental Analysis of Selected Arc and Trough Basalts</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Volatile Abundance in Glassy Rims of Mariana Arc and Trough Pillow Basalts</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Variations of Among Water and Chlorine Contents for Pillow Basalt Glasses</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>Values of Parameters Used in Volatile Abundance Calculation</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>Sample Calculation Data</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>QUS Program Control Parameters</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>CAMAC Module Period Clocking</td>
<td>88</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic of the High Temperature Quadrupole Mass Spectrometer Facility</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Schematic of the High Temperature Assembly</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Schematic of Knudsen Cell Lucalox<sup>R</sup> Liner Cup</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>The Stability Domain for the Operation of a Quadrupole Mass Filter</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>Block Diagram of the Heating Control Circuit for the Knudsen Cell</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Block Diagram Outlining Method of Signal Digitization, Data Collection and Reduction</td>
<td>22</td>
</tr>
<tr>
<td>7.</td>
<td>A Computer Plot of a Typical Mass Scan</td>
<td>24</td>
</tr>
<tr>
<td>8.</td>
<td>Computer Plot of Cell Temperature vs. Time for Three Heating Rates.</td>
<td>30</td>
</tr>
<tr>
<td>9.</td>
<td>A Cross Sectional Diagram Showing the Formation and Subductional of Lithosphere</td>
<td>37</td>
</tr>
<tr>
<td>10.</td>
<td>Generalized Bathymatric Map of Mariana Island Arc and the Mariana Interarc Basin.</td>
<td>39</td>
</tr>
<tr>
<td>11.</td>
<td>Mass Pyrogram Showing the Release of H<sub>2</sub>O, CO<sub>2</sub> and SO<sub>2</sub> from MV15220 Glass</td>
<td>47</td>
</tr>
<tr>
<td>12.</td>
<td>Mass Pyrogram Showing the Release of H<sub>2</sub>O, CO<sub>2</sub> and SO<sub>2</sub> During a "Blank" Run</td>
<td>47</td>
</tr>
<tr>
<td>13.</td>
<td>Mass Pyrogram Showing the Release of H<sub>2</sub>O, CO<sub>2</sub> and SO<sub>2</sub> from 46D Il Interior (Altered) Glass</td>
<td>49</td>
</tr>
<tr>
<td>14.</td>
<td>Mass Pyrogram Showing the Release of H<sub>2</sub>O, CO<sub>2</sub> and SO<sub>2</sub> from 46D Il Unaltered Glassy Rim</td>
<td>49</td>
</tr>
<tr>
<td>15.</td>
<td>Mass Pyrogram Showing the Release of H<sub>2</sub>O, CO<sub>2</sub> and SO<sub>2</sub> from 46D Al Glass</td>
<td>50</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>16.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from 46D Al Glass</td>
<td>50</td>
</tr>
<tr>
<td>17.</td>
<td>Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV15220 Glass</td>
<td>51</td>
</tr>
<tr>
<td>18.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from MV15220 Glass</td>
<td>51</td>
</tr>
<tr>
<td>19.</td>
<td>A Typical Mass Pyrogram Showing the Release of Na and K from Pillow Rim Glass</td>
<td>53</td>
</tr>
<tr>
<td>20.</td>
<td>Typical Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from Mid-Ocean Ridge Glass</td>
<td>55</td>
</tr>
<tr>
<td>21.</td>
<td>Typical Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from Hawaii Submarine Basalt Glass</td>
<td>55</td>
</tr>
<tr>
<td>22.</td>
<td>Schematic Diagram of H$_2$O, CO$_2$ and SO$_2$ Burst-Release from Glass-Vapor Inclusions in the Plagioclase Phenocrysts from the Trough (Top) and Arc (Bottom) Samples</td>
<td>59</td>
</tr>
<tr>
<td>23.</td>
<td>Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV1506 Glass</td>
<td>66</td>
</tr>
<tr>
<td>24.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from MV1506 Glass</td>
<td>66</td>
</tr>
<tr>
<td>25.</td>
<td>Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV1514 Glass</td>
<td>67</td>
</tr>
<tr>
<td>26.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from MV1514 Glass</td>
<td>67</td>
</tr>
<tr>
<td>27.</td>
<td>Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV15220 Glass</td>
<td>68</td>
</tr>
<tr>
<td>28.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from MV15220 Glass</td>
<td>68</td>
</tr>
<tr>
<td>29.</td>
<td>Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV15247 Glass</td>
<td>69</td>
</tr>
<tr>
<td>30.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from MV15247 Glass</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>Mass Pyrogram Showing the Release of H2O, CO2 and SO2 from MV1349 Glass.</td>
<td>70</td>
</tr>
<tr>
<td>32.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from MV1349 Glass.</td>
<td>70</td>
</tr>
<tr>
<td>33.</td>
<td>Mass Pyrogram Showing the Release of H2O, CO2 and SO2 from 46D Al Glass.</td>
<td>71</td>
</tr>
<tr>
<td>34.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from 46D Al Glass.</td>
<td>71</td>
</tr>
<tr>
<td>35.</td>
<td>Mass Pyrogram Showing the Release of H2O, CO2 and SO2 from 46D Cl Glass.</td>
<td>72</td>
</tr>
<tr>
<td>36.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from 46D Cl Glass.</td>
<td>72</td>
</tr>
<tr>
<td>37.</td>
<td>Mass Pyrogram Showing the Release of H2O, CO2 and SO2 from 46D Gl Interior Glass</td>
<td>73</td>
</tr>
<tr>
<td>38.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from 46D Gl Interior Glass.</td>
<td>73</td>
</tr>
<tr>
<td>40.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from 46D Il Glass.</td>
<td>74</td>
</tr>
<tr>
<td>41.</td>
<td>Mass Pyrogram Showing the Release of H2O, CO2 and SO2 from 46D Il Interior Glass</td>
<td>75</td>
</tr>
<tr>
<td>42.</td>
<td>Mass Pyrogram Showing the Release of F and Cl from 46D Il Interior Glass.</td>
<td>75</td>
</tr>
<tr>
<td>43.</td>
<td>Quadrupole Correction Factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Ionization Efficiency (δ) Relative to Nitrogen</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>b. Electron Multiplier Efficiency (γ) Versus amu</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>c. Quadrupole Relative Transmission (τ) Versus amu</td>
<td>79</td>
</tr>
<tr>
<td>44.</td>
<td>Diagram of Heating Rate Control Switches</td>
<td>85</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>45.</td>
<td>Diagram of Front Panel of Digital Thermometer</td>
<td>85</td>
</tr>
<tr>
<td>46.</td>
<td>Flow Chart of QRDMS Main Program</td>
<td>94</td>
</tr>
<tr>
<td>47.</td>
<td>Flow Chart of Subroutine DATQUS</td>
<td>95</td>
</tr>
<tr>
<td>48.</td>
<td>Flow Chart of Subroutine PEKQUS</td>
<td>96</td>
</tr>
<tr>
<td>49.</td>
<td>Flow Chart of Subroutine MASSID</td>
<td>97</td>
</tr>
<tr>
<td>50.</td>
<td>Flow Chart of Subroutine SEARCH</td>
<td>98</td>
</tr>
<tr>
<td>51.</td>
<td>Flow Chart of Subroutine BEST</td>
<td>99</td>
</tr>
<tr>
<td>52.</td>
<td>Flow Chart of Subroutine ASGMAS</td>
<td>100</td>
</tr>
<tr>
<td>53.</td>
<td>Flow Chart of QMS Main Program</td>
<td>103</td>
</tr>
<tr>
<td>54.</td>
<td>Flow Chart of Subroutine AREA</td>
<td>104</td>
</tr>
<tr>
<td>55.</td>
<td>Flow Chart of Subroutine BACK</td>
<td>105</td>
</tr>
<tr>
<td>56.</td>
<td>Flow Chart of Subroutine DATA</td>
<td>106</td>
</tr>
<tr>
<td>57.</td>
<td>Flow Chart of Subroutine PEAK</td>
<td>107</td>
</tr>
<tr>
<td>58.</td>
<td>Flow Chart of Subroutine PLTS</td>
<td>108</td>
</tr>
<tr>
<td>59.</td>
<td>Flow Chart of Subroutine PYRO</td>
<td>109</td>
</tr>
<tr>
<td>60.</td>
<td>Flow Chart of Subroutine RATIO</td>
<td>110</td>
</tr>
<tr>
<td>61.</td>
<td>Flow Chart of Subroutine START</td>
<td>111</td>
</tr>
<tr>
<td>62.</td>
<td>QMS Circuit Card Configuration and Connector Diagram.</td>
<td>113</td>
</tr>
<tr>
<td>63.</td>
<td>QMS Interface Cabling Diagram</td>
<td>114</td>
</tr>
<tr>
<td>64.</td>
<td>QMS01 -- V/F Circuits for Ion Intensity and Mass Ramp.</td>
<td>115</td>
</tr>
<tr>
<td>65.</td>
<td>QMS01 Circuit Card Layout</td>
<td>116</td>
</tr>
<tr>
<td>66.</td>
<td>QMS02 -- V/F Circuits for Cell Temperature and Resistance Element Voltage</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.</td>
<td>QMS01 Circuit Card Layout.</td>
<td>118</td>
</tr>
<tr>
<td>68.</td>
<td>QMS03 Circuits</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>a. Resistance Element Voltage Monitoring Circuit</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>b. Computer Controlled Cell-Temperature Ramp Buffer Circuit</td>
<td>119</td>
</tr>
<tr>
<td>69.</td>
<td>QMS03 Circuit Card Layout.</td>
<td>120</td>
</tr>
<tr>
<td>70.</td>
<td>QMS04 -- Cell Temperature, Control Ramp Circuit</td>
<td>121</td>
</tr>
<tr>
<td>71.</td>
<td>QMS04 Circuit Card Layout.</td>
<td>122</td>
</tr>
<tr>
<td>72.</td>
<td>Cell Temperature Feed-Back Circuit</td>
<td>123</td>
</tr>
<tr>
<td>73.</td>
<td>Cell Temperature Control Ramp Selection Switch Circuit and Circuit Card Layout</td>
<td>124</td>
</tr>
<tr>
<td>74.</td>
<td>Knudsen-Cell Heating Voltage Control Circuit</td>
<td>125</td>
</tr>
<tr>
<td>75.</td>
<td>Resistance Element Current Supply Circuit</td>
<td>126</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A. Background

Mass spectrometry coupled with vacuum heating and a computer-controlled data acquisition system can be a powerful analytical method for the extraction and determination of volatiles and volatile forming elements from a wide variety of materials (Wyatt et al., 1971; Gibson, 1973).

Systems have been developed and used in the study of lunar samples by the Burlingame group at Berkeley (Burlingame et al., 1971; Holland et al., 1972; Simoneit and Burlingame, 1972; Simoneit et al., 1973). Their analytical system consists of a magnetic instrument with high sensitivity, medium-resolution and fast scanning capability. Data are taken continuously by a LOGOS computer system. The computer-generated mass pyrograms were used to determine the total carbon and nitrogen contents of Luna 16 and Luna 20 samples (Simoneit, 1973) and to illustrate the mode of release of inorganic and organic volatiles on heating. A second research group led by Gibson (NASA Manned Spacecraft Center, Houston) has also recently developed a TA-MS computer system. In this system, a Finnigan 1015 S/L quadrupole mass spectrometer coupled with a Mettler vacuum-recording thermoanalyzer and interfaced to a PDP-8/L computer, was used for the analysis of meteoritic and lunar samples (Gibson, 1973; Gibson and Moore, 1973; Gibson et al., 1974).
A particularly important technique, originally developed for the characterization of high temperature vapors and their thermodynamics (Grimley, 1967), involves the use of a Knudsen cell which serves both as the sample holder and effusion source for volatiles admitted into the mass spectrometer. Interfaced with a low-cost quadrupole mass spectrometer Killingley and Muenow (1975) have constructed a versatile Knudsen cell assembly and developed a method to obtain temperature and time-dependent gas-release profiles (mass pyrograms). Mass pyrograms and the weight loss of the sample may be used to quantitatively characterize the vaporization or degassing behavior of the sample. The system takes advantage of the quantitative nature of Knudsen cell mass spectrometry and the versatility, low cost and small size of a quadrupole mass filter. Recent investigations in this laboratory have used this system to obtain the abundance and distribution of volatiles (and their heats of vaporization and partial pressures) from materials of geochemical interest. Among these are milligram-size samples of submarine basalts and their separated mantle-derived phenocrysts of olivine and plagioclase, meteorites, synthetic and natural glasses, calcareous and siliceous material from the marine environment and ore-forming fluids in inclusions (Delaney, Muenow and Graham, 1978; Gooding and Muenow, 1977).
B. Proposed Research

The system developed by Killingley and Muenow (1975) is capable of providing important information about the composition, abundance, and mode of release of volatiles in igneous materials. In order to utilize this system to the fullest advantage, it is the purpose of this research to:

(a) Develop methods for the accurate vacuum-heating-control required for quantitative extraction of volatiles from igneous rocks.

(b) Implement an efficient data acquisition system by interfacing the high temperature quadrupole mass spectrometer to an on-line real-time minicomputer (PDP-11/45).

(c) Demonstrate the utility of the data acquisition system by performing measurements for the volatiles released from selected samples of glassy rims of submarine basalts and their associated plagioclase and/or olivine phenocrysts.

The basic requirement of a high temperature mass spectrometric facility is the production of a beam of molecules representative of the volatiles released or vaporizing from a heated sample and their mass analysis as a function of temperature. To obtain mass pyrograms which allow quantitative characterization of the total volatilization process the most important criteria for the temperature control and data acquisition system are: (1) a variable and precise control of sample heating rate (e.g., from 1 to 20 °C/min.
over the range 25°-1500°C); (2) rapid and variable sampling rate of signals which accurately represent cell temperature, molecular mass and ion-intensity; (3) storage of data on a disk for later processing, analysis and graphical display; (4) elimination of operator intervention after the sample has been placed in vacuum; and (5) eliminate the necessity of repeating the same experiment many times so that all important data are collected.

In the first part of this thesis I describe a method for the controlled heating of a Knudsen cell vaporization source and a data acquisition system for an interfaced quadrupole mass spectrometer. The data acquisition system consists of computer-terminal interactive programs giving flexibility in selection of instrumental settings (e.g., data sampling and heating rates) thus permitting a wide variety of high temperature studies. The remaining portion of this thesis demonstrates the utility of the automated system by describing high temperature volatilization studies of submarine basalts from the Marianas Trough and Arc regions. The geochemical importance of these results are also discussed.
II. HIGH TEMPERATURE MASS SPECTROMETRY

A. Instrumentation

1. The High Temperature Mass Spectrometer System:

The high temperature quadrupole mass spectrometer facility consists of a specially designed high temperature Knudsen effusion cell assembly interfaced with a quadrupole mass filter which are both housed inside a Varian (model 934-1110A) vacuum system. The apparatus was largely assembled by Killingly (1975). A schematic diagram of the high temperature mass spectrometer facility is shown in Figure 1.

