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ABSTRACT 

The mapping from the data space to the model space is known as the 

inverse problem. Nonlinear inverse problems are in general more difficult 

and computationally expensive to solve than linear problems. For nonlin

ear inverse problems when a priori information in the form of a starting 

model is not available, then a gradient based algorithm may converge to a 

local solution rather than to the global one. Global optimization methods 

such as simulated annealing (SA) have been applied recently to several 

geophysical inverse problems. 

SA resembles the thermodynamic process of annealing to form crys

tals from a melt. The minimum energy state may be viewed as correspond

ing to the minimum of the cost function. It is well known that determining 

the 'critical temperature' is one of the most important factors regarding 

the efficiency of the SA algorithm. Here we determined the ' critical tem

perature' by executing the SA process for a fixed number of sweeps at a 

fixed temperature for different temperatures and then calculating the av

erage energy for those sweeps. We constructed the a posteriori probability 

density function (PPD) and then determined the best model from it . 

We performed inversion using the SA method at a fixed tempera

ture on two-offset VSP data, and on cross-borehole data to determine the 

slowness of the layers between the source well and the receiver well. The 

results of our inversion suggest that SA has the potential to solve nonlinear 

inverse problems even when the solution space is large and multimodal. 

We also performed inversion to compute bathymetry from shipboard 

free-air gravity anomaly data. Our results show an error of less than 1 % 

of depth, which is within the acceptable error range for measuring depth 

according to International Hydrographic Bureau standards. 
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Chapter 1 

Inverse Theory 

1.1 INTRODUCTION 

The main goal of seismic inversion is to estimate the values of the parameters that 

describe an accurate earth model. In a typical geophysical inverse problem (Menke 

1984) we assume that, given any model m, we can calculate the corresponding data d 

by the forward theory d = g(m), where g is the operator that describes the forward 

modelling. All vectors m belong to a functional space known as the 'model space' M 

and similarly all vectors d belong to the 'data space' D. The mapping from the model 

to the measured fields (e.g., elastic wavefields, magnetic fields) is called the forward 

problem, while the mapping from the measured fields to the (unknown) model is 

known as the inverse problem. In seismic experiments the vector m describes a model 

of the real earth which normally includes P and S-wave slowness (inverse wavespeed) 

and density. 

In the inversion problem it is important to determine whether the proposed 

model is unique or not. If the model is not unique, then many models can satisfy 

the observed data. This nonuniqueness of the solution could be due to inherent 

nonuniqueness of the problem, or uncertainty in the data and parametrization, or a 

combination of both. For example, gravity, magnetic, and electrical potential field 

1 



data are all inherently non unique. However, this nonuniqueness can be reduced if we 

impose some constraints or a priori information on the model parameters. Even if 

an inverse problem is known to have a unique solution, the solution space may have 

many local minima (Fig. 1.1). 

In view of the above one can classify inverse problems on the basis of whether 

the equation d = g( m) provides enough information to specify uniquely the model 

parameters or not. If this equation doesn't provide enough information then the 

problem is said to be underdetermined. If this equation provides exactly enough in

formation to determine the model parameters, then it is said to be even-determined. 

·when this equation provides too much information then it is said to be overdeter

mined. Overdetermined problems typically have more data than unknowns. 

1.2 TYPES OF INVERSE PROBLEMS 

1.2.1 Linear Inverse Problems 

Among all types of inverse problems, this is the simplest kind of inverse problem to 

solve. In this case, instead of writing d = g(m), we can write d = Gm, where G 

represents a linear operator acting from the model space into the data space. The 

discrete form of this relation can be written as 

M 

di= LGiimi (1) 
j=l 

1.2.2 Linearized Inverse Problems 

In real situations most of the inverse problems can not be written in explicit linear 

form. But if the perturbation of the model from the initial guess is small in some sense, 
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then the problem can be linearized. Such problems are known as weakly nonlinear. 

The forward equation d = g(m) can be linearized around some initial guess, mprior 

by the Taylor series expansion as 

d = g(mprior) + (:!L) . (m - mprior) + (~~~) . (m - mprior )
2 

+ ... (2) 
ffiprior i IDprsor 

Neglecting second and higher derivative terms, 

( ogi) 
d = g(mprior) + om; . (m - m prior) 

mprior 

(3) 

or, 

( og;) 
d - g(mprior) = om; . (m - m prior) 

IDp rior 

(4) 

or, 

Y=AX (5) 

where Y = d - g(mprior) is the vector difference between the observed data and the 

computed data for the starting model, X is the vector difference between the new 

model parameter and the initial model parameter, and A = ( %! ) . is a matrix. 
' IDprior 

Multiplying equation (5) by AT gives 

(6) 

where T denotes a transpose. 
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Then, X, the estimate of X, is given by 

X =(AT Ar1 ATY 

where (AT A )-1 AT is called the pseudo inverse. 

1.2.3 Nonlinear Inverse Problems 

(7) 

In this type of problem, d = g(m) is not a linear function of m and the probability 

density function (PDF) of uncertainty of data values is not Gaussian. The more non

linear g(m) is, the more the PDF differs from a Gaussian function. In this case g(m) 

has to be computed at each iteration without using any linear approximation. As a 

result, nonlinear problems are in general more expensive to solve than linearizable 

problems. 

1.3 TYPES OF INVERSION ALGORITHMS 

1.3.1 Gradient Methods 

The simplest type of gradient method is the steepest descent method. In this method 

a minimum of the misfit function is sought for in the direction of steepest descent. 

The direction of steepest descent is locally optimal and if infinitely many steps are 

taken, each one being infinitely small, this would simulate the motion of a raindrop on 

the slope of a mountain (Tarantola 1987). On the other hand, Nolet (1987) compared 

this method as 'a blind man walking in the mountains who wants to find his way to 

the beach.' This method converges very slowly and sometimes it takes hundreds of 

iterations to obtain a small change in the misfit function. 
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Let mn represent the current point, mn+l the updated point and An the direction 

of steepest descent. The method connects the updated point and the current point 

by the relation 

(8) 

where µn is an arbitrarily positive real number small enough so that the misfit function 

of updated point is smaller than the current point. Both analytical and trial and error 

methods can be used to chose µn. 

In the Newton method, another variation of the gradient search method, the 

updated point is given by 

(9) 

where Gn is the curvature operator. 

In the quasi-Newton method the relationship is 

(10) 

where Hn is the Hessian operator which is given as 

(a2s) 
Hn = 8x2 Xn 

(11) 

where S is the misfit function. 

There are many other gradient methods, e.g. preconditioned steepest descent, 

the variable matrix method, the conjugate method (Hestenes and Stiefel 1952), etc. 

In all these methods the basic idea is the same, and differences are due to stability 

and convergence rates. All gradient methods usually converge to the nearest local 

minimum rather than the global minimum. A detailed review of this method has been 
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given by Krarup (1968), Moritz (1970), Hillier & Lieberman (1980), Scales (1985) and 

many others. 

1.3.2 Random Search Method 

The major drawback of any kind of gradient search method is that, for highly non

linear problems, these methods converge to a local minimum, rather than the global 

minimum. One alternative to this problem is to use a random search method, known 

as the Monte Carlo method, which uses the generation of pseudo-random numbers. 

With the help of modern fast computer millions of models can be tried, but it is still 

a very expensive method. This method was used in geophysics by Press (1968, 1970) 

and many others. 