The mass filter is an Electronic Associates Incorporated (EAI) Quad 1110 residual gas analyzer. The Quad 1110 consists of three units. (1) Control unit; (2) Head electronics; (3) Analyzer assembly. Since the rf/dc generator needs to be located in close proximity to the filter the head electronics and the analyzer are fastened together. The control unit (positioned in an instrument rack with the Vacuum system controls) established and maintains operating conditions for the ionizer, rf/dc generator, and the detector. In addition, the control unit provides the amu correlation signal (horizontal sweep) to the recording instrumentation. The rf/dc generator drives the quadrupole filter which selectively passes properly accelerated ions from the ionizer to the detector. The analyzer assembly was flanged into the bell jar by means of a 4-inch Conflat flange. The Quad 1110 has a mass range of 1 to 300 amu, a sensitivity
Figure 1. Schematic of the High Temperature Quadrupole Mass Spectrometer Facility.
(at electron multiplier output) of 100A/torr for N₂ with unit resolution, a resolution of \(\frac{M}{\Delta M} > 2M \), where \(\Delta M \) is peak width at half height, and a vacuum range of \(10^{-4} \) torr or lower. Scan rates on the Quad 1110 can be changed in discrete steps from 0.1 to 900 sec/scan. The instrument has dual emission filaments, premounted and prealigned, which are switchable on the control panel. The analyzer system will withstand bake-out temperatures of 250°C (and 400°C with the rf/dc unit removed). The analyzer materials are stainless-steel, tungsten, and alumina.

The analyzer-detector system consists of a secondary emission multiplier-- a 14-stage beryllium-copper discrete dynode type. Output from the electron multiplier was fed to an EAI (ESA Model 75A) electrometer which is mounted next to the Quad rf/dc unit (not shown in the figure) on the bell jar. The ESA 75A electrometer is a single-ended current-in/voltage-out amplifier of the non-inverting type. The four linear ranges of the electrometer will produce an output of 10 volts dc, full-scale, for any input currents of \(10^{-5} \) to \(10^{-8} \) amps. A fifth range provides a logarithmic scale.

The dc voltage output of the electrometer is carried by coaxial cable from the bell jar unit to the control console where it is split to simultaneously drive an oscilloscope (integrated into the Quad control unit) and the computer interface electronics for online data acquisition, or alternatively drives a fast response Texas Instrument recorder (Model FS01W6D).
The high vacuum pumping system consists of a mechanical roughing pump (Welch Model 1402) incorporated with a molecular-sieve trap with a bake-out heater which can achieve a vacuum of 5×10^{-5} torr, a titanium sublimation pump (TSP) Varian Model 916-0017, for high speed pumping for all active gases and to increase system pumping speed at pressure below 10^{-6} torr, and a 140 L/min. VacIon pump (Varian Model 916-7001) which operates in vacuum ranges from 10^{-5} to 10^{-12} torr.

The vacuum housing consists of a double-wall, water cooled, stainless steel bell jar with numerous viewing ports and feed-thrus which facilitate the attachment of various components--the cell temperature-sensing thermocouple, the mass filter, the shutter plate and the high current feed-thrus. The bell jar is seated on a fixed base with a Viton gasket for high vacuum sealing which permits convenient access to the bell jar interior for sample introduction and maintenance work. The exterior of the bell jar around the perimeter of the Viton seal is enclosed in a plastic glove bag which is inflated with high-purity nitrogen during the sample introduction and retrieval operation to prevent the vacuum system from being excessively "contaminated" by atmospheric gases.

The computer is a PDP-11/45 minicomputer (a disk-operated system) emphasizing time share/real time operation. A CAMAC interfacing module is used for on-line data acquisition from instruments. The computer facility also contains
a magnetic tape unit for off-line data storage, a high capacity disk unit for on-line data storage, and a VERSITAC electrostatic printer/plotter.

2. The Knudsen Cell Assembly:

The high temperature Knudsen cell assembly is illustrated in Figure 2. Details of the high temperature Knudsen cell have been previously described (Muenow, 1973). The Knudsen cell is supported by tungsten rods and heated by radiation (to 1500°C) from a coiled tantalum resistant element (6.5 in. length, 0.05 in. diameter). A set of four concentric molybdenum cylinders surrounds the cell and serves as a radiation shield. At high temperature a molecular beam of released volatiles from the sample emerges through the orifice in the cell lid and is directed through a movable shutter-plate (bolted to the vacuum end of a linear feed-through) and into the ionizer of the quadrupole mass spectrometer. An important feature of this arrangement is the short and direct line-of-sight placement of the ion source with respect to the 0.040-in. diameter cell orifice. This permits essentially 100% transmission of volatiles (including condensable species) from the sample to the ionizer. Use of the shutter plate allows distinction between molecular species emitted directly from the Knudsen cell and those re-emitted and scattered from other surfaces of the system.

The cell temperature is measured by a Pt/Pt-10% Rh thermocouple secured into the base of the cell and is fed to
Figure 2. Schematic of the High Temperature Assembly (adapted from Muenow, 1973). The components are the Knudsen Cell (A), heat shields (B), positioning plate (C), resistance heating element (D), thermocouple (E), shutter-plate (F), and the ionizer (G).
an external digital temperature indicator (Newport Laboratories Inc., model 2600SC).

To eliminate (or minimize in some cases) reaction between the sample and the cell material at high temperature, samples are contained within a high purity Lucalox (99.99% Al₂O₃) cell liner. Each liner (shown in Figure 3) is fabricated to slip-fit into the Knudsen cell. The liners are reusable with proper cleaning procedures.

3. The Operation of and Theory of the Quadrupole Mass Filter:

The quadrupole mass analyzer, first developed by Paul and co-workers (1958), eliminated magnetic requirements and achieved mass separation solely with electric fields. The analyzer transmits only those ions whose mass to charge ratio lines within a band of easily variable width. The sensitivity increases, and the resolution decreases, as the width of the passband is increased. The fact that these parameters can be readily controlled is a distinct advantage of this instrument.

The theoretical design of the quadrupole mass filter describes an ideal quadrupole array consisting of four hyperbolic cylinders in a square configuration with the inside radius of the array equal to the smallest radius of curvature of the hyperbola. In practice this is approximated by four cylindrical rods mounted precisely at the corners of a square, at a distance 2r from each other, with opposite
Figure 3. Schematic of Knudsen Cell Lucalox R Liner Cup. (Dimensions are in inches.) (after Gooding, 1975).

TOLERANCES
±0.003
except where noted
rods having common electrical inputs. An rf potential, $V \cos \omega t$, and a dc potential, U, are applied to the rods and a two-dimensional quadrupole field is produced with a potential at any point in the field:

$$\phi (x,y,z,t) = (U + V \cos \omega t) \left(\frac{x^2 - y^2}{r^2} \right)$$ \hspace{1cm} (1)

The two pairs of rods receive potentials of equal magnitude with the dc component of one pair being of opposite sign to that on the other pair and the ac component having a 180° phase difference between the two sets of rods. Ions produced in the ion source of a quadrupole mass filter are accelerated into one end of the quadrupole array and encounter the potential existing between the rods.

The distribution of the electric field in the region is given by the first differential of ϕ:

$$E_x = -\frac{d\phi}{dx} = -2 (U + V \cos \omega t) \frac{x}{r^2}$$ \hspace{1cm} (2)

$$E_y = -\frac{d\phi}{dy} = 2 (U + V \cos \omega t) \frac{y}{r^2}$$ \hspace{1cm} (3)

$$E_z = 0$$ \hspace{1cm} (4)

The force on a singly charged ion is eE in a field of strength E. Therefore, equations of motion of such an ion injected in the z (axial) direction of this field are given by:

$$m\ddot{x} = eE_x = -2e(U + V \cos \omega t) \frac{x}{r^2}$$ \hspace{1cm} (5)
or, \(\dot{m}\dot{x} + \left(\frac{2e}{r^2} \right) (U + V \cos \omega t) x = 0 \) \hspace{1cm} (6)

and similarly, \(\dot{m}\dot{y} - \left(\frac{2e}{r^2} \right) (U + V \cos \omega t) y = 0 \) \hspace{1cm} (7)

\(\dot{m}\dot{z} = 0 \) \hspace{1cm} (8)

It follows that \(\dot{m}\dot{z} = \text{constant} \) which means that the axial velocity component of the ion in the quadrupole field is constant. Factors which govern the stability of the ion in the quadrupole field are therefore determined by solutions of equations (6) and (7).

The equations may be rewritten in the normal forms of the Mathieu equation by substituting the following non-dimensional coefficients (Brubaker, 1960).

\[\theta = \omega t \] \hspace{1cm} (9)

\[\alpha = \frac{e}{m} \cdot \frac{2V}{r^2 \omega^2} \] \hspace{1cm} (10)

\[\beta = \frac{U}{V} \] \hspace{1cm} (11)

The differential equations then become:

\[\ddot{x} + \alpha(\beta + \cos \theta) x = 0 \] \hspace{1cm} (12)

\[\ddot{y} - \alpha(\beta + \cos \theta) y = 0 \] \hspace{1cm} (13)

The regions of interest are those where both \(x \) and \(y \) solutions to these equations are stable simultaneously so that the resultant trajectory of the ion is stable and the ion is unperturbed in its transit of the region between the
four poles. The boundaries of the region of interest are shown in Figure 4.

For ions of specific \(m/e \) values the quadrupole is traversed without incident while lighter, or heavier, ions increase in oscillations and collide with the analyzer rods.

For a given rf field frequency \((f = \omega/2\pi) \), the mass to frequency relationship is given by:

\[
M = \frac{0.136V}{r^2f^2}
\]

where \(V \) is in volts, \(r \) in cm, \(f \) in megacycles, and \(M \) in amu (Roboz, 1968).

Mass scanning is achieved either by varying \(U \) or \(V \) while keeping the \(U/V \) ratio constant and \(f \) constant or by varying \(f \) at fixed voltages. The former procedure is the more common.

A suitable ratio of the peak ac to dc voltage \((U/V) \) is selected to provide the appropriate operating line. The value of \(r \) is fixed and \(\omega \) is held at a fixed value. Selectivity of the filter is controlled by use of the rf voltage \((V) \).

The range of masses which traverse the quadrupole unimpeded may be determined from the two points where the operating line intersects the stable region boundaries.

B. Analytical Techniques:

Using a Knudsen cell arrangement of the type described, permits one to use techniques originally developed for
Figure 4. The Stability Domain for the Operation of a Quadrupole Mass Filter (after Dawson and Whetten, 1969).
thermodynamic measurements in high temperature inorganic mass spectrometry. A fundamental relationship (Grimley, 1967) is the one expressing the number of molecules \(N_i \) of species \((i) \) released from a heated sample as a function of their measured isotope-corrected ion intensities \(I_i^+ \), the mean thermal velocity \(\bar{c}_i \) of molecular species within the effusion cell, and the time interval \((t_2 - t_1) \) the sample is maintained at high temperature. It is given by the equation:

\[
N_i = K_i \int_{t_1}^{t_2} \frac{I_i^+ \bar{c}_i \, dt}{t_1}
\]

The constant \((K_i) \) is the instrumental sensitivity constant and is obtained by vaporizing a standard whose vapor pressure is well established over a large temperature range. Its value is computed from the relation:

\[
K_i = \frac{P_s}{I_s^+ T_s} \cdot \frac{\delta_s}{\delta_i} \cdot \frac{\gamma_s}{\gamma_i} \cdot \frac{(E_s - AP_s)}{(E_i - AP_i)} \cdot \frac{\tau_s}{\tau_i}
\]

where \(P_s \) is the vapor pressure of the calibration standard; \(I_s^+ \), its measured ion-current intensity; \(T_s \), the absolute temperature of the Knudsen cell; \((\delta) \), the ionization cross section; \((\gamma) \), the electron multiplier efficiency; \((E) \), the energy of ionizing electrons; \((AP) \), the appearance potential; and \(\tau \), the quadrupole efficiency.

These two expressions allow one to compute the weight (or number of moles) of each volatile released from a sample
subject to controlled vaporization. The calculation is made in the following way: A mass pyrogram is obtained at a controlled heating rate \(r \) so that
\[r = \frac{dT(°K)}{dt(\text{sec})}. \]
Since \(C_i \) may be expressed as
\[(8RT/\pi M_i)^{1/2} \]
where \(M_i \) is the molecular weight of the \(i \)th species, it follows from integration of equation (15) over the time of heat treatment that
\[N_i = \frac{8R}{\pi} \frac{M_i^{-1/2}}{r} \cdot (K_i) \cdot (A_i), \quad (17) \]
where \(A_i \) is the value for the integrated area under the \((I_i^+T^{1/2})\) vs. \(T \) curve obtained from the output signals recorded on magnetic tape. Letting \(W_i \) and \(W_s \) be the respective amounts of the \(i \)th and calibration-standard species vaporized (where \(W \) (grams) = \(\frac{NM}{\text{Avogadro's No.}} \)), the combined equations (16) and (17) one finally obtains for the weight in grams of the \(i \)th species released,
\[W_i = W_s \cdot \frac{M_i^{1/2}}{M_s^{1/2}} \cdot \frac{A_i}{A_s} \cdot \frac{\delta_i}{\delta_s} \cdot \frac{\gamma_s}{\gamma_i} \cdot \frac{(E_s - A_P)}{(E_i - A_i)} \cdot \frac{\tau_s}{\tau_i} \quad (18) \]

For each species a correction is made to \((A_i) \) to take into account fragmentation patterns and isotopic abundances.
III. IMPLEMENTATION OF THE TEMPERATURE CONTROL AND AUTOMATIC DATA ACQUISITION SYSTEM

A. Heating and Temperature Control

Heating of the Knudsen cell is achieved by passing an A.C. current through the resistance element. In order to obtain a variable and precise heating rate of the Knudsen cell, a heating voltage control unit with a cell temperature feedback loop was designed and constructed.

A block diagram of the heating control of the Knudsen cell is shown in Figure 5. The temperature of the Knudsen cell is sensed by the thermocouple and the voltage signal is fed into a digital thermometer by which a four digit Binary-Coded-Decimal (BCD) signal is produced. The BCD signal is converted to an analog signal by a 4-digit BCD digital-to-analog converter (DAC) and is calibrated at 1 millivolt per degree C.

A temperature ramp control voltage of opposite sign is generated by an electronic circuit. A crystal oscillator (a frequency generator) serves as a clock. Its output is split into different frequencies using a binary counter (the frequency divisor). Each of these frequencies (the outputs of the binary counter) corresponds to a quotient of the oscillator frequency divided by a power of 2. One of the binary counter outputs is selected to serve as heating rate control signal. A 12-bit binary up-down counter samples and stores the control signal. A 12-bit binary DAC converts the con-
Figure 5. Block Diagram of the Heating Control Circuit for the Knudsen Cell.
tent of the counter to an analog voltage, also calibrated at 1 millivolt per degree C. The voltages from both DACs are compared at the summing point to an operational amplifier. The difference of the two voltages is amplified to control the voltage regulating circuit which then supplies 0 to 117V a.c. (stepped down by a high current transformer) required by the heating element.

B. Method of Automatic Data Acquisition

The implementation of the automatic on-line computer data acquisition system for the mass spectrometer involves the conversion of analog outputs of the mass spectrometer to digital signals suitable for sampling and processing by the computer. A block diagram outlining the method of signal digitization, data collection and data reduction is shown in Figure 5. The signals from the mass spectrometer are the ion intensity (0 to -10 v), mass ramp (0 to +10 v), temperature (0 to +2.0 v), and heating voltage (0 to +10v, not shown in Figure 6). Each of these signals is converted to a frequency via an INTECH A-8000 monolithic voltage-to-frequency converter, "V/F", which converts an input voltage of 0 to 10V to a frequency of 0 to 100 kHz of 5-volt pulses. The pulse signals are received by the computer via an optical coupler (HP4350-443) to avoid potential problems with ground loops between the mass spectrometer and the computer. These are then counted by a 15-bit counter for a short sampling period (e.g. 0.03 sec.). This data sampling rate
Figure 6. Block Diagram Outlining Method of Signal Digitization, Data Collection and Reduction.
is dictated by a crystal oscillator whose frequency is divided by a fixed divisor and a programmable divisor to allow flexible selection of data sampling rate. At the end of the period all the counter outputs are clocked into a FIFO buffer, to avoid possible data back logging problems before output onto a disk file. The data logging operation is controlled by a computer program (QUS, written in assembly language) to allow flexibility in the selection of data sampling rate and sampling period of a mass spectrum. The data logging program is able to restart itself at a constant time interval while the mass spectrometer is scanning continuously and without operator intervention. Detailed operation instructions of the data acquisition system is given in Appendix C.

C. Data Reduction and Analysis

1. QRDMAS -- Data Work Program:

The transformation of the collected raw data into useful spectral information involves the determination of the occurrence of mass peaks, peak positions and their intensities, cell temperatures, and heating voltage. The results are stored onto a permanent mass spectral data file for later analysis. A computer plot of a typical mass scan is shown in Figure 7.

The data transformation operation is done by a FORTRAN data work-up program (called QRDMAS) which can be run uninterruptedly or in an interactive mode to allow handling of
Figure 7. A Computer Plot of a Typical Mass Scan.
error in the data. QRDMAS searches the data for the occurrence of mass peaks. The intensity of each peak is given by the sum of sample points \(V_i \) to \(V_n \) from \(X_i \) to \(X_n \), the positions at which a peak begins and ends. (The voltages are subtracted for baseline signal which is calculated in the program since no threshold rejection of the baseline signal is done during signal digitization.) Ion intensity data are converted back to its corresponding input voltage signals according to a simple relationship governed by the characteristics of interface electronics, \(V = N/ft \), where \(V \) is the input voltage of the "V/F" in volts, \(N \) is the number of pulses counted by the binary counter, \(f \) is the conversion factor of the "V/F" (10^4 Hz/V) and \(t \) is the sampling time per data point. The center of the peak is calculated using the centroid method, \(\frac{\sum V \cdot X \cdot n}{\sum V \cdot n} \). The centroid method was shown to be fundamentally correct in peak center calculations (Klimowski, et al., 1970).

After all mass peaks are found and their intensities calculated the proper m/e-value is assigned to each peak. Since m/e is linear with respect to the mass ramp sweeping voltage, the mass assignment of peaks found is reduced to a simple calculation using a linear equation which is characteristic of the mass spectrometer. In order to obtain this characteristic equation, the positions of at least two reference peaks must be known. Water, nitrogen and carbon dioxide are common background gases and provide convenient reference peaks at m/e = 18, 28 and 44, respectively. The m/e = 18
position is first identified by using the fragmentation pattern of H_2O (m/e = 18, 17 and 16) and the intensity-ratio of m/e = 17 to 18. A first order approximation of the characteristic function is then found by performing a linear-least squares calculation using these three consecutive peaks. Using this equation, peaks for m/e = 28 and 44 are identified, and against a least squares calculation is performed with the addition of these two peaks and their known positions. This gives the characteristic equation, $M = AX + B$, where M is the m/e-value for the peak found, X its position and A and B are the slope and offset, respectively.

The resulting spectral information (the mass peaks, ion intensities, temperature and heating voltage) of each scan is output to a data file. This data file is kept for subsequent analysis. The raw data file can then be discarded.

2. QMS -- Data Analysis Program:

The determination of analytical information from the spectral data is done by an independent FORTRAN program, QMS, which is a fully terminal-interactive program and allows the operator to select the types of analyses to be performed on a data file. The important functions of this program are: 1) to provide a qualitative "picture" of the system being studied; 2) to provide quantitative information about the system being studied; and 3) to provide flexibility in data analysis and facilitate the search for new and important information.
QMS is structured in modular form and each of the different functions it performs is implemented by a subroutine function. The main program acts as a monitor which interacts with the operator via a computer terminal. The monitor asks the operator the functions (each is encoded in a four-character code) to be performed. The monitor then transfers control to the selected subroutine. After the subroutine is completed its task control is returned to the monitor. This process is repeated until the analysis is completed.

This arrangement of the program has several advantages: 1) it provides maximum flexibility in data analysis; 2) it minimizes the modification of the existing program when future expansion is necessary; and 3) subroutines can be overlaid to reduce memory requirement (memory is a limiting resource in any mini-computer system).

The QMS program is documented in detail in the FORTRAN source code. A brief outline of QMS in the form of flow diagrams is given in Appendix D. The QMS's subroutine names and their functions are listed in Table 1.

D. System Performance

1. The High Temperature Vaporization Unit:

The performance of the high temperature vaporization source (consisting of the specially designed Knudsen cell interfaced with the quadrupole mass spectrometer) has been thoroughly evaluated and has proved to be sensitive, versatile and reliable (Killingley, 1975).
Table 1. QMS Subroutine Code Names and Functions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>For each of the masses being processed, calculate the temperature-dependent area (A_1 in equation 17) under the mass pyrogram using a background file for background correction.</td>
</tr>
<tr>
<td>BACK</td>
<td>Read in the background data file.</td>
</tr>
<tr>
<td>CORR</td>
<td>Subtract background intensities from sample intensities.</td>
</tr>
<tr>
<td>DATA</td>
<td>Read in the sample data file.</td>
</tr>
<tr>
<td>ERRO</td>
<td>Inspect the input data from terminal.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Ending the QMS main program.</td>
</tr>
<tr>
<td>HELP</td>
<td>Print a summary of the QMS subroutines and their functions to the user terminal for a quick reference.</td>
</tr>
<tr>
<td>PEAK</td>
<td>Calculate the temperature dependent area, A_i, of a mass peak envelope under the mass-pyrogram by drawing a straight line at the base of the mass envelope for background correction.</td>
</tr>
<tr>
<td>PLTS</td>
<td>Plot temperature or heating voltage vs. time.</td>
</tr>
<tr>
<td>PYRO</td>
<td>Plot the mass pyrogram for the masses selected.</td>
</tr>
<tr>
<td>RATI</td>
<td>Calculate the temperature dependent area ratio of two masses.</td>
</tr>
<tr>
<td>STAR</td>
<td>Select masses to be processed by the above subroutines.</td>
</tr>
</tbody>
</table>
The heating control circuit described in Section III-A allows precise controlled heating of the high temperature vaporization unit. The outputs of the frequency divisor labeled A, B, C, D and E are selectable via the switch S and allow for a variable heating rate. The 12-bit binary up-down counter also permits the controlled cooling of the Knudsen cell from high temperature. At position A the heating rate is calibrated at approximately 1.25°/min., and at positions B, C, D, and E the heating rates are increased sequentially by a factor of 2 to provide a maximum rate of 20°/min. The performance of the heating control circuit is evaluated by heating the Knudsen-cell at each rate setting and measuring the cell temperature at fixed time intervals. Figure 8 shows a computer plot of cell temperature vs. time at three different heating rates. The number of data points on lines C, D and E are approximately 250, 110, and 60, respectively. The measured heating rates and standard deviations are calculated by a linear least-square program, and are also shown in Figure 8.

2. The Automatic Data Acquisition System:

The data resulting from digitization of the signals from the mass spectrometer must, after proper conversion, represent as precisely and accurately as possible the original mass spectrometer signals so that one obtains the desired quantitative information about the system being studied. To determine the precision and accuracy of the data
Figure 8. Computer Plot of Cell Temperature vs. Time for Three Heating Rates.
acquisition system, a range of voltages from a precision DC power supply was used to simulate input signals to the interface electronics. The measured signals (after digitization and proper conversion) were compared with the corresponding inputs. The results are summarized in Table 2.

The accuracy and precision of the data acquisition system range from $\pm 8.5\%$ to 10.00% and 1.68% to 5.39% respectively, for input voltages at or below 10 millivolts. The mass spectrometer noise level is approximately 10 millivolts, but normally the mass peak signals are much greater than this voltage (>1.0 volt for H_2O, >0.2 volt for CO_2, and 0.02 to 1.0 volt for SO_2). For the mass spectrometer signals above 10 millivolts, the accuracies are very good as shown in Table 2b. For example, even for weak ion intensities of 0.1191 volt (for $\text{M/C} = 29$) and 0.0782 volt (for $m/e = 40$) the standard deviations are 0.31% and 4.80%, respectively. The deviation of the measured voltage of the precision power supply inputs compared to those of the mass spectrometer (for similar voltages) are much less. This indicates that the data acquisition system is capable of sampling accurately and precisely the mass spectrometer signals.

3. **Limitation of the System:**

The high temperature vaporization assembly has been used to achieve cell temperatures as high as 1620°C (Killingley). However, for the protection of the mass
Table 2a. Precision and Accuracy of the Interface Electronics.

<table>
<thead>
<tr>
<th>Input Voltage (volts)</th>
<th>Measured Voltage (volts)</th>
<th>Standard Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.00090 ±10.00%</td>
<td>5.39</td>
</tr>
<tr>
<td>0.005</td>
<td>0.00542 ± 8.40%</td>
<td>3.10</td>
</tr>
<tr>
<td>0.010</td>
<td>0.01085 ± 8.50%</td>
<td>1.68</td>
</tr>
<tr>
<td>0.050</td>
<td>0.05106 ± 2.12%</td>
<td>0.53</td>
</tr>
<tr>
<td>0.100</td>
<td>0.10095 ± 0.95%</td>
<td>0.15</td>
</tr>
<tr>
<td>0.500</td>
<td>0.50129 ± 0.38%</td>
<td>0.06</td>
</tr>
<tr>
<td>1.000</td>
<td>1.00375 ± 0.37%</td>
<td>0.018</td>
</tr>
<tr>
<td>5.000</td>
<td>5.01543 ± 0.31%</td>
<td>0.006</td>
</tr>
<tr>
<td>10.000</td>
<td>10.03161 ± 0.31%</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 2b. Accuracy of Ion Intensity Measurement.

<table>
<thead>
<tr>
<th>Ions</th>
<th>m/e Ratio</th>
<th>Ion-intensity (volts)*</th>
<th>Standard Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O$^+$</td>
<td>18</td>
<td>5.9780</td>
<td>0.98</td>
</tr>
<tr>
<td>(15N,^{14}N$^+$</td>
<td>29</td>
<td>0.1191</td>
<td>0.31</td>
</tr>
<tr>
<td>Ar$^+$</td>
<td>40</td>
<td>0.0782</td>
<td>4.80</td>
</tr>
</tbody>
</table>

*Measured mass peak intensity using constant background signals.
filter and detector units from excessive heat caused by radiation, most experiments are normally confined to cell temperatures <1300°C. For cell temperatures higher than 1300°C, extreme care and close monitoring of the system by the operator are required.

For any computer system, memory is one of the major limitations to the size of the program which can be run. The PDP-11/45 is no exception. For this reason certain requirements have been imposed upon the input data of the QRDMAS and QMS programs. QRDMAS limits the number of data points in a mass scan to a maximum of 2000. Data points in excess of 2000 will be discarded. The total number of scans which can be processed is limited by the capacity of the on-line storage medium (the system disk) of the computing facility and by the QMS program. QMS limits the number of masses which can be processed at a given time (a maximum of 5), and the total number of scans (a maximum of 250) of any QMS input data file.

Currently, the system disk has approximately 6000 blocks of available space for on-line storage. The number of blocks of disk space needed per mass scan by QMS is 24, with a sampling speed of 9 and a sampling (scan) time of 30 seconds.

The total number of blocks, B_t, of disk space required for a vaporization experiment can be computed by

$$B_t = B_s \frac{T_r}{H} \frac{1}{t_R}$$

(19)
where B_s is the number of blocks per mass scan, T_r is the temperature range (°C) during which data is acquired, H is the heating rate (°C/sec), and t_R is the rescheduling time (seconds) of the data logging program, QUS. During the vaporization experiment (which requires QUS to log data), the number of blocks of disk space used by QUS plus the available space must be greater than or at least equal to B_t. If no disk space is available for QUS to output data, the data will be lost.

The above limitations must be observed when planning an experiment. Of course, the above requirements may be changed by modifying the existing programs if future expansion is necessary.
IV. APPLICATION: INVESTIGATION OF THE VOLATILE ABUNDANCE OF SUBMARINE BASALTS FROM THE MARIANA ISLAND-ARC AND TROUGH

A. Importance of the Volatile Content in Submarine Basalts

Volatiles from igneous rocks provide important information about chemical and physical properties associated with volcanism at divergent plate margins. Petrogenetic models for the origin and evolution of magma depend critically upon the abundance and character of volatiles in the system (Holloway and Burnham, 1972; Kushiro, 1972; Eggler, 1976). Therefore, knowledge of the absolute and relative abundances of volatiles in different magma types is essential to the understanding of their origin and evolution.

Numerous studies on the volatiles in basalts have been made in an attempt to explain volcanic eruptive behavior (e.g., Anderson, 1975; Naughton et al., 1969; Killingley and Murrow, 1975a,b; Watson, 1976). Attention has been focused upon magmatic source conditions and evolution from studies of readily available products, such as sub-alkalic basalt dredged from the ocean floor. Of particular geochemical and petrologic interest are volatile abundances within Mid-Ocean Ridge basalts, MORB (Delaney et al., 1978; Muenow et al., 1978).