1.3.3 Global Optimization Methods 

Recently, two global optimization methods were successfully applied in geophysics to 

solve nonlinear inverse problems. One of them is called simulated annealing (Kirk

patrick et al. 1983). This method mimics the thermodynamic process of annealing, 

which is the process of finding low energy states of a solid by initially melting the 

substance, and then lowering the temperature slowly and observing the formation 

of crystals. In geophysical exploration, Rothman (1985, 1986) first introduced this 

technique to estimate large residual statics corrections, and thereafter it has been 

used in various other problems in seismology (Landa et al. 1989, Sen and Stoffa 1991, 

N0rmark and Mosegaard 1993). 

The second method is known as the Genetic Algorithm. It was originally de

veloped by Holland (1975) in the field of artificial intelligence. This method has a 
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similarity to the genetic evolution of biological systems. It simulates natural genet

ics by following an entire population of trial models encoded as finite-length strings 

(chromosomes), wherein model parameters are part of the string. In geophysics this 

method has also been applied in seismic waveform inversion (Stoffa & Sen 1991, Nolte 

& Frazer 1993). 
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Chapter 2 

Bathymetry Computation From 
Free-air Anomaly Data 

2.1 INTRODUCTION 

Detailed bathymetric mapping of the seafioor is expensive, difficult, and time consum

ing. Every year more and more area of the ocean is surveyed using high resolution 

bathymetric mapping systems, but still the coverage speed is very slow compared 

to the total area of the oceans. The airborne scanning laser bathymeter can sur

vey a large area in relatively short periods of time, but because of its low depth 

penetration capability it is used only in shallow water mapping (Estep 1993). As a 

result we have thoroughly surveyed only a few areas of the world's oceans. There are 

many areas where historical data are available, but old bathymetric sounding systems 

and old methods of navigation incurred significant errors in these data. The gap in 

bathymetry data can be filled, and the accuracy of the historical data can be im

proved, if we can predict bathymetry from other types of data collected in that area. 

This prediction depends on the quality of the other type of data and the correlation 

between bathymetry and that data. 

It is well known that there is some correlation between gravity observations ob

tained at sea and sea floor topography (Khan et al. 1971; McKenzie and Bowin 1976; 
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Watts 1978; Watts et al. 1985). It is also known that short-wavelength bathymetry 

produces short-wavelength gravity anomalies, while long wavelength bathymetry are 

compensated (Talwani et al. 1972; McKenzie and Bowin 1976). In the continental 

data set Forsyth (1985) showed that the coherence between Bouguer anomalies and 

topography is very high at long wavelengths and decreases with decreasing wave

length. For continents the compensation signature at wavelengths shorter than 20 

km is not seen because the compensation is so deep that its gravity signal is too 

severely attenuated to be measured at the surface (Lewis and Dorman 1970; McNutt 

and Parker 1978). In the ocean the compensation depth is shallower and therefore 

the short wavelength gravity signal is not too attenuated to be measured (McNutt 

1979). 

The relationship between the gravity field and the sea floor topography is ana

lyzed using a linear transfer function, called admittance (McKenzie and Bowin 1976; 

McNutt 1979). Basically, admittance is the ratio of the Fourier transforms of grav

ity and bathymetry. The computation of admittance function from the data and 

comparing it with the theoretical value is now a common approach to finding the 

compensation depth of the surveyed area (Dalloubeix et al. 1988; Kister and \A/il

helm 1988; Maia et al. 1990; Ashalatha et al. 1991). The admittance function has 

also been used in predicting the bathymetry from Seasat altimeter and gravity data 

(Goslin and Diament 1987; Black and McAdoo 1988/89; Jung and Vogt 1992). 

In this chapter we investigate the feasibility of computing bathymetry in an area 

where only the shipboard gravity data are available and both gravity and bathymetry 

data are available in the surrounding region. We use the concept of admittance in 

the prediction of bathymetry for very short wavelengths ( < 12 km) using closely 

spaced seabeam and gravity data. From the theoretical formula of admittance we 

derive an objective function that is independent of knowledge of the density and the 
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compensation depth value of the area as long as they are constant. We look for the 

unknown bathymetry of a point by minimizing the objective function. To perform 

an exhaustive search of the solution space, we make this space small by restricting 

the range of the model parameters. This gives the limitations in the accuracy of the 

predicted bathymetry. We apply our inversion technique to the data collected south 

of the island of Hawaii by Scripps Institution of Oceanography in 1987. 

2.2 ADMITTANCE ANALYSIS 

2.2.1 Observed Admittance 

As explained by several authors (McKenzie and Bowin 1976; Watts 1978), the forward 

model of predicting the bathymetry from the gravity can either be constructed in the 

space domain or in the wave number domain. In the space domain, the idea is to 

find a filter that convolves with the bathymetry observations to produce a series that 

resembles the gravity observations: 

g(x) = f(x) * b(x) + n(x) (1) 

where g(x) is the gravity profile, f(x) is the impulse response, b(x) is the bathymetry 

profile, and n(x) is the noise that includes the part of gravity which is not linearly 

related with the bathymetry. In the wave number domain this is equivalent to a 

simple multiplication: 

(2) 

where G(kn), Z(kn), B(kn), and N(kn) are the discrete Fourier transforms of g(x), 

f(x), b(x), and n(x), respectively, and kn is the wave number (kn= 27r/>.). 
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If the noise is not significantly correlated with the isostatic gravity anomaly, 

then an estimate of admittance, Z(kn) is given by 

(3) 

In the presence of significant noise, a better estimate of admittance was given by 

McKenzie and Bowin (1976): 

Z(kn) = [G(kn)B(kn)*]/[B(kn)B(kn)*] (4) 

where * indicates the complex conjugate. In this case the admittance is given by 

the cross spectrum of bathymetry and gravity divided by the power spectrum of 

bathymetry. 

2.2.2 Theoretical Admittance 

Parker (1973) derived how the gravity effect of a layer of material can be expressed as 

an infinite series of Fourier transforms. Considering only the first term in the Fourier 

series expansion, the simplest model of admittance (McKenzie and Bowin 1976) can 

be written as 

(5) 

where G is the gravitational constant, p2 is the density of the seafloor topography, Pw 

(= 1.03 g/cm3 is the density of seawater, and dis the mean depth of sea. In this case 

we assume that the gravity anomalies are caused only by the sea floor topography 

and that the topography is uncompensated. This simple model works well for short 

wavelength values for admittance. 
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In the simplest compensation model the mass associated with the depth varia

tions is compensated either by corresponding density variations (Pratt's hypothesis) 

or by low-density roots (Airy's hypothesis). In the Airy compensation model, the 

bathymetry is compensated by variations in the thickness of a constant density layer 

of mean thickness t. The admittance expression for this model (McKenzie and Bowin, 

1976) is 

(6) 

The other parameters are the same as in equation (5). 

2.3 BATHYMETRY COMPUTATION 

2.3.1 Method 

The idea of finding bathymetry values from gravity observations is based on the fact 

that we have both bathymetry and gravity values at the ends of a traverse line or 

at the outer segment of a gridded area but only the gravity values in the middle of 

the line or in the inner segment of the gridded area. In the case of the traverse line 

we start from one end and continue along the line. Our initial inputs to the model 

are the bathymetry and gravity values of some fixed number of consecutive points 

at the near end of the traverse line and the output is the predicted bathymetry of 

the next point where only the gravity value is known. We then use the bathymetry 

just found, and the gravity as an input to find the bathymetry of the next point. We 

continue this process until we reach the far end of the traverse line. Similarly, we 

start from the far end of the traverse line and move in the opposite direction. The 
' 

final predicted bathymetry is the average of these two bathymetry values. In the 

case of a gridded area we move along the grid in four different directions, i.e., left, 
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right, up, and down and then take the average of these four set of bathymetry values. 