In contrast to basalts from mid-ocean spreading centers those from island-arc systems represent materials of an entirely different geologic environment where subduction of a lithospheric plate has taken place. It has been proposed
from recent petrologic studies that materials from volcanic arc systems have been contaminated by material from remelting of the subducting crustal plate (Armstrong, 1968, 1971; Ringwood, 1974). Figure 9 shows a schematic diagram of the principal geologic features of a mid-ocean spreading center, a subducting ocean lithosphere (under an island arc), and a spreading center within a marginal basin. Approximate depths and pressures are indicated on the vertical scales. The pressure below seal level is estimated to be 30 kilobar per 100 kilometer of depth (Ringwood, 1975).

The primary source of magmas in island arcs is believed to contain either slices of a subducted lithosphere and/or the overlying wedge of peridotite (Boettler, 1977; Wyllie, 1973; Ringwood, 1974; Garcia, 1978a). The abundance of CO₂ and H₂O in the source during partial remelting of lithosphere material greatly influences the character of the resulting magma (Holloway and Burnham, 1972; Eggler and Rosenbauer, 1978).

Recent studies have also indicated great interest in the origin and evolution of marginal basins (e.g. Dietrich, et al., 1978, Hawkins, 1976, 1977; Meijer, 1976). Attention has been focused on comparing marginal basin lavas with lavas from mid-ocean ridges and island arcs (e.g. Hawkins, 1977; Hart et al., 1972; Gill, 1976; Hawkesworth et al., 1977). In general, marginal basin basalts have a broad composition overlapping with MORB and it does not seem possible at this point to distinguish geochemically between the mar-
Figure 9. A cross sectional diagram showing the formation and subduction of lithosphere. New lithosphere is created at a mid-ocean ridge. A trench forms where the lithosphere slab descends into the mantle. Secondary convection currents in asthenosphere may form small spreading centers under marginal basins. Arrows in asthenosphere indicate direction of possible convective motion (after Toksoz, 1975).
ginal basins and mid-ocean ridge spreading environments (Hawkins, 1977; Hawkesworth et al., 1977).

B. Sample Description:

The samples studied in this investigation were selected from unaltered submarine pillow basalts and are principally from the Mariana island-arc and interarc basin (Mariana trough). A generalized bathymetric map of the Mariana island-arc and trough is shown in Figure 10. The regions on the map labelled A and T indicate the approximate locations of the arc and trough samples, respectively. The exact locations and descriptions of the samples are given in Table 3a; their depth and chemical compositions (major elements) are given in Table 3b. Basalts from the trough typically contain 40% phenocrysts, 10% vesicle and 50% fine grained ground mass (Meijer, 1976). Samples from the arc contain 15% to 30% phenocrysts, 10% to 30% vesicles and 40 to 70% fine grained ground mass (Garcia, 1978). All the samples studied have spherical vesicles quenched in the glassy portions of the pillow basalt rims and contain phenocrysts of plagioclase.

Unaltered glassy rims of pillow basalts were selected since they are the quench products of volatile rich lavas erupted on the ocean floor (Moore and Fabbi, 1971) and may be expected to contain volatile abundance patterns close to that of their magmatic source (Delaney et al., 1978). That these types of samples contain primordial gases from the
Figure 10. Generalized Bathymetric Map of Marian Island Arc System, and the Mariana Interarc Basin (the Mariana Trough) (after Meijer, 1976).
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV1506*</td>
<td>21°55.5'N 143°25.1'E</td>
<td>Andesite, hyalopolitic texture, phenocrysts 30%, ground mass 40%, vesicles 30%; Plagioclase 40%, augite 5%, opaques 1%, remainder is very fine grained ground mass. Not altered.</td>
</tr>
<tr>
<td>MV1514*</td>
<td>Same as MV1506</td>
<td>Andesite, hyalopolitic texture, phenocrysts 25%, ground mass 65%, vesicles 10%; Plagioclase 30%, augite 10%, opaques 1%, remainder is very fine grained ground mass. Not altered.</td>
</tr>
<tr>
<td>MV15220*</td>
<td>Same as MV1506</td>
<td>Andesite, hyalopolitic texture, phenocrysts 20%, ground mass 55%, vesicles 25%; Plagioclase 30%, augite 10%, opaques 1%, remainder is very fine grained ground mass. Not altered.</td>
</tr>
<tr>
<td>MV15227*</td>
<td>Same as MV1506</td>
<td>Basaltic andesite, hyalopolitic texture, phenocrysts 15%, ground mass 70%, vesicles 25%; Plagioclase 10%, olivine 2%, augite 2%, opaques 1%, remainder is very fine grained ground mass. Not altered.</td>
</tr>
</tbody>
</table>
Table 3a. (Continued) Sample Localities and Description

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location (lat.) (long.)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV1349*</td>
<td>18°00.1'N 144°43.1'E</td>
<td>Basalt, hyalopolitic texture, phenocrysts 20%, ground mass 80%; plagioclase 14%, olivine 6%, opaques 5%, remainder is very fine grained ground mass. Not altered.</td>
</tr>
<tr>
<td>46D** Series</td>
<td>17°10.1'N 144°50.5'E</td>
<td>Basalt, hyalopolitic texture, phenocrysts 40%, ground mass 50%, vesicles 10%; phenocrysts: plagioclase 20%, augite 5%, olivine 15%, remainder is very fine grained ground mass. Not altered.</td>
</tr>
</tbody>
</table>

* The sample descriptions are hand specimen descriptions made by Garcia (1978); sample locations were provided by Patricia Fryer (Dept. of Geology, Univ. of Hawaii).

** The sample locations and descriptions are taken from Meijer (1976).
Table 3b. Major Elemental Analysis of Selected Arc and Trough Basalts

<table>
<thead>
<tr>
<th>Sample Depth Type*</th>
<th>MV1506 1170M Arc</th>
<th>MV1514 1170M Arc</th>
<th>MV15220 1170M Arc</th>
<th>46 Dl Trough (3465 to 4415M)</th>
<th>46 Gl Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>61.05</td>
<td>55.40</td>
<td>56.50</td>
<td>51.25</td>
<td>51.23</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.91</td>
<td>0.96</td>
<td>1.01</td>
<td>1.60</td>
<td>1.40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.12</td>
<td>15.94</td>
<td>15.52</td>
<td>16.76</td>
<td>17.80</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.99</td>
<td>1.99</td>
<td>1.39</td>
<td>8.63</td>
<td>7.70</td>
</tr>
<tr>
<td>Fe O</td>
<td>6.54</td>
<td>7.58</td>
<td>7.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg O</td>
<td>2.09</td>
<td>3.57</td>
<td>2.98</td>
<td>5.95</td>
<td>4.86</td>
</tr>
<tr>
<td>Mn O</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Ca O</td>
<td>6.24</td>
<td>9.16</td>
<td>8.12</td>
<td>11.22</td>
<td>11.22</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.41</td>
<td>2.67</td>
<td>2.83</td>
<td>3.04</td>
<td>2.86</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.38</td>
<td>1.06</td>
<td>1.07</td>
<td>0.44</td>
<td>0.56</td>
</tr>
<tr>
<td>H₂O**</td>
<td>0.85</td>
<td>1.03</td>
<td>2.12</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.27</td>
<td>0.18</td>
<td>0.22</td>
<td>0.13</td>
<td>0.18</td>
</tr>
</tbody>
</table>

* Analysis of arc samples were done by K. Ramlal, Department of Earth Sciences, University of Manitoba. Data of the trough samples were taken from Meijer (1974).

** Determined by heating sample in a stream of dry oxygen in an induction furnace (temp. 1100°C). H₂O collected on Anhydron and weighed.
mantle is supported by rare gas isotope studies (Craig and Lupton, 1976).

Plagioclase crystals separated from the glassy rinds of the arc and trough basalts were also studied. The separated plagioclase range from 0.1-1.0 mm in diameter and contain variable amounts of glass-vapor inclusions which can be seen under a binocular microscope. It has been the conclusion of most studies of volatile phase glass-bearing inclusions (contained within phenocrysts of plagioclase and diorite) that they have sampled magma at a depth greater than that of eruption onto the sea floor (c.f. Anderson, 1974; Delaney et al., 1978; Roedder, 1965; Watson, 1976; Roedder and Weiblen, 1972, 1973a, 1973b). Textural evidence of these phenocrysts also favor post-entrapment vapor phase development. That is, the inclusions did not trap vapor plus magma. The volatile content of the inclusions can therefore be directly related to the mass of glass in the inclusion (Delaney, 1977).

The 46D-series of samples were provided to this laboratory by J. R. Delaney (Dept. of Oceanography, Univ. of Washington) and are described by Meijer (1974, 1976). The MV-series of samples were obtained from M. O. Garcia (Geology Dept., Univ. of Hawaii) and were dredged by the R/V KANA KEOKI during an IPOD site-survey cruise during 1977. These are described by Garcia et al. (1978).
C. Method of Analysis

1. Sample Preparation:

Samples were prepared according to procedures previously described (Delaney et al., 1978).

Glassy portions of the basalt rims were chipped away from the rock sample and crushed with an agate mortar and pestle. A size fraction of the sample of 0.5 to 1.0 mm diameter was separated and ultrasonically cleaned with distilled water and 0.2N HCl solution (to remove any carbonate which might have formed on fracture surfaces), rewashed with distilled water and dried at approximately 200°C for 1/2 hour with a laboratory heat gun. Glass and phenocrysts were handpicked under a binocular microscope. Glass fragments with alteration of any type were rejected. Considerable care was taken to exclude phenocryst fragments with glass adhering to outer surfaces. Only those free of clinging matrix glass were used for analysis.

2. High Temperature Vaporization of Matrix Glass:

The volatile content and degassing behavior of all the samples were studied with the computer interfaced high temperature/Knudsen cell quadrupole mass spectrometer system described in a previous section of this thesis (Section II).

Glass samples (40-60 mg) were weighed and placed into a prebaked high purity alumina cell liner and heated under a vacuum of $\sim 2 \times 10^{-8}$ torr at a rate of approximately 5°C/min. to 1250°C. Cell liners were prebaked to temperatures ex-
ceeding those of sample-degassing temperatures. During the entire degassing period, the mass spectrometer was operated in a rapid-scan mode with a scan rate of 30 sec/scan from approximately 1 to 100 amu. Mass spectra and cell temperatures were sampled by QUS at a time interval of approximately 2 minutes. The mass spectral data were subsequently processed and analyzed by QRDMAS and QMS, respectively (see Section III of this thesis).

3. High Temperature Vaporization of Phenocrysts:
For degassing plagioclase phenocrysts, the mass spectrometer was operated in a switchable fixed-mass mode. By continuously monitoring a major ion-mass characteristic to any volatile of interest (or several, by periodically switching from mass to mass), it is possible to observe rapid changes in the ion intensity as sharp spikes on a fast-response, strip-chart pen recorder and oscilloscope. For minerals containing volatile-bearing inclusions, the ion-current signal spikes appear at high temperature and correspond to vapor release from one or a number of ruptured inclusions. This phenomenon has previously been observed (Killingley and Muenow, 1974) and is believed to be the result of cracking caused by stresses due to temperature gradients within the plagioclase grains (Killingley and Muenow, 1975b). The detection limit of the instrument for spike release of the volatiles CO₂, H₂O, and SO₂ is 5 x 10⁻¹³ mole per spike. Each sample was heated at 10°C/min.
to 1300°C and monitored for its vapor burst-release behavior.

D. Results and Discussion

The mass pyrograms of the volatiles released from matrix glass samples were plotted by the computer. A typical mass pyrogram showing the release behavior of the three principle volatiles H_2O, CO_2 and SO_2 is shown in Figure 11. The mass pyrogram provides a "picture" of sample volatility up to 1250°C. Ion-intensities, plotted along the vertical axis, are proportional to the partial pressures of each of the volatiles and the area under each curve is proportional to the total amount of each volatile released over the temperature (or time) interval. Each curve contains approximately 200 data points representing a vaporization period of approximately 4 hours. Ion-intensities for all mass peaks below temperatures of approximately 500°C are at background levels. A mass pyrogram for a background ("blank") run is shown in Figure 12.

Most of the glass samples studied were taken from the glassy rims of pillow basalts. Typical weight losses range from 1.24 to 2.54 wt-% with an exception of 4.44 wt-% for the pillow interior glass sample (46D Il). Interior glass of the pillows are sometimes partly crystalline and are subject to alteration through seawater contamination. A mass pyrogram of 46D Il interior glass (Figure 13) shows a broad water release between 200°C and 500°C which is indicative of
Figure 11. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV15220 Glass.

Figure 12. Mass Pyrogram Showing the "Release" of H$_2$O, CO$_2$ and SO$_2$ During a "Blank" Run.
nearly all basalt samples altered by reaction with seawater during slow cooling of the pillow interior. For comparison, Figure 14 shows the mass pyrogram for an unaltered glass rim of 46D II.

For the quantitative determination of volatiles released, the areas under each curve are used. Here, the ion-intensities of all mass peaks must also be corrected for background and other (instrumental sensitivity, isotopic abundance and fragmentations) effects. From the areas under the pyrogram curves, the heating rate, the instrumental sensitivity and calibration constants, and the total sample weight loss the volatile content of any sample can be determined. This is accomplished by use of the equation,

\[
\text{Wt. \% } X_i = \frac{\sum_{i=1}^{n} K_i A_i}{\% \text{ wt. lost}}
\]

where \(X_i\) is the volatile in question, \(K\) is the instrumental sensitivity constant of species \(i\), \(A_i\) is the temperature-dependent area of species \(i\) (given in Section II-B), and the summation index \(n\) is the total number of different volatiles released from the sample.

Mass pyrograms showing release of volatiles (H\(_2\)O, CO\(_2\), SO\(_2\), F and Cl) typical to matrix glasses of arc (MV15220) and trough (46D A1) environments are shown in Figures 15 to 18 (mass pyrograms of all the samples studied are presented in Appendix E). Only data above 500°C are shown.
Figure 13. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$, and SO$_2$ from 46D II Interior (Altered) Glass.

Figure 14. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$, and SO$_2$ from 46D II Unaltered Glassy Rim.
Figure 15. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from 46D Al Glass.

Figure 16. Mass Pyrogram Showing the Release of F and Cl from 46D Al Glass.
Figure 17. Mass Pyrogram Showing the Release of H_2O, CO_2 and SO_2 from MV15220 Glass.

Figure 18. Mass Pyrogram Showing the Release of F and Cl from MV15220 Glass.
since below this temperature there was no degassing activity from the samples. The major water release occurs between 600°C to 925°C and 600°C-800°C for trough and arc samples, respectively. For both types of samples all detectable water is removed by 970°C. The CO₂ release patterns for both types of samples show large differences but are remarkably consistent among samples of the two groups. Most of the CO₂ is released between 700°C to 1050°C. The release of SO₂ corresponds to melting of the samples and only minor amounts are seen to be released from the arc samples. Release patterns of fluorine and chlorine are similar for both the arc and trough samples. The release of F seems to be closely related to the release of H₂O. In some cases this is less obvious. The release of Cl seems to be associated with the initial release of Na and K and corresponds to glass decomposition temperatures beginning at approximately 950°C (for both the arc and trough samples). After the initial release of Na and K at 950°C, their corresponding intensities continue to increase rapidly with temperature until cell temperatures of about 1200°C are reached. From 1000°C to 1050°C alkali release decreases, then remains fairly constant to 1150°C, and finally rapidly increases again with increasing temperature and silicate decomposition (no quantitative data for Na and K are given since decomposition at maximum cell temperatures of 1300°C is not complete). Alkali release is shown in Figure 19.

The apparent concurrent release of F with H₂O may be
Figure 19. A Typical Mass Pyrogram Showing the Release of Na and K from Pillow Rim Glass.
due to the partial replacement of OH- ions with F- ions within the silicate. The similarity in their sizes (1.40\,\text{Å} for OH- and 1.36\,\text{Å} for F-) (Huheey, 1972) and charge densities support this view. This close association with water-release, however, is not observed for chlorine, even though the chemistry Cl- and F- are quite similar.

Release of Cl with Na and K between 950° to 1150°C may suggest that these three elements exist in some common compound (e.g. KCl and NaCl) which dissociates into its atomic components during melting of the glasses. This phenomena is also observed for F, but to a smaller extent.

The release patterns of H\textsubscript{2}O, CO\textsubscript{2} and SO\textsubscript{2} distinctly distinguish samples from the trough (Figure 15) and arc (Figure 17) environments. The water release envelope is confined to a narrow temperature range for the arc samples but for the trough samples it extends over a wider temperature range with more than one water release peak. Mass pyrograms showing release of volatiles H\textsubscript{2}O, CO\textsubscript{2} and SO\textsubscript{2} from samples typical to mid-ocean ridge spreading centers (MORB) and Hawaii (plume oceanic island, referred to as POI, an intraplate mantle-plume derived oceanic island) are shown in Figures 20 and 21. The mass pyrograms of Hawaii basalts (Figure 21) and the Mariana arc (Figure 17) both show a single H\textsubscript{2}O-release envelope, however, the Hawaii mass pyrograms show a shoulder on the low temperature end of the H\textsubscript{2}O-release envelope. The corresponding CO\textsubscript{2}-release show rather poorly defined release envelopes (broad and low density). In contrast, mass pyro-
Figure 20. Typical Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from Mid-Ocean Ridge Glass.

Figure 21. Typical Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from Hawaii Submarine Basalt Glass.
grams for samples from MORB (Figure 20) and the Mariana trough (Figure 15) show bimodal releases of H_2O and CO_2 and this may indicate that H_2O and CO_2 exist in two different types of molecular "environments" within the silicate. Primary investigations along this direction has been done by Graham (1978).

The release behavior of SO_2 (900°-1100°C) is similar for all sample types except those for the Mariana arc which show only extremely small amounts released.

Release patterns for the other volatiles F, Cl, Na and K from the MAR, Hawaii, Mariana arc and Mariana trough samples are all quite similar with only minor differences.

The number of analyses made for each of the glasses ranges from 2 to 4 depending on sample availability. Differences in mass pyrograms for replicate samples were minor. Weight losses are essentially due to release of the volatile H_2O, CO_2, SO_2, Cl, F, Na, and K. The volatile data (excluding Na and K) are summarized in Table 4. Average values obtained for basalts from the Mid-Atlantic Ridge (MAR) and Hawaii (Delaney et al., 1978; Graham, 1978) are included for comparison. Glass rims of both arc and trough samples contain approximately 1.0 wt-% H_2O and 0.25 to 0.26 wt-% CO_2. Sulfur content in the arc samples average 0.006 wt-% and is considerably higher in the trough samples at 0.082 wt-%. Generally, F and Cl contents are higher in the arc samples compared to those in the trough.
Table 4. Volatile Abundance in Glassy Rims of Marianas Arc and Trough Pillow Basalts

<table>
<thead>
<tr>
<th>Sample</th>
<th>H$_2$O (wt %)</th>
<th>CO$_2$ (wt %)</th>
<th>S (wt %)</th>
<th>F (wt %)</th>
<th>Cl (wt %)</th>
<th>CO$_2$/H$_2$O (mole ratio)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV15247</td>
<td>1.034</td>
<td>0.253</td>
<td>0.003</td>
<td>0.024</td>
<td>0.046</td>
<td>0.094</td>
<td>Arc</td>
</tr>
<tr>
<td>MV15220</td>
<td>0.898</td>
<td>0.433</td>
<td>0.010</td>
<td>0.029</td>
<td>0.049</td>
<td>0.197</td>
<td>Arc</td>
</tr>
<tr>
<td>MV1514</td>
<td>0.837</td>
<td>0.128</td>
<td>0.008</td>
<td>0.025</td>
<td>0.101</td>
<td>0.042</td>
<td>Arc</td>
</tr>
<tr>
<td>MV1506</td>
<td>1.494</td>
<td>0.165</td>
<td>0.003</td>
<td>0.332</td>
<td>0.232</td>
<td>0.045</td>
<td>Arc</td>
</tr>
<tr>
<td>Ave.</td>
<td>1.066</td>
<td>0.245</td>
<td>0.006</td>
<td>0.103</td>
<td>0.107</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td>46DI1</td>
<td>1.000</td>
<td>0.410</td>
<td>0.083</td>
<td>0.028</td>
<td>0.017</td>
<td>0.168</td>
<td>Trough</td>
</tr>
<tr>
<td>46DG1</td>
<td>1.220</td>
<td>0.224</td>
<td>0.058</td>
<td>0.068</td>
<td>0.084</td>
<td>0.047</td>
<td>Trough</td>
</tr>
<tr>
<td>46DC1</td>
<td>1.263</td>
<td>0.202</td>
<td>0.075</td>
<td>0.021</td>
<td>0.024</td>
<td>0.065</td>
<td>Trough</td>
</tr>
<tr>
<td>46DA1</td>
<td>0.711</td>
<td>0.224</td>
<td>0.086</td>
<td>0.019</td>
<td>0.030</td>
<td>0.129</td>
<td>Trough</td>
</tr>
<tr>
<td>MV1349</td>
<td>0.898</td>
<td>0.268</td>
<td>0.108</td>
<td>0.015</td>
<td>0.012</td>
<td>0.122</td>
<td>Trough</td>
</tr>
<tr>
<td>46DI1-Ia</td>
<td>3.280</td>
<td>0.126</td>
<td>0.112</td>
<td>0.041</td>
<td>0.010</td>
<td>0.058</td>
<td>Trough</td>
</tr>
<tr>
<td>Ave.</td>
<td>1.018</td>
<td>0.249</td>
<td>0.082</td>
<td>0.032</td>
<td>0.033</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td>MAR (Ave.)*</td>
<td>0.210</td>
<td>0.132</td>
<td>0.117</td>
<td>0.023</td>
<td>0.006</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Hawaii (Ave.)**</td>
<td>0.621</td>
<td>0.095</td>
<td>0.099</td>
<td>0.045</td>
<td>0.019</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Precision: \pm10%

- a Interior glass of 46DI1 not used in average calculation.
- * Average values of 28 mass spectrometric analyses on 9 unaltered pillow basalt samples dredged from the interior rim valley of the Mid-Atlantic Ridge between 25-30°N latitude, including the FAMOUS area and Kolbiensey Ridge (Delaney et al., 1978).
- ** Average values of 18 mass spectrometric analyses of 5 fresh tholeiitic basalts dredged (2960-5000 m) from east rift, Kilauea Volcano, Hawaii (Graham, 1978).
Plagioclase samples show no significant degassing behavior below 1000°C. At approximately 1020°C, the mass peaks corresponding to H_2O, CO_2 and SO_2 begin to spike, indicating burst-release of these volatiles. Spiking is most vigorous in the temperature range 1030°C-1120°C. No SO_2 spikes were observed from the arc plagioclase. Figure 22 shows "simplified" mass pyrograms showing the release behavior of H_2O, CO_2 and SO_2 constructed from ion-intensities obtained by continuously monitoring either one mass per degassing experiment or several by periodically switching from mass to mass on a fast-response strip-chart recorder. The two methods of recording volatile spikes yield similar results on identical samples.

The concentrations of the volatiles H_2O, CO_2 and SO_2 within the inclusions are difficult to establish because it is presently not possible to identify the number and size of inclusions per spike or to accurately determine the mass of glass inclusions being analyzed in the mass spectrometer. However, an estimate can be made from the measured size distributions of H_2O, CO_2 and SO_2 spikes. By switching between masses 18(H_2O^+), 44(CO_2^+) and 64(SO_2^+) and measuring the corresponding spike intensities it is possible to establish a size distribution of spikes for these volatiles. Since spike intensities are proportional to the total amounts of the corresponding gases released their ratio will approximate the average molar ratio of the volatiles. The $\text{CO}_2/\text{H}_2\text{O}$ mole ratio is calculated from the ratio of the sum of the
Figure 22. Schematic Diagram of \(\text{H}_2\text{O}, \text{CO}_2 \text{ and S0}_2 \) Burst-Release from Glass-Vapor Inclusions in the Plagioclase Phenocrysts from the Trough (top) and Arc (bottom) Samples.
C0₂ spikes and H₂O spikes and corrected for the instrumental sensitivity constants and fragmentation effects. The average C0₂/H₂O mole ratio obtained ranges from 1/2 to 2/1 for the trough plagioclase and to be approximately 1/1 for the arc plagioclase. For the trough samples the molar amount of S0₂ is comparable to the amounts of C0₂ and H₂O. However, virtually no S0₂ is released from the arc plagioclases; this compares with only minor amounts of S0₂ observed in the corresponding matrix glasses.

There were two and six degassing experiments done with plagioclase separated from the arc and trough samples, respectively. Sample size ranged from 37 mg to 90 mg. One degassing experiment was done with plagioclase separated from the interior portion of a pillow basalt from the trough (46DI1). The H₂O, C0₂ and S0₂ spike distribution patterns recorded from this sample showed no significant difference from those of plagioclase taken from the pillow rim.

Results obtained from this study indicate that samples from the Mariana arc and trough contain substantially more H₂O and C0₂ than samples from MAR and Hawaii. Glass-vapor inclusions within plagioclase phenocrysts also indicate the presence of water. This is in marked contrast to results of similar studies made on plagioclase and olivine phenocrysts from Hawaii and MAR which show no release of water. These results support models for the production of island arc magmas from a subducted slab of oceanic lithosphere, rather than from the overlaying mantle wedge which require high
volatile content (5-15 wt-%) to produce island arc magma (Garcia et al., 1978). The trough samples, although nearly identical in non-volatile composition to mid-ocean ridge rocks, have much higher H$_2$O, CO$_2$ and lower S content. Either near surface addition of volatile has enriched the magmas or H$_2$O must be an important component in the generation and evolution of back-arc basin lavas (Garcia, 1978b).

The data from these studies also point out the potentially important correlation among the chlorine and water concentrations for any given sample. Sigvaldason et al. (1976) have pointed out that, "arguments involving the origin of excess volatiles lead to the assumption that the H$_2$O/Cl-ratio in the magmatic gas phase may be the same as that of ocean water and sediments". On this basis, measured Cl values have been used to assign H$_2$O contents of basaltic magma in Iceland and these are in agreement with values assumed by other independent methods. Using the H$_2$O/Cl-ratio in seawater plus sediments (H$_2$O = 35 Cl, wt-%) and measured chlorine contents from subaerial and submarine basalts Sigvaldason et al. (1976) obtain the values of 0.3 - 0.6 wt-% H$_2$O for low-K tholeiites and 0.9 - 1.2% H$_2$O for high-K tholeiites. The H$_2$O and Cl data from the present studies (and others made in this laboratory) are summarized in Table 5 and show a similar striking correlation of H$_2$O/Cl-values among the seawater plus sediment value and those for glasses from spreading centers, the Mariana Trough (a back-arc spreading center) and Hawaii (a mantle-plume-
Table 5. Variation Among Water and Chlorine Contents for Pillow Basalt Glasses.

<table>
<thead>
<tr>
<th>Geologic Environment</th>
<th>Wt-% H₂O</th>
<th>Wt-% Cl</th>
<th>Wt-% H₂O/Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mariana Arc</td>
<td>1.006</td>
<td>0.107</td>
<td>9.4</td>
</tr>
<tr>
<td>Mariana Trough</td>
<td>1.020</td>
<td>0.033</td>
<td>31.0</td>
</tr>
<tr>
<td>MORB<sup>a</sup></td>
<td>0.180</td>
<td>0.006</td>
<td>30.1</td>
</tr>
<tr>
<td>Hawaii</td>
<td>0.621</td>
<td>0.019</td>
<td>32.7</td>
</tr>
</tbody>
</table>

^a Average value of MAR, Juan DeFuca Ridge, Paul Revere Ridge, Gulf of California, and FAMOUS Samples.

Derived ocean island). The notable exception is the value (H₂O/Cl = 9.4) for the Mariana Arc (derived in part from subducted ocean lithosphere?). A similarly low value has been reported by Anderson (1974) for Mt. Shasta andesites. These data demonstrate that while chlorine is both very soluble in magma and is perhaps easily fluxed out of magma by water during effervescence (Unni and Schilling, 1978), it is not necessarily a key indicator of total volatile content (Anderson, 1974), particularly for water. Correlation among water and chlorine in magma might be expected to be clarified by future studies on the Cl-content of glass inclusions within plagioclase and olivine phenocrysts from glassy basalts.
V. SUMMARY

A. The Automatic Data Acquisition System

An automatic data acquisition system for a high temperature quadrupole mass spectrometer has been designed and implemented as stated in the objectives of this research. A heating control circuit was developed which allows the accurate and precise heating of the high temperature vaporization unit required for quantitative extraction of volatiles from igneous rocks. The data acquisition system has been shown to accurately and precisely sample all the mass spectrometer output signals. The data acquisition system is used routinely for the acquisition and reduction of large quantities of data (150 to 250 mass scans per experiment). The system makes the data available quickly (15 to 20 minutes after each experiment) for examination and releases the operator from 4 to 5 hours of painstaking effort. In contrast, the manual mode of operation typically allows the operator to collect only 10 to 20 mass spectra per experiment, requires several hours for data reduction, and usually several identical experiments are required to obtain all important data.