The correlation between the observed bathymetry and the calculated bathymetry is 

better in the case of gridded data than in case of the traverse line. One of the reason 

is that in the case of gridded data we take the average of four sets of bathymetry 

values as compared to the two sets for the traverse line case, so the random errors 

in the predicted bathymetry get cancelled more in the gridded data. Following Basu 

and Saxena (1993) the mathematical derivation of this method is described in the 

following section. 

2.3.2 Objective Function and Inversion Algorithm 

The method described in the previous section can be regarded as an inverse problem 

wherein the goal is to minimize an objective function to find the bathymetry. In this 

section we derive the objective function from the observed and theoretical admittance 

formulas. 

Let us consider a traverse line which has n sample points at regular intervals. 

The first and last m points have both gravity and bathymetry values, and the rest 

have only gravity values. Consider the following notations: 

Z1 ,r = admittance for the points 1 to r 

Z2,r+i = admittance for the points 2 to r+ 1 

Z3,r+2 = admittance for the points 3 to r+2 

d1 ,r = mean depth for the points 1 tor 

d2,r+l = mean depth for the points 2 to r+ 1 

d3 ,r+2 = mean depth for the points 3 to r+2 

We assume that the points 1 to r+2 are close enough to neglect the lateral crustal 

density variations between them. So, in the admittance formula (5) the admittance 
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of these points varies because of the mean depth variation between them. Now if we 

take natural logarithm of equation (5), we get 

(7) 

where C is constant. Writing the above equation for Z1,r, Z2,r+1, Z3,r+2, d1,r, d2,r+I, 

d3,r+2 and doing some algebra we get 

and 

lnZ1,r - lnZ2,r+I 

lnZ2,r+i - lnZ3,r+2 

lnZ1,r - lnZ2,r+i 

lnZ1,r - lnZ3,r+2 

(8) 

(9) 

Let us denote the expression of L.H.S. of equation (8) as Z12,23 (kn) and that 

of R.H.S. as d12,23· Similarly, we write Z12,13(kn) and di2,13 for equation (9). Now, 

joining equation (8) and (9) we get 

(10) 

Since there is no wavenumber term involved in the right hand side of equation (10) 

it is true for all wavenumbers in the left hand side. In the compensation model 

(equation (6)) if we assume that all the extra terms are also constant for the points 

1 to r+2, then we can also write the above equation (10) for this model. We set up 

the objective function Ej as follows: 

p 

Ej = L[Z12,23(kn) + Z12,13(kn) - d12,23 - d12,dJ (11) 
n=l 

where Ej corresponds to different bathymetry values dr+ 2 for this point. Here we 

assume that we have both the bathymetry and gravity values for points 1 to r+ 1 

and only the gravity values for point r+2. We calculate Z12,23(kn), Z12,13(kn) using 

equation ( 4) and d12,23 , d12,13 for the points 1 to r+3. We search for the minimum of 

the objective function to find the true dr+2 in the range dr+2 ± drange· In this case 
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there is only one parameter in the model space, m = { dr+2}. Considering the errors 

in the known gravity values for points 1 to r+2, and in the bathymetry values for 

points 1 to r+l, the model space can be written as 

(12) 

Suppose the known gravity values have the error ±gerror and the known bathymetry 

values have the error ±derror; we then minimize the objective function (11) in the 

solution space {gi...r+2 ± 9error, { di...r+1 ± derror, dr+2 ± drange}. The ±gerror, ±derror, 

and ±drange are divided in steps of !:lgerror, !:lderror, !:ldrange, respectively. After we 

find the bathymetry of the point dr+ 2 we use the gravity values of the points 2 to r+3 

and the bathymetry values of the points 2 to r+2 to compute the bathymetry value 

of the point r+3. We proceed this way till we cover n-2m points. 

In a similar fashion, we start from the other end of the traverse line and move 

in the opposite direction. The average of these two profiles gives the final calculated 

bathymetry profile. 

In the case of gridded data, we follow the above mentioned algorithm along a 

grid line starting from one corner. After we calculate the bathymetry values along 

one grid line then we move to the next grid line in the upward or downward direction 

if the grid line runs from left to right and in the left and right direction if the grid line 

runs from top to bottom. Here we have four sets of bathymetry profiles to calculate 

average and so the noise elimination in the calculated bathymetry is better in this 

case. 
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2.4 APPLICATIONS 

In this section we show two examples of bathymetry computation from free air 

anomaly along a traverse line and one example of gridded data. As it was explained 

by McKenzie and Bowin (1976) and McNutt (1979), we can use free air anomaly 

data in equation ( 4) instead of Bouguer anomaly data because the free air anomaly 

is directly related to the stress within the earth and is also easily available. In all the 

following examples we use the following values for inversion: 

r=3 

9error = 1 mgal, !:1gerror = 0.1 mgal 

derror = 5 m, f1derror = 1 m 

drange = 100 m, !:1drange = 1 m 

p, number of wave numbers = 9 

For the starting value of the unknown depth we use the mean depth of the 

previous r (r=3) points. 

2.4.1 Data 

The data used here were collected south of the island of Hawaii by Scripps Institution 

of Oceanography (SIO) from April 30 to June 3, 1987 on the R/V T. Washington. 

The part of the track line is shown in Fig. 2.1. Sea Beam was used to measure the 

bathymetry and a Bell Aerospace BGM-3 meter was used to measure gravity. For 

navigation primarily Global Positioning System (GPS) was used and where it was 

unavailable then old satellite navigation system was used. 
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2.4.2 First Example 

We selected a small section of bathymetry and free air anomaly data from the SIO 

data set along the traverse line from longitude 156.54903W and latitude 15.20519N to 

longitude 156.37729W and latitude 15.51802N. The length of this portion of traverse 

line is 37.177 km. The depth of sea water varies from 5550 m to 5418 m, and the free 

air anomaly varies from -11.1 mgals to 1.0 mgals . Along the traverse line we sam

pled every alternate observation point; there are 60 sample points having an average 

distance of 630 m between them. The free air anomaly and observed bathymetry are 

shown in Fig. 2.2a and 2.2b respectively. The correlation between them is 0.7064. 

We calculated the admittance using equation (4) after removing means of both the 

bathymetry and free air anomaly data, and computed equation (12) for inversion. 

We did not use any smoothing technique of the admittance function (Bowin and Mil

ligan 1985) before inversion. The results of the computed bathymetry along with 

the observed bathymetry and the residuals (observed minus computed bathymetry) 

are shown in Fig. 2.3a and 2.3b respectively. The correlation value between them is 

0.9550. The standard deviation of error is 6.8760 m and the maximum deviation of 

error is 25 meters. Here the wavelength range of admittance considered is 7.8 - 11.7 

km. In Fig. 2.3a we notice that in steep-slope regions the computed bathymetry is in 

good agreement with the observed profile, but in the flat region the computed profile 

is oscillatory. 

2.4.3 Second Example 

In this example we show the computed bathymetry for a smaller portion of the tra

verse line. This part of the line covers the points from longitude 1.56.48164W and 
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Figure 2.1: Trackline of the part of the crmse that covers the study area 
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latitude 15.32417N to longitude 156.45332W and latitude 15.37665. The distance 

between the end points is 6.209 km. Here the sea water depth varies from 5529 m to 

5437 m and the free air anomaly varies from -11.1 mgals to -6.8 mgals. We sampled 

every observation point, and there are 21 sample points having an average distance 

of 310 m between them. The free air anomaly and observed bathymetry are shown 

in Fig. 2.4a and 2.4b respectively. The correlation between them is 0.2232. The cor

relation here is very poor as compared to the previous example. The results of the 

computed bathymetry along with the true bathymetry and the residuals are shown 

in Fig. 2.5a and 2.5b respectively. The correlation value between them is 0.9437. The 

standard deviation of error is 6.4488 m and the maximum deviation of error is 21 m. 

Here the wavelength range of admittance considered is 3.9 - 5.9 km. Even though the 

correlation between the observed bathymetry and the free air anomaly is very low in 

this case, the computed profile has good correlation with the observed one. 

2.4.4 Third Example 

In this example the selected bathymetry and free air anomaly data cover the area from 

longitude 155.852W to 155.312W and from latitude l 7.0002N to l 7.9978N. Here the 

depth of sea water varies from 5125 m to 4579 m and free air anomaly varies from 

-28.47 mgals to 11.45 mgals. We gridded the data using the SURFER (Surfer 1990) 

software package by selecting inverse distance gridding method with the grid size 50 

x 50. We computed bathymetry of the inner segment of this grid for 42 x 42 points 

starting from outermost 4 points on each side. The free air anomaly and observed 

bathymetry 3D pictures are shown in Fig. 2.6 and 2. 7 respectively. The correlation 

between them is 0.5683. The 3D picture of the computed bathymetry is shown in 

Fig. 2.8. The correlation between them is 0.9976. The correlation obtained here is 
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much higher than the previous two examples. The standard deviation of error is 

5.3616 m and the maximum deviation of error is 24 m. In calculating the admittance 

we use lD fast fourier transform (FFT) along the grid line instead of using the 2D 

FFT technique used by McN utt (1979), and Goslin and Diament (1987). Comparing 

Fig. 2. 7 and 2.8 we notice that the computed bathymetry follows the trend of the 

true profile in an oscillatory way. The noise is more prominent where the true profile 

is more or less flat. This is because we have data only along the track line and in the 

fiat area of the observed profile there are no data. The gridding method is used here 

to help cancel the random errors in the computed bathymetry. 

2.5 DISCUSSION 

In this chapter we have tested the feasibility of computing bathymetry from shipboard 

gravity data. The result shows an error of less than 1 % of depth, which is within the 

acceptable error range for measuring depth according to International Hydrographic 

Bureau standard. The smaller the number of computation points the better result 

we obtained. The result was also improved with gridded data because the random 

errors were canceled more in computation. 

For inversion we developed an objective function from theoretical admittance 

formulas for different models. The objective function was derived assuming that the 

crustal density and other parameters are constant in the study area. The result shows 

that this constraint in the parameters works well in this area because it is a small 

area and it is not tectonically active. In tectonically active regions (e.g., midoceanic 

ridge, subduction zone ) we may not assume that density, compensation depth, and 

other parameters are constant for the whole area. 

We performed inversion to compute bathymetry of one point and then move on 
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Figure 2.7: 3D plot of observed bathymetry 
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to the next point and so on. This process incurred cumulative errors in the computed 

bathymetry, and the minimum value of the objective function became larger as we 

moved further from the starting point. We minimized this effect by starting at two 

ends of the traverse line and moved in the opposite directions; the final bathymetry 

was the average of these two profiles. In the case of gridded data this effect was 

minimized further because we could move in four different directions and the average 

consisted of four different profiles. 

The minimization of objective function was performed by exhaustive search of 

the solution space. We could afford the CPU time for this search method because the 

search space is not too large. It took 48 hours of CPU time on a SUN SPARC Station 

II to compute the gridded data example. In some other data sets for larger solution 

space, one has to use a non-linear inversion technique (Tarantola 1987). There is 

a question whether the objective function we derived here has an unique solution 

or not. Following the exhaustive search of the solution space for this data set and 

another data set (near Guam, the result of which we have not shown here), we found 

a unique solution for every computation point. 

In the future we plan to develop an inversion algorithm wherein the inversion is 

performed for all points with unknown bathymetry at the same time. This method 

will eliminate the cumulative error problem, but the solution space will be too large to 

be searched by a linear optimization technique. We may use a non-linear optimization 

technique such as simulated annealing (Aarts and Korst 1989) or genetic algorithm 

(Goldberg 1989). 
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Chapter 3 

Global Optimization Methods 

In the past seismic waveform inversion has often been based on the least-squares (or 

more generally, least error or maximum likelihood) principle; and, even though it is 

successful in many cases (Mora 1987, Pica et al. 1990), it fails in others. Specifi

cally, when a priori information for a good starting model is not available, then this 

technique, coupled with a local, gradient based algorithm can converge to a local 

minimum of the misfit function rather than to the global minimum. Global (non 

gradient) optimization methods such as Monte Carlo search (Press et al. 1988), sim

ulated annealing (Laarhoven & Aarts 1987), or genetic algorithms (Goldberg 1989) 

have been applied recently to several geophysical inverse problems. In this chapter we 

discuss these three methods and examine the simulated annealing method in detail. 

3.1 MONTE CARLO SEARCH 

The Monte Carlo search is truly global since it is virtually a memoryless random walk 

in the solution space. When it generates a new solution it neglects the information 

gained from the previous samples . As a consequence, this search is not biased towards 

the true solution, it relies totally on random exploitation of the model space. This 

results in spending too much computation time in exploring unfavorable regions of 
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the model space. As a result, this search is too slow to be very efficient for large-scale 

problems. 

3.2 GENETIC ALGORITHMS 

Genetic algorithms (GA) were originally developed by Holland (1975) as models for 

learning in biological and artificial systems. This method, originally confined to 

problems of artificial intelligence (AI), has recently been used for various optimiza

tion problems in engineering, computer science, and other fields (Davis 1991 ). This 

method has also been applied in seismic waveform inversion (Stoffa & Sen 1991, Nolte 

& Frazer 1994). 

The GA method has a similarity to the genetic evolution of biological systems. It 

simulates natural genetics by following an entire population of trial models encoded as 

finite-length strings (chromosomes), wherein model parameters are part of the string. 

A typical GA uses three operators (reproduction, cross-over, and mutation) on the 

elements of the population (models) to find the best fit model. Reproduction defines 

the process by which an interim population is generated from a randomly selected 

initial population by selecting models from the original group, with the likelihood 

of selection determined by some measure of the cost functions. Crossover defines 

the outcome, as gene exchange, whose specific values are called alleles. From the 

parent population we create a new generation, each of which is derived from a mixing 

(crossover) of the bit strings from two parents. Initially, all parents are randomly 

paired off to produce couples and then each pair of parents is considered for a possible 

crossover. In practice, a random number is generated between 0 and 1 to determine 

whether the current selected pair is to be crossed over. If the value is less than the 

predetermined constant probability of crossover, then a position is chosen at random 
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and by cutting and transposing the two segments two new strings are created. This 

step must be modified and particularized to different types of problems. Finally, 

mutation is the introduction of a random element, often used to amend the result of 

a gene exchange when the outcome does not successfully meet appropriate restrictions. 

A small mutation probability is used to control the likelihood of an individual bit in 

each model being altered in parity. 

These three processes perform different roles in the GA. The reproduction step 

affects the survival of the fittest between generations. The crossover step controls 

the degree of mixing and sharing of information that occurs between the models. 

The mutation step is necessary for maintaining diversity in the population. Without 

mutation certain alleles might be irretrievably lost in the selection process. In this 

respect, mutation is more helpful for the success of GA in solving a problem, than 

which is found in nature. With these three steps (reproduction, crossover and muta

tion) GA is able to explore the model space very efficiently, which makes it superior 

to the random search Monte Carlo technique. 