B. Application

Glasses selected from the rims of pillow basalts dredged from the Mariana island-arc and interarc basin were studied using the automated data acquisition system. Mass
pyrograms showing the release of volatiles from these samples were obtained and compared with those from samples from other geologic environments. The mass pyrograms provide a quantitative "picture" of sample volatility and also provide important information on the relationships between the various volatiles within each sample. The mass pyrograms allow one to clearly distinguish among samples from different geologic environments and show the effects of alteration of samples through seawater contamination. The abundance of the volatiles \(\text{H}_2\text{O}, \text{CO}_2, \text{SO}_2, \text{F} \) and \(\text{Cl} \) in matrix glasses and phenocrysts have been obtained. The results of this study demonstrate the power of the automated high temperature mass spectrometer system to provide important data for the characterization of the volatiles in samples of geochemical interest and ultimately to provide clues to the origin of volatiles and their evolution from within the earth.
APPENDIX A

Mass Pyrograms

1. Mariana Arc Samples
 a. MV1506 66
 b. MV1514 67
 c. MV15220 68
 d. MV15247 69

2. Mariana Trough Samples
 a. MV1349 70
 b. 46D Al 71
 c. 46D Cl 72
 d. 46D Gl 73
 e. 46D Il 74
 f. 46D Il (Interior Glass) 75
Figure 23. Mass Pyrogram Showing the Release of H₂O, CO₂ and SO₂ from MV1506 Glass.

Figure 24. Mass Pyrogram Showing the Release of F and Cl from MV1506 Glass.
Figure 25. Mass Pyrogram Showing the Release of H₂O, CO₂ and SO₂ from MV1514 Glass.

Figure 26. Mass Pyrogram Showing the Release of F and Cl from MV1514 Glass.
Figure 27. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV15220 Glass.

Figure 28. Mass Pyrogram Showing the Release of F and Cl from MV15220 Glass.
Figure 29. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from MV15247 Glass.

Figure 30. Mass Pyrogram Showing the Release of F and Cl from MV15247 Glass.
Figure 31. Mass Pyrogram Showing the Release of H_2O, CO_2 and SO_2 from MV1349 Glass.

Figure 32. Mass Pyrogram Showing the Release of F and Cl from MV1349 Glass.
Figure 33. Mass Pyrogram Showing the Release of H_2O, CO_2 and SO_2 from 46D Al Glass.

Figure 34. Mass Pyrogram Showing the Release of F and Cl from 46D Al Glass.
Figure 35. Mass Pyrogram Showing the Release of H_2O, CO_2, and SO_2 from 46D Cl Glass.

Figure 36. Mass Pyrogram Showing the Release of F and Cl from 46D Cl Glass.
Figure 37. Mass Pyrogram Showing the Release of H_2O, CO_2 and SO_2 from 46D G1 Glass.

Figure 38. Mass Pyrogram Showing the Release of F and Cl from 46D G1 Glass.
Figure 39. Mass Pyrogram Showing the Release of H$_2$O, CO$_2$ and SO$_2$ from 46D II Glass.

Figure 40. Mass Pyrogram Showing the Release of F and Cl from 46D II Glass.
Figure 41. Mass Pyrogram Showing the Release of H_2O, CO_2 and SO_2 from 46D II Interior Glass.

Figure 42. Mass Pyrogram Showing the Release of F and Cl from 46D II Interior Glass.
APPENDIX B

Sample Calculations of Volatile Abundance from Matrix Glass

Two methods for calculating the volatile abundance from matrix glass summarized by Graham (Ph.D. Thesis, 1978, Appendix B) are given here for convenience reference. Calculation of the amount of any volatile (i) present in the glass sample can be made using the following formulas:

Method I.

\[
\text{Wt-\% of Species } i = \frac{W_{Mg}}{W_{\text{Sample}}} \cdot \frac{K_i}{K_{Mg}} \cdot \frac{r_{Mg}}{r_i} \cdot \frac{A_i}{A_{Mg}} \cdot 100
\] (21)

Method II.

\[
\text{Wt-\% of Species (i)} = \frac{K_i A_i}{\sum_{i} K_i A_i} \cdot \frac{\text{Wt. of Volatiles}}{\text{Wt. of Sample}} \cdot 100
\] (22)

Where

- \(W_{Mg} \) = Weight of magnesium standard vaporized
- \(\text{Wt of Volatiles} = \) total weight of all volatiles released from the sample - the sample weight loss.

\[
K_i = M^{1/2} F_i \left[\delta_i Y_i (E-AP_i) \cdot \tau_i \right]^{-1}
\]

\(M \) = Molecular weight of species i

\(F \) = Correction factor of fragmentation pattern and isotopic abundances

\(\delta \) = Ionization cross section

\(Y \) = Election multiplier efficiency

\(E \) = Energy of ionizing electrons (e.g. 50 eV)
AP = appearance potential of species i
\[\tau = \text{quadrupole efficiency} \]
\[r = \text{heating rate (°C/min)} \]
\[A = \text{area under the } IT^{1/2} \text{ vs. } T \text{ curve} \]

Values of the parameters used to determine \(K_i \) are shown in Table 6. The fragmentation patterns were determined experimentally by Killingley (1975). Ionization cross sections (\(\delta \)) were evaluated by reference to a curve of ionization vs. atomic number (Figure 43-a; Flaim and Ownby, 1971). The electron multiplier efficiency (\(\gamma \)) is given by a \(M^{1/2} \) vs. amu curve (Figure 43-b; Bunyard, 1972). The quadrupole transmission efficiency (\(\tau \)) for an ion is dependent on its mass (Figure 43-c; Bunyard, 1972). Appearance potentials and isotopic abundance were obtained from Roboz (1968). Areas are calculated by the QMS program.
Table 6. Values of Parameters Used in Volatile Abundance Calibrations

<table>
<thead>
<tr>
<th>Specie</th>
<th>M/e</th>
<th>F</th>
<th>δ</th>
<th>γ</th>
<th>AP</th>
<th>τ</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂0</td>
<td>18</td>
<td>1.22</td>
<td>0.82</td>
<td>1.25</td>
<td>12.8</td>
<td>1.00</td>
<td>0.136</td>
</tr>
<tr>
<td>F</td>
<td>19</td>
<td>1.00</td>
<td>0.82</td>
<td>1.21</td>
<td>17.4</td>
<td>1.00</td>
<td>0.135</td>
</tr>
<tr>
<td>Na</td>
<td>23</td>
<td>1.00</td>
<td>0.87</td>
<td>1.10</td>
<td>5.1</td>
<td>0.90</td>
<td>0.126</td>
</tr>
<tr>
<td>Mg</td>
<td>24</td>
<td>1.27</td>
<td>0.91</td>
<td>1.08</td>
<td>7.6</td>
<td>0.90</td>
<td>0.126</td>
</tr>
<tr>
<td>N₂</td>
<td>28</td>
<td>1.07</td>
<td>1.00</td>
<td>1.00</td>
<td>15.6</td>
<td>0.80</td>
<td>0.206</td>
</tr>
<tr>
<td>CO</td>
<td>28</td>
<td>1.11</td>
<td>1.00</td>
<td>1.00</td>
<td>14.0</td>
<td>0.80</td>
<td>0.204</td>
</tr>
<tr>
<td>H₂S</td>
<td>34</td>
<td>1.94</td>
<td>1.17</td>
<td>0.91</td>
<td>10.4</td>
<td>0.75</td>
<td>0.358</td>
</tr>
<tr>
<td>Cl</td>
<td>35</td>
<td>1.33</td>
<td>1.13</td>
<td>0.80</td>
<td>13.0</td>
<td>0.75</td>
<td>0.314</td>
</tr>
<tr>
<td>HCl</td>
<td>36</td>
<td>1.62</td>
<td>1.17</td>
<td>0.88</td>
<td>12.8</td>
<td>0.75</td>
<td>0.338</td>
</tr>
<tr>
<td>K</td>
<td>39</td>
<td>1.07</td>
<td>1.22</td>
<td>0.85</td>
<td>4.40</td>
<td>0.70</td>
<td>0.201</td>
</tr>
<tr>
<td>CO₂</td>
<td>44</td>
<td>1.21</td>
<td>1.35</td>
<td>0.80</td>
<td>13.8</td>
<td>0.65</td>
<td>0.317</td>
</tr>
<tr>
<td>Fe</td>
<td>56</td>
<td>1.09</td>
<td>1.61</td>
<td>0.70</td>
<td>7.9</td>
<td>0.55</td>
<td>0.327</td>
</tr>
<tr>
<td>N₁</td>
<td>59</td>
<td>1.47</td>
<td>1.70</td>
<td>0.68</td>
<td>7.6</td>
<td>0.55</td>
<td>0.430</td>
</tr>
<tr>
<td>SO₂</td>
<td>64</td>
<td>2.19</td>
<td>1.78</td>
<td>0.66</td>
<td>12.4</td>
<td>0.55</td>
<td>0.72</td>
</tr>
</tbody>
</table>
a. Ionization Efficiency (δ) Relative to Nitrogen (After Flaim and Ownby, 1971)

b. Electron Multiplier Efficiency (γ) Versus amu (After Bunyard, 1972)

c. Quadrupole Relative Transmission (τ) Versus amu

Figure 43. Quadrupole Correction Factors
Example: Hawaii Basalt, 5000 M.

Sample size - 37.933 mg, wt. loss = 0.434 mg, $r = 4.95^\circ$C/mtn.

Magnesium standard: wt = 0.642 mg; $A_{Mg} = 8426$, $r_{Mg} = 2.5^\circ$C/min

Table 7. Sample Calculation Data

<table>
<thead>
<tr>
<th>Species</th>
<th>H$_2$O</th>
<th>F</th>
<th>Na</th>
<th>Cl</th>
<th>K</th>
<th>CO$_2$</th>
<th>SO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/e 18</td>
<td>18</td>
<td>23</td>
<td>35</td>
<td>39</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>A$_i$</td>
<td>8660</td>
<td>670</td>
<td>1062</td>
<td>96</td>
<td>276</td>
<td>351</td>
<td>304</td>
</tr>
<tr>
<td>K$_i$A$_i$</td>
<td>1178</td>
<td>90</td>
<td>134</td>
<td>30</td>
<td>55</td>
<td>111</td>
<td>219</td>
</tr>
<tr>
<td>Wt-%*$</td>
<td>0.736</td>
<td>0.056</td>
<td>0.019</td>
<td>0.019</td>
<td>0.0694</td>
<td>0.137</td>
<td></td>
</tr>
<tr>
<td>Wt-%**</td>
<td>0.740</td>
<td>0.057</td>
<td>0.019</td>
<td>0.019</td>
<td>0.0698</td>
<td>0.138</td>
<td></td>
</tr>
</tbody>
</table>

* Value obtained using Method I, equation 21.
** Value obtained using Method II, equation 22.
APPENDIX C

Instructions for the Operation of the Data Acquisition System (DAS)

a. Introduction
b. Heating Control of the Knudsen Cell
c. Quadrupole Mass Spectrometer Setting
d. QUS command file (CMI·CMD)
e. Running the QUS Program
f. Running the QRDMAS Program
g. Running the QMS Program
h. Planning for Future Experiments
a. Introduction

In this appendix, instructions for operating the automatic data acquisition system (DAS) are given. Instructions for the operation of the quadrupole mass spectrometer and vacuum system, and techniques for sample introduction and retrieval are found in various manuals collected in the laboratory. A summary of the "Operation Instructions for the Quadrupole Mass Spectrometer System" has been written by J. Gooding (M.S. thesis, 1975, Appendix A).

The operation of DAS commences after the sample has been introduced into the quadrupole mass spectrometer system, a vacuum of below 10^{-7} torr achieved, and the Knudsen cell heated to the desired starting temperature. DAS consists of three programs: 1) QUS, the on-line real time data logging program, which controls the data acquisition electronics; 2) QRDMAS, the data reduction program, which reduces the data acquired by QUS to a condensed mass spectral data file consisting of the mass peaks and their intensities, the cell temperature, and the heating voltage used during each mass scan sampled; and 3) QMS which performs the quantitative computation on the mass spectral data.

To operate DAS, one must first familiarize himself with the current PDP-11/45 operating-system commands. The communication between the computer and the user is established by a Monitor Control Routine (MCR) which can be invoked by typing "AC" (holding the control-key and typing the character "C" at the same time) on a computer terminal. The monitor
control routine will respond by printing on the computer
terminal a "MCR>" and will wait for the user to type in fur­
ther instructions (MCR> will "go away" after approximately
one minute but can be invoked again by typing a "Ac"). To
communicate with the computer the user must log-on an exist­
ing work area designated by a "User Identification Code"
(UIC). The UIC is designated by "[group number, project
number]" (e.g. [201,1]). When logged on to a UIC, the user
is allowed to execute any programs existing within the com­
puter system providing certain system conventions and re­
strictions are obeyed. Detailed information can be found in
the current PDP-11/45 operating system references (RSX-11D
V6.2).

b. Heating Control of the Knudsen Cell

There are two temperature ramp signals which are used
to control the heating rate of the Knudsen cell. One is
supplied by QMS04 circuit. The other is supplied by the
computer's digital-to-analog converter (DA1:). The voltage
resolution of DA1: (10 bits) is inconsistent with the cell
temperature digital-to-analog converter (12 bits) and for
this reason signals from DA1: are not used. A switch S5 (in
QMS05) is used for the selection of control signals from
QMS04 or DA1:. It must be switched to position 1 (counter
clockwise) to select the QMS04 control signal before start­
ing the heating process.
To start heating:

1. Turn on the QMS interface electronics and the Newport-2600SC digital thermometer.
2. Turn the heating rate select switch S1 (see Fig. 44) to the desired heating rate setting (e.g. 5°C/min at C).
3. Switch S3 to count position.
4. Switch S4 to count-up position.
5. Push the reset switch S2.

Note: The output of QMS04 (pin Z), connected to a volt meter, should read no more than 5 mV, otherwise problems have developed in the QMS04 circuit.
6. Turn the heater power on (see Fig. 45).
7. Watch the VOM (connected to the output of T1) to register at no more than 2V A.C. If it registers more than 2V A.C. and increases to a higher voltage rapidly, turn the heater power off immediately. This indicates problems have developed in the heating control circuit.

C. Quadrupole Mass Spectrometer Setting

1. Set Mode switch to SCAN.
2. Set SCAN SPEED to 900.
3. Turn S.E.M. voltage to maximum.
4. Set CENTER MASS to 0.90.
5. Turn the MASS RANGE knob until the \text{H}_2^+ \text{ peak is centered in the lower left 'centimeter box' on the}
Figure 44. Diagram of Heating Rate Control Switches. (Located in Front of QMS04 Circuit Card)

Figure 45. Diagram of Front Panel of Digital Thermometer.
oscilloscope.

6. Set SCAN SPEED to 30.

The above setting will give a mass range of -2 to 100 amu and a scan rate of 30 sec/scan.

d. QUS command file (CMI·CMD)

A command file named CMI·CMD file must be created in UIC=[201,7]. The CMI·CMD file must contain three (3) records of informations: Record 1 contains all the program control parameters (see Table 8). Record 2 contains the title of the experiment. Record 3 contains additional comments about the experiment.