3.3 SIMULATED ANNEALING 

Simulated annealing (SA) is another global optimization method. The name is de

rived from the process of annealing, which is the process of finding low energy states 

of a solid by initially melting the substance, and then lowering the temperature slowly 

and observing the formation of crystals. The minimum energy state or the ground 

state may be viewed as corresponding to the minimum of the cost function (or energy 

function) in the optimization problem. Since its introduction in 1983 (Kirkpatrick et 

al. 1983) SA has been applied to a fairly large number of different problems including 

the travelling salesman problem, image processing, flow jobshop scheduling, pollution 
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control, coastguard deployment, and DNA mapping (Aarts & Korst 1989). In the geo

physical exploration problem, Rothman (1985, 1986) first introduced this technique 

to estimate large residual statics correction, and thereafter it has been used in various 

other problems in seismology (Landa et al. 1989, Sen and Stoffa 1991, N0rmark and 

Mosegaard 1993). 

3.3.1 Overview 

Simulated Annealing (SA) is an algorithmic approach to solving optimization prob

lems. This technique, originally applied in the physical sciences (Metropolis et 

al. 1953), has been the subject of a great deal of interest for obtaining 'good' so

lutions to a wide range of problems. Metropolis et al. (1953) attempted to simulate 

the behavior of an ensemble of atoms in equilibrium at a given temperature. They 

constructed a mathematical model of the behavior of such a system that contained a 

method for minimizing the total energy of the system. Later Kirkpatrick et al. (1983) 

and Cerny (1985) independently demonstrated the potential of SA for combinatorial 

or discrete optimization problems. They have used SA in the Travelling Salesman 

Problem (Liu 1968, Press et al. 1988), in which the goal is to find the shortest route 

that touches every one of a number of cities once and returns one to the point of 

departure. The problem is similar to finding a Hamiltonian circuit that has the min

imal sum of distances. Vanderbilt & Louie (1984) have shown that SA can be used 

to obtain global solutions for continuous optimization problems. As a result, the SA 

approach has been the subject of intensive study by mathematicians, statisticians, 

physicists, computer scientists, engineers, and it has also been applied to numerous 

other areas. 
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3.3.2 Method 

The name, simulated annealing algorithm, derives from an analogy between solv

ing optimization problems and simulating the annealing of solids as proposed by 

Metropolis et al. (1953). In condensed matter physics, 'annealing' is a thermal pro-

cess by which a solid at a high temperature is brought to a low temperature crystalline 

state by gradual reduction of temperature. During the annealing process, if the tern-

perature is reduced very quickly, or quenched then the crystal will be defective. In 

particular, the cooling rate must be very slow near the freezing temperature. 

From statistical physics (e.g. Landau and Lifshitz 1980) we know that for a 

system in thermal equilibrium at a temperature T the probability P(Ei) of a state 

having energy Ei is governed by the Boltzmann distribution: 

exp(-Eif kBT) 
k 

l: exp(-Ej/kBT) 
j=l 

(1) 

where kB is the Boltzmann constant. One can note here that at high temperatures all 

energy states are equally likely, while at low temperatures the system is more likely 

to be in states of low energies. 

In the optimization problem, the objective function to be minimized corresponds 

to the energy (E) of the states of the solid. In the most common version of the SA 

technique, 'downhill' (i .e. improving) perturbations of the computed solution are al

ways accepted but an 'uphill' (i.e. degrading) perturbation of step f::lE is accepted 

with probability exp(-f::lE/ T), where Tis a control parameter corresponding totem

perature in the analogy. This mechanism saves the SA algorithm from being trapped 

in a local minimum in its search for the global minimum. 
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3.3.3 Algorithm 

There are two popular SA algorithms that have been successfully applied in var

ious problems. One of them is the Metropolis algorithm (Metropolis et al. 1953, 

Kirkpatrick et al. 1983), and the other one is the 'heat bath' method (Rothman 1986, 

Miyatake 1986). We follow the 'heat bath' method in our application of SA algorithm 

for inversion. This method involves the following steps: 

step 0: Choose a random starting model mo with 'energy' or objective function 

value E0 . Select an initial value T0 for the 'temperature'. 

step 1: For each temperature stage do the following: 

step 1.1: To update mi, calculate the energies E11 , E12 , ···,Elk for all the pos

sible values of m 1 keeping the other components of mo fixed at their 

current values. 

step 1.2: Choose the new value of m 1 by sampling from the following distribu-

ti on: 

exp(-Ei/kBT) P(m1 = m1i) = _k ______ _ (2) 
I: exp(-Ej/kBT) 
j=l 

step 1.3: Update the remaining components of mo the same way as described 

in steps 1.1 and 1.2. 

step 1.4: If 'thermal equilibrium' is not reached, go back to step 1.1. Otherwise 

go to step 2. 

step 2: If the 'stopping criterion' is not satisfied, reduce the temperature and go 

back to step 1. 

The basic structure of the Metropolis algorithm is almost the same as the 'heat 

bath' algorithm except that step 1.1 and step 1.2 are replaced by 
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step 1.1: To update mi, generate a 'feasible' value of m 1 by a small random 

perturbation from the current configuration. Evaluate the difference 

in energy D.E between these two models. 

step 1.2: If D.E S 0 (i.e. the candidate configuration has a lesser energy than 

the current configuration), accept this solution and replace the current 

configuration with the newly accepted configuration. 

If D.E > 0 (i.e. the candidate configuration has a higher energy than 

the current configuration), accept the solution with a probability given 

by 

P(D.E) = 
exp(-E;/kBT) 

k 
2.:: exp(-Ei/kBT) 
j=l 

(3) 

One notes that, in the SA algorithm, every state of the system is accessible 

from every other state in one iteration or sweep. This is analogous to the transitions 

of a Markov chain. So, SA can be represented by a Markov chain, whose transition 

probabilities depend on the 'temperature' parameter. For the homogeneous Markov 

model of SA, the number of iterations must be large at a given temperature to bring 

the system into 'thermal equilibrium'. For the inhomogeneous Markov model, it is 

necessary that the cooling is carried out very slowly from one iteration to the next 

iteration. 

3.3.4 Finer Detail 

In any implementation of the algorithm, a 'cooling schedule' must be specified that 

determines when and by how much the 'temperature' is to be reduced. Initially the 

temperature is set at a relatively high value, so that most changes are accepted and 
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there is little chance of the algorithm being unable to move out of a local minimum 

during the early stages. A scheme is then required for reducing the 'temperature' 

parameter at the end of each stage and also for deciding the number of repetitions 

to be performed at each value of the 'temperature'. As discussed before, if we fol

low the inhomogeneous Markov model of SA, then we perform only one iteration 

at each 'temperature', but the 'temperature' reduction should be very small. It is 

important to mention here is that reducing the 'temperature' too quickly tends to 

get the algorithm trapped at a local minimum. On the other hand, reducing the 

'temperature' very slowly consumes more CPU time, which is undesirable. Finally, a 

stopping criterion is required to terminate the process. One can stop after performing 

a fixed number of iterations, or if the 'temperature' goes below a pre-set final value, 

or if the energy changes are small at successive temperatures. Clearly, there is no 

well-defined 'cooling schedule' that may be employed. The judicious selection of a 

particular 'cooling schedule' is more of an art rather than a science. The efficiency of 

the SA algorithm for a particular problem depends on the experience and the ingenu

ity of the user. If the algorithm is applied properly then it will converge to a globally 

optimal solution. The convergence of the SA algorithm has been studied extensively 

(e.g. Geman and Geman 1984, Gidas 1985, Mitra et al. 1986, Haario and Saksman 

1991) in the last few years. 

3.3.5 Critical Temperature 

As discussed before the efficiency of the SA algorithm depends primarily on the cooling 

schedule. During the cooling process one should spend a long time at the 'tempera

ture' close to the freezing point. In the physical process of producing crystals from 

the molten substance, crystallization starts occurring near this 'temperature' , which 
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we will call the 'critical temperature' of the system. From our experience we have 

seen that determining the critical 'temperature' is one of the most important factors 

regarding the efficiency of the SA algorithm. To determine the 'critical temperature' 

we followed the procedure used by Basu and Frazer (1989, 1990), which involves ex

ecuting the SA process for a fixed number of sweeps at a fixed 'temperature' and 

then calculating the average energy for those sweeps. This routine is performed at 

different 'temperatures' ranging from a very high ' temperature' where almost all the 

states are equally probable to a very low 'temperature' where the system is almost 

frozen. 

The above mentioned procedure is described in the following algorithm: 

step 0: Choose a random starting model mo with 'energy' or objective function 

value E0 and the number of sweeps Ns, which is fixed for each 'temper

ature'. Select a high 'temperature' Th and a low 'temperature' T1, and 

divide this temperature range equally on the logarithmic scale. 

step 1: For each temperature stage using the same set of random numbers do the 

following: 

step 1.1: Perform SA algorithm Ns times and calculate the energy at the end 

of each sweep. 

step 1.2: Calculate the average energy Eby adding all the energies of Ns sweeps 

and then dividing the sum by Ns . 

step 1.3: Plot this value of E in the graph of E vs. log T. 

step 2: Repeat step 1 for different set of random numbers. 

The plot of E vs. log T is a curve that has a minimum at some temperature 

which we consider as the 'critical temperature' of the system. At high 'temperature' 

E is high because virtually all transitions are accepted and SA is unbiased enough 

to pick up only the good solutions. At low 'temperature' E is also high because the 
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probability of accepting solutions worse than the current one is small and SA picks 

up the good solutions close to the starting model only. At 'temperatures' in between 

these two extremes, SA behaves more effectively, and at the 'critical temperature' SA 

is most effective. The number of sweeps Ns to carry out at each temperature should 

be large enough so that the graphs of E vs. log T for each set of random numbers are 

not very different and also that E has a smooth well-defined minimum. 

3.3.6 SA at Constant Temperature 

A detailed account of this procedure has been discussed by Frazer and Basu (1992) 

and therefore only a brief summary of the method will be given here. The goal of a 

typical SA in an optimization problem is to find the best model that minimizes or 

maximizes the cost function. When SA is applied to an inversion problem then its 

goal should be not only to find the best model, but also other good models. From our 

experience we have observed that at the critical temperature SA consistently picks 

up good models; and this is also the reason for the average energy function to be 

the highest at this temperature as we have seen in the previous section. We can also 

compute the a posteriori probability density function from the chosen models and 

then construct the best fit model. 

Suppose A is a set of chosen models at the critical temperature, ~(A) is the 

number of models in A, and Aiµ is the subset of models m whose ith element mi is 

equal to µ,and ~(Aiµ) is the number of models in Aiw Then the probability that mi 

is equal to µ is given by the following equation: 

( ) 
~(Aiµ) 

ai mi=µ = ~(A) (4) 

The above equation is the ith marginal distribution of the a posteriori density function 
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(<JM )l/Tcr. The best fit model m denotes the array (mi, m2, .... ) where mi is the 

component value of m at depth Zi that maximizes CTi· 

We also estimate the a posteriori model covariance matrix given by the following 

equation: 

1 
cov(m)ii = ~(A)]1}mi - mi][mi - mil (5) 

The covariance matrix shows the uncertainty in the evaluation of model parameters. 

The correlation matrix is computed from the covariance matrices by the following 

equation 

( ) 
cov(m)ij 

cor 1n ij = --;::======= J cov( m )iicov( m )ii 
(6) 

The off-diagonal elements of the cor( m) matrix show the dependency of model pa-

rameters on each other. The larger the value of an off-diagonal element the more 

dependent the corresponding parameters are on one another. Thus in a SA run 

containing a number of sweeps we construct the best fit model m, the a posteriori 

probability density (PPD) function CT(m), and the correlation matrix cor(m). In 

the next chapters we will use the SA method on two-offset VSP data, and on cross

borehole data to determine the slowness of the layers between the source well and the 

receiver well. 

3.4 REFERENCES 

Aarts, E. & Korst, J., 1989. Simulated Annealing and Boltzmann Machines, John 

Wiley and Sons, New York. 

44 



Basu, A. & Frazer, L. N., 1989. Rapid determination of critical temperature in 

simulated annealing, Soc. Industrial and Appl. Math. Workshop on Geophysical 

Inversion, Final Program, Sept. 27-29, Houston, Texas. 

Basu, A. & Frazer, L. N., 1990. Rapid determination of critical temperature in 

simulated annealing inversion, Science , 249 , 1409-1412. 

Cerny, V., 1985. Thermodynamical approach to the travelling salesman problem: an 

efficient simulation algorithm, J. Opt. Theory Appl., 45, 41-51. 

Davis, L., 1991. Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 

U.S.A. 

Frazer, L. N. & Basu, A., 1992. Bayesian inversion by statistical physics with an 

application to offset VSP, submitted to Geophys. J. Int .. 

Geman, S. & Geman, D., 1984. Stochastic relaxation, Gibbs distributions and the 

Bayesian distribution of images, IEEE Trans. Patt. Anal. Mach. Int., 6 , 

721-741. 

Gidas, B., 1985. Non-stationary Markov chains and convergence of the annealing 

algorithm, J. Statistical Phys, 39, 73-131. 

Goldberg, D. E., 1989. Genetic Algorithms in search, optimizations, and machine 

learning, Addision Wesley Publishing Co., New York, U.S.A. 

Haario, H. & Saksman, E., 1991. Simulated annealing process in general state space, 

Adv. in applied probability, 23, 866-893. 

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems, University of 

Michigan Press, Ann Harbor, Michigan, U.S.A. 

45 



Kirkpatrick, S., Gelatt, C. D. Jr. & Vecchi, M. P., 1983. Optimization by simulated 

annealing, Science, 220, 671-680. 

Laarhoven, P. J. M. Van & Aarts, E. H. L., 1987. Simulated Annealing: Theory and 

applications, D. Reidel, Boston, U.S.A. 

Landa, E., Beydoun, W. & Tarantola, A., 1989. Reference velocity model estima

tion from prestack waveforms: Coherency optimization by simulated annealing, 

Geophysics, 54, 984-990. 

Landau, L. D. & Lifshitz, E. M., 1980. Statistical Physics, Pergamon, Oxford. 

Liu, C. L., 1968. Introduction to Combinatorial Mathematics, McGraw-Hill 

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E., 1953. Equa

tion of state calculations by fast computing machines, J. Chem. Phys., 21, 

1087-1092. 

Mitra, D., Romeo, F. & Sangiovanni-Vincentelli, A., 1986. Convergence and finite 

time behavior of simulated annealing, Advances in applied probability, 18, 7 4 7-

771. 

Miyatake, Y., Yamamoto, M., Kim, J. J., Toyonaga, M. & Nagai, 0., 1986. On the 

implementation of the 'heat bath' algorithms for Monte Carlo simulations of 

classical Heisenberg spin systems, J. Phys. C. Solid State Physics, 19, 2539-

2546. 

Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic 

data, Geophysics, 52, 1211-1228. 

Nolte, B. & Frazer, L. N., 1994. Vertical seismic profile inversion with genetic algo

rithms, Geophys. J. Int, 117, 162-178. 

46 



N~rmark, E. & Mosegaard, K., 1993. Residual statics estimation: scaling tempera

ture schedules using simulated annealing, Geophysical Prospecting, 41, 565-578. 

Pica, A., Diet, J. P. & Tarantola, A., 1990. Nonlinear inversion of seismic reflection 

data in a laterally invariant medium, Geophysics, 55, 284-292. 