Example of CMI·CMD:

FILENAME/TM:30/SP:9/RS:70/SZ:54·321/EC:M/RA:B/FI:4
THIS IS THE TITLE
THIS IS A COMMENT

To create CMI·CMD:
MCR>HEL [201,7]cr (cr = carriage return)
MCR>RUN QUSCMD$ ($ = ALTMODE or ESC Key)

and answer all the questions asked by QUSCMD.

e. Running the QUS program

1. Install QUS program:

MCR>HEL [1,1]cr (cr = carriage return)
MCR>INS [201,100]cr

(This will put QUS in the active task list in the system. At this time the CMI·CMD file must be created in UIC=[201,7].)

2. Run QUS:

MCR>HEL [201,7]cr
MCR>QUScr
Table 8. QUS Program Control Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILENAME</td>
<td>The name under which QUS will output data</td>
<td>Maximum of 9 characters. The first character must be a letter of the alphabet.</td>
</tr>
<tr>
<td>/TM:</td>
<td>The scan time (sec)</td>
<td>Must be equal to the SCAN SPEED setting of the Quad Control Unit and must be greater than 10.</td>
</tr>
<tr>
<td>/SP:</td>
<td>The sampling speed</td>
<td>Allowed values are 0 to 15. This controls the number of data point per second (see Table 9).</td>
</tr>
<tr>
<td>/RS:</td>
<td>The reschedule time (sec)</td>
<td>Must be greater than or equal to 2 times the /TM: value</td>
</tr>
<tr>
<td>/SZ:</td>
<td>Sample size</td>
<td>In milligrams</td>
</tr>
<tr>
<td>/RE:</td>
<td>Resolution setting of Quad-1110</td>
<td>870 is currently used</td>
</tr>
<tr>
<td>/SE:</td>
<td>S.E.M. voltage setting</td>
<td>M (Maximum)</td>
</tr>
<tr>
<td>/EC:</td>
<td>Emission Current</td>
<td>720 (=0.720)</td>
</tr>
<tr>
<td>/RA:</td>
<td>Range setting of ESA-75 electrometer</td>
<td>B (A, B, C or D)</td>
</tr>
<tr>
<td>/FI:</td>
<td>Filter setting</td>
<td>4 (1, 2, 3, 4 or 5 counting from MIN)</td>
</tr>
</tbody>
</table>
Table 9. CAMAC Module Period Clocking
(Crystal Frequency = 6.5802 MHz)

<table>
<thead>
<tr>
<th>Speed (sp:)</th>
<th>Divisor (Program)</th>
<th>Divisor (fixed)</th>
<th>Period (sec)</th>
<th>Data Rate (1/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6336</td>
<td>1024</td>
<td>0.98600</td>
<td>1.014</td>
</tr>
<tr>
<td>1</td>
<td>4224</td>
<td>1024</td>
<td>0.65725</td>
<td>1.532</td>
</tr>
<tr>
<td>2</td>
<td>2880</td>
<td>1024</td>
<td>0.44825</td>
<td>2.231</td>
</tr>
<tr>
<td>3</td>
<td>2355</td>
<td>1024</td>
<td>0.36650</td>
<td>2.729</td>
</tr>
<tr>
<td>4</td>
<td>2112</td>
<td>1024</td>
<td>0.32875</td>
<td>3.042</td>
</tr>
<tr>
<td>5</td>
<td>1056</td>
<td>1024</td>
<td>0.164225</td>
<td>6.089</td>
</tr>
<tr>
<td>6</td>
<td>528</td>
<td>1024</td>
<td>0.082175</td>
<td>12.2</td>
</tr>
<tr>
<td>7</td>
<td>264</td>
<td>1024</td>
<td>0.041075</td>
<td>23.3</td>
</tr>
<tr>
<td>8</td>
<td>176</td>
<td>1024</td>
<td>0.027400</td>
<td>36.5</td>
</tr>
<tr>
<td>9</td>
<td>158</td>
<td>1024</td>
<td>0.024588</td>
<td>40.7</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>1024</td>
<td>0.020543</td>
<td>48.7</td>
</tr>
<tr>
<td>11</td>
<td>88</td>
<td>1024</td>
<td>0.013695</td>
<td>73.0</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>1024</td>
<td>0.010270</td>
<td>97.4</td>
</tr>
<tr>
<td>13</td>
<td>44</td>
<td>1024</td>
<td>0.006848</td>
<td>146.0</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>1024</td>
<td>0.005135</td>
<td>194.7</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1024</td>
<td>0.002500</td>
<td>400.0</td>
</tr>
</tbody>
</table>
Note: QUS will ring the bell on the terminal at the end of each sample (scan) period.

3. To stop QUS:

MCR>HEL [1,1]cr
MCR>CAN · · · QUScr

(Turn the heater off after QUS finishes sampling the last scan)

f. Running the QRDMAS Program:

MCR>HEL [201,7]cr (cr = carriage return key)
MCR>RUN QRDMAS/TIME:4H$ ($ = ALTHODE or ESC key)
QU5>WANT TO INVOKE OPTIONS?-no
DAT>FILENAME=filenamequs
DAT>OUTPUT FILENAME=filenameqms

Note: The small lettered words and a carriage return are typed by the user. QRDMAS will process data until finished. Error messages will be printed on the terminal.

g. Running the QMS Program:

MCR>HEL [201,7]cr
MCR>RUN QMS$

Note: QMS is a computer terminal interactive program which allows the user to select analytical functions to be performed on the "filenameqms" data file created by QRDMAS. QMS will ask simple questions (mostly yes or no questions) and will repeat the questions until the proper answers are given by the user. Detailed instructions for running QMS written for non-computer oriented user were written by Graham (Ph.D. thesis, 1978,
Appendix A). The best way to understand QMS is to run it and try various options. Nothing can be destroyed by running QMS.

h. Planning for Future Experiments

The instructions given in parts (c) and (d) of this Appendix are designed for vaporization studies presented in this thesis (or other similar experiments). When planning for new experiments which require modification of the QUS control parameters, the following should be considered in addition to the system limitations given in Section III-D-3 of this thesis.

1. M/e = 16, 17, 18, 28, and 44 must appear in the mass spectrum. They are required by ARDMAS for the assignment of m/e values to all mass peaks in the mass spectrum.

2. For a mass scan of a specific mass range and the number of data points per scan to be sampled by QUS there must be at least 7 data points per mass peak-envelope to define the peak. For example, a mass scan covering a range of 100 amu and with \(sp:9 \) (40.7 points/sec, see Table 9) and TM: 30, there will be approximately 1221 data points in this scan (i.e. 12 data points per mass peak).
APPENDIX D

Quadrupole Mass Spectrometer Data Acquisition
System Software Documentation

1. QUS -- Real-time Data Acquisition Program
 a. General Information

 QUS is a pseudo-handler, written in assembly code, used to control a CAMAC module for acquiring data from the quadrupole mass spectrometer system. The electronic circuit for the CAMAC module is kept in the chemistry department computer room and a blueprint is kept in the mass spectrometry lab (HIG-414). The QUS program is stored in UIC=[201,100] on the disk and is backed-up on two magnetic tapes labelled 'QUS'. One of the tapes is kept in the computer room (BA-209) and the other is kept in the mass spectrometry lab. A complete documentation of QUS had been written by G. Gulden and is stored in a file called QS-RNO in UIC=[201,100]. The QUS program is called QUS-MAC; its associated command files are given below.

 b. Assembly command file (QUSMAC·CMD)

 QUS,QUS/-SP=[1,1]BIOMAC/ML.[201,100]QUS

 c. QUS task command file (QUS·CMD)

 QUS/-FP/TA-CP/-AB/-DS/-FX/PR,QUS/-SP=QUS,[1,1]EXEC.
 STB.BIOMACIO
 LIBR=SYSRES:RO
 PRI-150
 TASK=...QUS
 STACK=80
 ASG=SY:1
 ASG=SY:2
 ASG=TI:3
 //
2. QRDMAS -- Data Analysis Program

a. General Information

QRDMAS is a FORTRAN program consisting of a main program and a set of subroutines. The QRDMAS programs are documented in the FORTRAN source codes and the flow charts of some of these programs are given in this appendix for convenient reference. The QRDMAS programs are stored in UIC=[201,6] on the disk and are backed-up on two magnetic tapes labelled 'QRDMAS'. One of the tapes is kept in the computer room (BA-209) and the other is kept in the mass spectrometry lab (HIG-414). A copy of the QRDMAS task file (QRDMAS·TSK) is kept in UIC=[201,7] on the disk.

All the QRDMAS programs are listed in a FORTRAN command file. The QRDMAS FORTRAN command file, task command file and task overlay file are given in this appendix.

b. QRDMAS FORTRAN command file (QRDMAS·CMP)

```
QRDMAS,QRDMAS/-SP=QRDMAS
DATQUS,DATQUS/-SP=DATQUS
NORQUS,NORQUS/-SP=NORQUS
PLTQUS,PLTQUS/-SP=PLTQUS
PEKQUS,PEKQUS/-SP=PEKQUS
LBRSUB,LBRSUB/-SP=LBRSUB
PRTDAT,PRTDAT/-SP=PRTDAT
MASSID,MASSID/-SP=MASSID
SEARCH,SEARCH/-SP=SEARCH
MASSUB,MASSUB/-SP=MASSUB
ASGMAS,ASGMAS/-SP=ASGMAS
QRDOUT,QRDOUT/-SP=QRDOUT
SKIP,S SKIP/-SP=SKIP
LSQ,LQS/-SP=LSQ
```

c. QRDMAS task command file (QRDMAS·CMD)

```
QRDMAS,QRDMAS/SH/-SP=QRDMAS/MP
LIBR=FORBES:RO
PRI=65
ASG=SY:1
```
d. QRDMAS task overlay file (QRDMAS·ODL)

..ROOT
ROOT=*(A1,A4,A4,A5,A6)

ROOT: .FCTR
QRDMAS-LBRSUB-PRTDAT-NORQUS-Skip

A1: .FCTR
DATQUS

A3: .FCTR
PLTQUS-[1,1]TEKNEW.OLB/LB

A4: .FCTR
PEKQUS

A5: .FCTR
MASSID-SEARCH-MASSUR-ASGMAS-LSQ

A6: .FCTR
QRDOUT

.END

e. Flow charts of ARDMAS programs

<table>
<thead>
<tr>
<th>Flow charts</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) QRDMAS</td>
<td>94</td>
</tr>
<tr>
<td>ii) DATQUS</td>
<td>95</td>
</tr>
<tr>
<td>iii) PEKQUS</td>
<td>96</td>
</tr>
<tr>
<td>iv) MASSID</td>
<td>97</td>
</tr>
<tr>
<td>v) SEARCH</td>
<td>98</td>
</tr>
<tr>
<td>vi) BEST</td>
<td>99</td>
</tr>
<tr>
<td>vii) ASGMAS</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure 46. Flow Chart Diagram of QRDMAS

QRDMAS

Initialization (RESET)

Want to skip any data?
Yes Skip=.TRUE., input next scan
No

Read data a scan at a time (DATQUS)

Is SKIP=.TRUE.?'
Yes Process this scan
No

Calc. Mass Peaks & ion intensities (PEKQUS)

Mass Assignment (MASSID)

Plot the data?
Yes Plot the mass spectrum
No

Finish?

Output this scan?
Yes Save the spectral data
No

Output a summary (QRDOUT)

EXIT
Figure 47. Flow Chart of Subroutine DATQUS

DATQUS

Initialization
NPD=NPD+1

Is NPD>1 ?
No
Read the header record
Yes
Read 4 records

Read the spectral data

END-OF-FILE yet?
Yes
Calculate temperature & heating voltage
No
End of a scan yet?
Yes
Extract mass ramp, ion intensity, temperature and heating voltage
No

Next scan yet?
Yes
END-OF-FILE yet?
No
Read next record
Yes
Is there excess data?
No
Log errors
Yes
Any errors ?
No
Figure 48. Flow Chart of Subroutine PEKQUS

PEKQUS

Initialization
J=0

j=j+1

RETURN

Yes

Is

j>N-NM

?

No

Check xi & yi for the rising of a peak.

Is it there yet?

No

Calculate the baseline

j=i

Keep the information for output

Yes

Is mass peak found well defined?

No

No

Calculate
1. Peak intensity
2. Peak center

Check x_i & y_i for the end of a peak

Is it there yet?

Yes

No
Figure 49. Flow Chart of Subroutine MASSID

MASSID

npo=npd+1

Calc. the mass assignment equation (SEARCH)

Mass Assignment (ASGMAS)

Any errors?

Yes

Log the errors

Allow error correction from user terminal

RETURN

No

Want to correct errors?

Yes

No
Figure 50. Flow Chart of Subroutine SEARCH

- SEARCH
- $i = 3$
- $m_{i-2} = \text{Mass 16}$
- $m_{i-1} = \text{Mass 17}$
- $m_i = \text{Mass 18}$
- Is $i > \text{NPS}$?
- No: $i = i + 1$
- Yes: Set error flag and log error
- Is intensity of $0.2 > 17/18$ 0.5?
- No: $i = i + 1$
- Yes: Calc. A & B using $m/e = 16, 17, 18$ (LSQ)
- Find the best value of A & B
- RETURN
Figure 51. The Flow Chart Diagram of Subroutine BEST

BEST

\[i = nx \]

\[i = i + 1 \]

Is \(i > \text{NPS} \) ?

Yes

\[28 = AX_i + B \]

\[44 = AX_i + B \]

\[64 = AX_i + B \]

RETURN

Calc. A & B using mass 18, 16, 17 & 28 (LSQ)

Calc. A & B using mass 16, 17, 18, 28 & 44 (LSQ)

Yes

No

Yes

No

Yes

No

Yes

No

NX = index of Mass 18
Figure 52. Flow Chart of Subroutine ASGMAS

ASGMAS

Initialization

i=0

Is \(t > nps \) ?

Mass assignment \(M = AX_1 + B \)

Error Checks

Any errors found?

Yes

Log the errors

No

Return

i=i+1
3. QMS -- Data Analysis Program

a. General Information

QMS is a FORTRAN program consisting of a main program and a set of subroutines. The QMS programs are documented in the FORTRAN source codes and the flow charts of some of these programs are given in this appendix for convenience reference. The QMS programs are stored in UIC=[201,1] on the disk and are also backed-up on two magnetic tapes labeled 'WMS'. One of the tapes is kept in the computer room (BA-209) and the other is kept in the mass spectrometry lab (HIG-414). A copy of the QMS task file (QMS-Tsk) is kept in UIC=[201,1] on the disk.

All the QMS programs are listed in a FORTRAN command file. The QMS FORTRAN command file, task command file and the task overlay file are given in this appendix.

b. QMS FORTRAN command file (QMS·CMP).

```
QMS,QMS/-SP=QMS
LSQ,LSQ/-SP=LSQ
AREA,AREA/-SP=AREA
DELH,DELH/-SP=DELH
MERG,MERG/-SP=MERG
PEAK,PEAK/-SP=PEAK
PYRO,PYRO/-SP=PYRO
START,START/-SP=START
BGDCOR,BGDCOR/-SP=BGDCOR
LBRSUB,LBRSUB/-SP=LBRSUB
PLTDEL,PLTDEL/-SP=PLTDEL
QMSBGD,QMSBGD/-SP=QMSBGD
QMSDAT,QMSDAT/-SP=QMSDAT
QMSERR,QMSERR/-SP=QMSERR
RATIOS,RATIOS/-SP=RATIOS
SMOOTH,SMOOTH/-SP=SMOOTH
TNTPLT,TNTPLT/-SP=TNTPLT
HELP,HELP/-SP=HELP
```
c. QMS task command file (QMS·CMD).