Press, H. W., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T., 1988. Numerical 

R ecipes, Cambridge University Press. 

Rothman, D. H., 1985. Nonlinear inversion, statistical mechanics, and residual statics 

estimation, Geophysics, 50, 2784-2796. 

Rothman, D. H., 1986. Automatic estimation of large residual statics corrections, 

Geophysics, 51, 332-346. 

Sen, M. K. & Stoffa, P. L., 1991. Nonlinear one-dimensional seismic waveform in

version using simulated annealing, Geophysics, 56, 1624-1638. 

Stoffa, P. L. & Sen, M. K. 1991. Nonlinear multi parameter optimization using genetic 

algorithms: inversion of plane wave seismograms, Geophysics, 56, 1794-1810. 

Vanderbilt, D. & Louie, S. G., 1984. A Monte Carlo simulated annealing approach 

to optimization over continuous variables, Journal of Computational Physics, 

56, 259-271 

47 



Chapter 4 

Offset VSP Inversion using 
Simulated Annealing 

4.1 INTRODUCTION 

Vertical Seismic Profiling (VSP) data are often more reliable to determine the sub

surface geology than sonic logs, because VSP data are not as sensitive to the borehole 

conditions as sonic logs . Contrary to surface seismic profiling, in VSP, the receivers 

are placed in the well to record the data. There are two kinds of VSP data depending 

on the position of the source. In one case, the surface source is close to the well head 

(zero offset VSP) and in the other case, the source is away from the well head (off

set VSP) . A comprehensive reference of this technique can be found in the book by 

Hardage (1983). Here we perform inversion using the SA method at a fixed temper

ature on a two-offset VSP data sets to determine the slowness of the layers between 

the two boreholes . 

4.2 ENERGY FUNCTION 

The actual geometry of the experiment consists of two shots and one borehole con

taining the receivers . Assuming the earth is horizontally stratified near the shots and 
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the borehole, we replace this geometry by one shot and two boreholes. This extra 

borehole is at the same position as of one of the shots (Fig. 4.1). 

4.2.1 Correlation Function 

The forward modelling in our inversion consists of migrating the data recorded in 

the first borehole to the second borehole using different slowness profiles. We then 

compare the migrated data and the actual data of the second borehole. If our velocity 

estimation is correct then the correlation between these two data sets will be the 

maximum. Let's denote the seismic data in the first and second borehole by U1 (t, z) 

and U2 (t, z) respectively, in which tis time and z is receiver depth. Let's denote the 

migrated data by Ut4(t,z). The correlation between U2 (t,z) and Ut4(t,z) are given 

as 

(1) 

in which Nt is the number of time sample points and Nz is the number of receivers. 

The correlation value would be 1.0 if our migration algorithm is perfect, the velocity 

profile is true, and there is no noise. 

4.2.2 Penalty Function 

In some cases, especially with many layers, the energy function value for an oscillatory 

velocity profile is the same as for a smoother velocity profile. Since we want to select 

a smoother velocity profile we use a penalty function that gives a high penalty for 

an oscillatory velocity profile and no penalty for constant profile. Following Basu & 
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Frazer (1990) the penalty function p(m) is written as 

N-1 
L lsi+l - 2si + Si-11 

p(m) = _i_=2 ______ _ 

2 (N - 2)(smax - Smin) 
(2) 

where Si is the slowness of the ith layer, Smax is the maximum allowed slowness, Smin 

is the minimum allowed slowness, and N is the number of layers. 

4.2.3 Objective Function 

Our objective function or the energy function consists of both the correlation function 

and the penalty function. We write the energy function as 

E(m) = -¢(Ut1, U2) + cp(m) (3) 

where c is the penalty weight. The method used to determine c is described in the 

following algorithm: 

step 1: Find the critical temperature of the system with c = 0. Choose a random 

starting model mo with 'energy' or objective function value E0 and the 

number of sweeps Ns, which is fixed for each c . Select a high penalty 

value Eh and a low penalty value c1, and divide this range equally in the 

linear scale. 

step 2: For each c using the same set of random numbers do the following: 

step 2.1: Perform the SA algorithm for Ns times and calculate E(m), 

¢(Ut1, U2 ), p(m) at the end of each sweep. 

step 2.2: Calculate the average of E(m), ¢(Ut1, U2 ), p(m). 

step 2.3: Plot p(m) I -¢(ur, U2) vs. c. 
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The plot of p(m) / -<P(Ufl, U2 ) vs. Eis a curve with a maximum at some E 

which is the chosen value of the penalty weight. 

4.3 EXAMPLE: SYNTHETIC DATA 

The synthetic data for this study were computed by frequency-wavenumber integra

tion using the computer program by Mallick and Frazer (1988). Fig. 4.1( a) illustrates 

the experimental layout for the offset VSP which consists of two shots 100 m apart 

and a 400 m deep borehole which is 150 m apart from the nearest shot. Assuming 

the earth is stratified near the shots and the borehole, we replace this geometry by 

Fig. 4.l(b) which outplaces the nearest shot to the borehole by another borehole 

equally deep. The sources are positioned at 5 m depth from the ground and the 

receivers are placed at 40 levels spaced every 10 m from 5 m deep. The data were 

recorded with a sample interval of 1 ms. Fig. 4.2( a) and (b) displays the synthetic 

data recorded in borehole 1 and borehole 2 respectively. 

We perform inversion for the slowness of the layers between the two boreholes. 

We divide 400 m thickness into 40 evenly thick layers with the receiver located in the 

middle of the layer. In our inversion we have 40 model parameters, which represent 

the slowness of each layer, and each model parameter can have any of the 5 possible 

values. Therefore, there are 540 ~ 1028 possible solutions in the solution space, which 

is large enough for using the exhaustive search method to find the best solution. 

The energy function which we use here is given in chapter 3. To find the 

critical temperature we followed the algorithm given above in section 2.5. We search 

from log T = -2.5 to log T = 1.5 in steps of 0.5 performing 25 iterations at each 

temperature using five different sets of random numbers. Fig. 4.3(a)-(e) shows the 

results of these runs. The average of these five plots is shown in Fig. 4.3(f) and the 
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Figure 4.1: (a) Two-offset VSP geometry (b) Mathematically equivalent geometry 
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Figure 4.2: (a) Seismograms from borehole 1 (b) Seismograms from borehole 2 
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graph has a minimum at log T = -2.0. To obtain a better estimate of critical tem

perature we repeated the above mentioned procedure near this minimum, searching 

from log T = -2.5 to log T = -1.6 in steps of 0.1. The result of these runs is shown in 

Fig. 4.4(a)-(e) and the average of these plots is shown in Fig. 4.4(f). From Fig. 4.4(f) 

we estimate the critical temperature as log Tcr = -2.1 or Tcr = 0.00794. 

After determining T er we find the penalty weight t by following the algorithm 

given in section 4.2 .3. The value of Tcr mentioned in the above paragraph was found 

with t = 0. We search from t = 0 to 35 in steps of 5 performing 25 iterations at each 

penalty weight. From this search we chose t = 25. The energy function E(m) now 

becomes -</;(Ur, U2) + 25p(m). 