WMS/MU/WMS/SH/-SP=QMS/MP
LIBR=FORBES:RO
ASG=TI:6
ASG=SY:1
ASG=SY:4

//

d. QMS task overlay file (QMS·ODL)

 .ROOT ROOT-*(A1,A2,A3,A4,A5,A6)
ROOT: .FCTR QMS-LBRSUB
A1: .FCTR QMSDAT-QMSEBGD-START-BGDCOR-
 . QMSERR-LSG
A2: .FCTR RATIOS-LSQ-PEAK-AREA
A3: .FCTR PYRO-TNTPLT-[1,1]TEKNEW.OLB/LB
A4: .FCTR DELH-PLTDEL-LSQ-[1,1]TEKNEW.OLB/LB
A5: .FCTR MERG-SMOOTH
A6: .FCTR HELP
 . END

e. Flow charts of QMS programs

 i) QMS
 ii) AREA
 iii) BACK
 iv) DATA
 v) PEAK
 vi) PLTS
 vii) PYRO
 viii) RATIO
 ix) START

Page
103
104
105
106
107
108
109
110
111
Figure 53. Flow Chart of QMS Main Program
Figure 54. Flow Chart of Subroutine AREA

AREA

Is data read in?

Notify the operator

Select the temperature range

Calculate the areas of each masses read

Print results

Finish?

RETURN
Figure 55. Flow Chart of Subroutine BACK

QMS will terminate if an invalid filename is given by the operator.

- **BACK**
- Get background filename from operator.
- Read temperatures, heating voltages, time, mass peaks and ion intensities data a scan at a time.
- Are all the scans read?
 - No
 - Yes
- Is ILST=.TRUE.?
 - Output file information to a data file.
- Print file information to the user terminal.
- RETURN
Figure 56. Flow Chart of Subroutine DATA.

DATA

Get input file name from the operator.

Read temperatures, heating voltages, time mass peaks and ion intensities data a scan at a time.

Are all the scan read?

No

Yes

Is ILST=.TRUE.?

Yes

Output data file information to a file.

No

Print data fill information to user terminal.

RETURN

** QMS will terminate if an invalid filename is given by the operator.
Figure 57. Flow Chart of Subroutine PEAK

PEAK

Is data read in? No Notify Operator

Select temperature

Select a mass m

Is it legal? No

Calculate the baseline, \(I_b \), bound by \(T_a \) and \(T_f \)

* The base line, \(Z_b \), is calc. from the ion intensity of m at \(T_0 \) and \(T_f \) using a least square method.

\[
I_b = mT_i + B
\]

** Area = \(\sum_{i=j}^{k} (I_i-I_b)T_i \)

\(j,k \) = index of the ion intensity of m by \(T_i \) and \(T_f \)

Calc. the area of m between \(T_0 \) and \(T_f \) and print result.

Is it done? No Yes RETURN
Figure 58. Flow Chart of Subroutine PLTS

1. Notify the operator
2. Data read in?
 - Yes
 - No
3. Notify Operator wrong type
4. Select type = 1
5. Plot the heating voltage vs. time
6. Plot the temperature vs. time
7. Want a hard copy?
 - Yes
 - Send plot to plotter
 - No
8. Save it?
 - Yes
 - Save the plot data
 - No
9. Is it done?
 - Yes
 - RETURN
 - No
Figure 59. Flow Chart of Subroutine PYRO

PYRO

Notify the operator

No

data read in?

Yes

Select temperature range T_o and T_f

Select masses to be plotted

Select the type of program to be plotted

Plot the data to terminal

Send plot to the plotter

Yes

Hard copy?

No

Is it done?

No

Is it a graphic terminal in each?

No

Yes

RETURN
Figure 60. Flow Chart of Subroutine RATIO

RATIO

Notify the operator

Is data read in?

Yes

Select temperature range T_0 and T_f

Select two masses M_1 and M_2

Are they legal?

Yes

Calc. areas of M_1 & M_2 between T_0 & T_f

Calc. area ratio of M_1/M_2

Want a listing?

Yes

Print result to user terminal

OUTPUT result to a data file

No

Finish?

Yes

RETURN
Figure 61. Flow Chart of Subroutine START

START

Initialization

Want listing of data?

Yes

No

ILST=.FALSE.

Select masses to be processed

Verify the information to the user

RETURN
APPENDIX E

Quadrupole Mass Spectrometer Interface Electronic Circuits

1. QMS Circuit Card Configuration and Connector Diagrams
2. QMS Interface Cabling Diagram
3. Signal Digitization and Control Circuits
 a. QMS01 -- V/F Circuits for Ion Intensity and Mass Ramp
 b. QMS01 Circuit Card Layout
 c. QMS02 -- V/F Circuits for Cell Temperature and Resistance Element Voltage
 d. QMS02 Circuit Card Layout
 e. QMS03 -- Resistance Element Voltage Monitoring Circuit and Computer Controlled Temperature Ramp Buffer Circuit
 f. QMS03 Circuit Card Layout
 g. QMS04 -- Cell Temperature Control Ramp Circuit
 h. QMS04 Circuit Layout
 i. Cell Temperature Feed-Back Circuit
 j. Cell Temperature Control Ramp Selection Switch Circuit and Circuit Card Layout
 k. Knudsen Cell Heating Voltage Control Circuit
 l. Resistance Element Current Supply Circuit
Circuit Card Used:

DOUGLAS ELECTRONICS INC.

24-DE-3 (QMS01, QMS02)
12-DE-3 (QMS03, EMS04, QMS05)
18-DE-3 (Power supplies)

Connector; 44C

Figure 62. QMS Circuit Configuration and Connector Diagrams.
<table>
<thead>
<tr>
<th>Terminal Interface</th>
<th>COMPUTER ROOM (BA-209)</th>
<th>ELECTRONIC SHOP (HIG-153)</th>
<th>MASS SPEC. LAB. (HIG-414)</th>
<th>TEKTRONIX 4066-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 ft of wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>purple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>brown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>purple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gray</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>purple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 ft of wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gray</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 63. QMS Interface Cabling Diagram
Figure 64. QMS01 -- V/F Circuits for Ion Intensity and Mass Ramp.
Figure 65. QMS01 Circuit Card Layout

<table>
<thead>
<tr>
<th>ICs</th>
<th>Capacitors</th>
<th>Resistors (ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 - INTECH A-8400</td>
<td>C1 - 100 pf</td>
<td>R1 - 3.3K</td>
</tr>
<tr>
<td>IC2 - INTECH A-8400</td>
<td>C2 - 2200 pf</td>
<td>R2 - 3.3K</td>
</tr>
<tr>
<td>IC3 - SN72747</td>
<td>C3 - 100 pf</td>
<td>R3 - 2K</td>
</tr>
<tr>
<td>IC4 - SN72747</td>
<td>C4 - 100 pf</td>
<td>R4 - 4.7K</td>
</tr>
<tr>
<td>IC5 - SN7400N</td>
<td>C5 - 2200 pf</td>
<td>R5 - 10M</td>
</tr>
<tr>
<td></td>
<td>C6 - 100 pf</td>
<td>R6 - 10K</td>
</tr>
<tr>
<td></td>
<td>C7 - 15μf, 20v</td>
<td>R7 - 3.9K</td>
</tr>
<tr>
<td></td>
<td>C8 - 15μf, 20v</td>
<td>R8 - 2K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R9 - 4.7K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R10 - 10M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R11 - 10K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R12 - 3.9K</td>
</tr>
</tbody>
</table>
Figure 65. QMS02 -- V/F Circuits for Cell Temperature and Resistance Element Voltage.
Figure 67. QMS02 Circuit Card Layout.

<table>
<thead>
<tr>
<th>ICS</th>
<th>Capacitors</th>
<th>Resistors (ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 – INTECH A-8400</td>
<td>C1 – 100 pf</td>
<td>R1 – 1K</td>
</tr>
<tr>
<td>IC2 – INTECH A-8400</td>
<td>C2 – 2200 pf</td>
<td>R2 – 4.7K</td>
</tr>
<tr>
<td>IC3 – SN72747</td>
<td>C3 – 100 pf</td>
<td>R3 – 2K</td>
</tr>
<tr>
<td>IC4 – SN72747</td>
<td>C4 – 100 pf</td>
<td>R4 – 56K</td>
</tr>
<tr>
<td>IC5 – SN74132N</td>
<td>C5 – 2200 pf</td>
<td>R5 – 10M</td>
</tr>
<tr>
<td></td>
<td>C6 – 100 pf</td>
<td>R6 – 10K</td>
</tr>
<tr>
<td></td>
<td>C7 – 15μf, 20v</td>
<td>R7 – 4.7K</td>
</tr>
<tr>
<td></td>
<td>C8 – 15μf, 20v</td>
<td>R8 – 2K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R9 – 56K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R10 – 10M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R11 – 10K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R12 – 4.7K</td>
</tr>
</tbody>
</table>

b. Computer Controlled Cell-Temperature Ramp Buffer Circuit

Figure 68. QMS03 Circuits
Figure 69. QMS03 Circuit Card Layout.

<table>
<thead>
<tr>
<th>ICS</th>
<th>Resistors (ohm)</th>
<th>Capacitors (μf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 -- SN74747N</td>
<td>R1 - 100K</td>
<td>C1 -- 20, 15v</td>
</tr>
<tr>
<td>IC2 -- AD521JD</td>
<td>R2 - 100K</td>
<td>C2 -- 1</td>
</tr>
<tr>
<td>IC3 -- SN74747N</td>
<td>R3 - 100K</td>
<td>C3 -- 1</td>
</tr>
<tr>
<td></td>
<td>R4 - 100K</td>
<td>C4 -- 6.8, 20v</td>
</tr>
<tr>
<td></td>
<td>R5 - 1K</td>
<td>C5 -- 6.8, 20v</td>
</tr>
<tr>
<td></td>
<td>R6 - 10K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7 - 10K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8 - 100K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9 - 10K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R10 - 10K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R11 - 10K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R12 - 10K</td>
<td></td>
</tr>
</tbody>
</table>
Figure 70. QMS04 Cell Temperature Control Ramp Circuit.
Figure 71. QMS04 Circuit Card Layout

<table>
<thead>
<tr>
<th>ICs</th>
<th>Capacitors (µf)</th>
<th>Resistors (ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 - NE555V</td>
<td>C1 - 0.01</td>
<td>R1 - 1.5K</td>
</tr>
<tr>
<td>IC2 - TP40204N</td>
<td>C2 - 15, 20v</td>
<td>R2 - 100K</td>
</tr>
<tr>
<td>IC3 - SN74LS04N</td>
<td>C3 - 15, 20v</td>
<td>R3 - 2.2K</td>
</tr>
<tr>
<td>IC4 - SN74LS191N</td>
<td>C4 - 15, 20v</td>
<td>R4 - 2.2K</td>
</tr>
<tr>
<td>IC5 - SN74LS191N</td>
<td>C5 - 0.01</td>
<td>R5 - 49.9K</td>
</tr>
<tr>
<td>IC6 - SN74LS191N</td>
<td>C6 - 0.01</td>
<td>R6 - 100K</td>
</tr>
<tr>
<td>IC7 - SN72747</td>
<td>C7 - 0.01</td>
<td>R7 - 100K</td>
</tr>
<tr>
<td>IC8 - AD7521LD</td>
<td>C8 - 0.01</td>
<td>R8 - 10K</td>
</tr>
<tr>
<td></td>
<td>C9 - 0.01</td>
<td>R9 - 100K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZR1 - Zener</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diode 4.1v</td>
</tr>
</tbody>
</table>
Figure 72. Cell Temperature Feed-Back Circuit.
This circuit is located within the Knudsen cell heating voltage control box next to the digital thermometer. The output goes to 5.1 (summing resistor of the voltage circuit) and Pin 2 of QMS02.
Figure 73. Cell Temperature Control Ramp Selection Switch Circuit and Circuit Card Layout.
Unit of resistors in ohm and unit of capacitors in microfarad.

Figure 74. Knudsen-Cell Heating Voltage Control Circuit.
This circuit is located within a metal box next to the
NEWPORT-2600SC digital thermometer.
From Knudsen-Cell heating voltage control circuit output.

<table>
<thead>
<tr>
<th>T1</th>
<th>KENYON</th>
<th>Type OKT</th>
<th>22v A.C. output</th>
<th>1144 watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>SF132758</td>
<td>FREED No. 25541</td>
<td>1 mA</td>
<td></td>
</tr>
</tbody>
</table>

To Knudsen Cell resistance element

0 to 10v A.C.

20

To QMS03

X

Figure 75. Resistance Element Current Supply Circuit.
REFERENCES

Garcia, M.O. (1968b) Personal communication.

istic of marginal basins basalts: in Island Arcs, Deep
Sea Trenches and Back-Arc Basins, M. Talwani and W. C.
Pitman, eds., AGU Maurice Ewing Series, Vol. 1, 355-
365.

Holland, P.T., Simoneit, B. R., Wsolek, P.C., McFadden, W.H.
and Burlingame, A.L. (1972) Carbon chemistry of Apollo
14 size-fractionated fines: Nature (Phys. Sci.) 235,
106-108.

Holloway, J.R. and Burnham, C.W. (1972) Melting relations
of basalt with equilibrium water pressure less than

Howkesworth, C.J., O'nions, R.K., Pankhurst, R.J., Hamilton,
P.J. and Evansen, N.M. (1977) A geochemical study of
island-arc and back-arc tholeiites from Scotia Sea:

metric method for the determination of the size dis­
tribution of CO₂ inclusions in olivines: Am. Mineral­
ogist, Vol. 59, 863-967.

Killingly, J.S. (1975) Ph.D. dissertation, University of
Hawaii.

Hawaiian submarine basalts determined by dynamic high
temperature mass spectrometry: Geochim. Coscochem.
Acta. 39, 1467-1473.

(1975b) Thermal stress-induced release of CO₂
inclusions in olivine on cooling from high tempera­

A small on-line computer system for high-resolution
mass spectrometers: Organic Mass Spectrometry, Vol. 4,
17-39.

Kushiro, I. (1973) Origin of some magmas in oceanic and
circumoceanic regions: Tectonophysics, Vol. 17, 211-
222.

Meijer, A. (1976) Pb and Sr isotopic data bearing the ori­
gin of volcanic rock from the Mariana island-arc sys­