After finding Tcr and f. we compute the PPD and Fig. 4.5 shows the result 

of this computation for all the profiles in Fig. 4.4. Fig. 4.5(a)-(e) shows the PPD 

after 25 iterations for five different sets of random numbers and we see no significant 

difference between these plots. The final PPD diagram is constructed using all 125 

(5*25) profiles and is shown in Fig. 4.5(f). The blow up of this diagram is shown 

in Fig. 4.5(g) . The true velocity profile is shown by the bold line. In this diagram 

we see that except for the top and bottom layers the PPD is narrow and has well 

defined peaks. The best fit slowness profile can be constructed by joining the peak 

of the marginal density function of each layer from the PPD diagram. We repeated 

the above mentioned procedure considering that each model parameter can take 13 

possible values instead of 5. The final PPD diagram is shown in Fig. 4.6(a). To 

demonstrate the usefulness of the penalty function, we computed the PPD in this 

case without using any penalty function (i.e. t = 0) and the result is shown in 

Fig. 4.6(b). Comparing Fig. 4.6(a) and (b) we see that the penalty function helped 

to make the PPD to be well defined. 

We estimate cor(m) matrix for each set of profiles in Fig. 4.6(a) and 4.6(b). 
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using equation (6) of chapter 3. The part of these matrices are shown in Fig. 4.7(a) 

and 4. 7(b) respectively. Comparing these two diagrams we see that when we don't 

use any penalty function, then we pick up oscillatory velocity profiles which give rise 

to small correlation in the neighborhood of the diagonal. The correlation value along 

the diagonal is 1.0 and is represented by white color. 

4.4 DISCUSSION 

The results of this chapter suggests that simulated annealing has the potential to solve 

global optimization problems. The SA algorithm has several attractive features. First 

of all, this algorithm is very easy to implement . Secondly, SA doesn't depend on the 

starting model. So, even if we have poor knowledge on a-priori information of model 

parameters, we can use SA algorithm. This characteristics of SA makes it much 

more efficient than the gradient search method to solve non-linear inverse problems. 

Thirdly, SA can provide good solutions if not the best solution to many problems. 

In addition to the advantages discussed above, SA has some practical dif

ficulties which need to be considered. One of the major problems is to choose an 

appropriate cooling schedule. The quality of the obtained solutions and the required 

CPU time depends on the choice of the cooling schedule. Our way of implement

ing SA bypass this problem by finding the critical temperature of the system and 

performing SA at that temperature (Frazer & Basu 1992). 

Our way of implementing SA algorithm also deviates from the conventional 

SA technique by giving emphasis on constructing the PPD and then determine the 

best model from it rather than selecting the best model having the lowest energy. 

Even though our model space is vast, we still can pick up good models to construct 

the PPD by performing SA at the critical temperature. 

59 



-E .......... 
:r: ..._ 
0.... 
w 
0 

( a ) 
250 300 

250 

300 

350 

DEPTH (m) 
250 

I 

( b ) 
300 

I 
350 

I 

Figure -ti: Part of correlation matrix cor(m) constructed (a) with using penalty 
function (b) without using penalty function. White is 1.0 and black is -1.0. 

60 



We have assumed that the earth is horizontally stratified and it has layers of 

equal thickness and the number of layers are the same as the number of receivers. 

This assumption has caused the problem of overparametrization, which resulted in 

picking up oscillatory velocity profiles because the energy values of those models are 

as high as the non-oscillatory velocity models. We have taken care of this problem by 

applying a penalty function and finding the optimum penalty weight. We have seen 

how penalty function has helped to make well defined PPD. 
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Chapter 5 

Cross-borehole Inversion Using 
Simulated Annealing 

5.1 INTRODUCTION 

Cross-borehole seismic surveys provide methods for estimating velocity and density 

between the two boreholes. In this case, a source is placed in one borehole and the 

receivers record the energy propagation in an adjacent borehole. The source is then 

placed at different depth and the energy propagation is recorded again. This process 

is continued until the region between these two boreholes are well covered by the ray 

paths. In this chapter we provide another example of the SA method by performing 

inversion of a cross-borehole data at a fixed temperature to determine the slowness 

of the layers between the source well and the receiver well. 

5.2 ENERGY FUNCTION 

The forward modelling in our inversion procedure consists of migrating the data 

recorded in the receiver well to the shot position in the source well using different 

slowness profiles. For each shot in the source well we migrate the corresponding 

recorded seismograms in the receiver well after windowing the data with a specified 
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length around the first arrivals. This migration produces a wavelet at the shot position 

and its width is the length of the time window. If our velocity estimation is correct 

then the power of the wavelet will be the maximum. We define the energy function 

as the sum of the powers of all the wavelets and it can be written as 

E(m) = -W(m) (1) 

where 
N 

W(m) = LWi. (2) 
i=l 

Here m is the model vector, vVi is the power of the wavelet for ith source, and N is the 

number of sources. The energy function is a function of the slownesses of the model 

and our goal here is to find the model vector m that minimizes E(m). In the cases, 

where the energy function value for an oscillatory velocity profile is the same as for a 

smoother velocity profile, the energy function becomes 

E(m) = -vV(m) + cp(m) (3) 

where c is the penalty weight. The method used to determine c is described in chapter 

4. 

5.3 EXAMPLES: REAL CROSS-HOLE DATA 

The data for this study were collected by EXXON Production and Research Corpora-

tion who conducted the 'Loudon Experiment' to compare results from seismic, VSP, 

cross-borehole and well-logs data. Fig. 5.1 illustrates the experimental layout for the 

cross-borehole which consists of two boreholes 292 ft apart and drilled to a depth of 

1600 ft. The data were collected with a 48-channel hydrophone streamer deployed in 

the receiver well using dynamite charges in the source well. Sources were positioned 

63 

-



I ..-- 292 tt __... I 
t I I t 
= = 0 0 
I() I() 
..- ..-

• • = =c = 0 0 ..-..-

"' "' .... 
CD Cl> e > 
:J "Ci) 
0 0 

"' I I CD .... 
0 I I 

f y v v v ..- I I ..-
I I 

1 f 
1 2 

Boreholes 

Figure 5.1: Cross borehole geometry. 

64 



at 140 levels spaced every 10 ft from 150 ft to 1540 ft ( 45 m to 469 m) deep in source 

well and the receivers were placed at 144 levels also spaced every 10 ft from 150 ft 

to 1580 ft ( 45 m to 481 m) deep in receiver well. Sources and receivers were aligned 

so that every source has one hydrophone at the same depth. The data were recorded 

with a sample interval of 0.25 ms. More details about the site and geometry are given 

by Zimmerman and Chen (1993). 

Fig. 5.2 displays an example of the part of a raw data set for a source located 

at 1330 ft deep in the source well and receivers located between 890 ft and 1580 ft 

in the receiver well. It can be seen that the data are dominated by tube waves that 

have a velocity of about 5000 ft/s, even though it is not very difficult to pick up the 

first arrivals. Fig. 5.3 shows the comparison of the acquired sonic velocity log and 

tomographic velocity obtained by EXXON from the receiver well. The velocity here 

varies from 8000 ft/s to 18000 ft/s. The rock types in the area are shale, siltstone, 

sandstone, and limestone. 

The data are processed with a 100-600 Hz band-pass filter to minimize the 

effect of low-frequency tube-wave noise. After processing the data the first arrivals 

are picked using a 2.5 ms window with 1 ms cosine tapers at either end. 

We perform inversion for the slowness of the layers between the source well 

and the receiver well. The following two examples show the inversion results using a 

smaller (11 sources and 11 receivers) subset and a larger subset (30 sources and 30 

receivers) of the data. 

5.3.1 Smaller Data Subset 

In this example we have selected 11 sources and 11 receivers, which are located from 

1230 ft to 1330 ft (375 m to 405 m) deep in the corresponding source and receiver 
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wells at 10 ft depth intervals. The velocity at this depth varies from 9250 ft/s to 

12250 ft/s. \Ve invert for each layer using 110 traces (11 traces for each source and 

there was one bad source). We divide 110 ft thickness into 11 evenly thick layers with 

the source and the receiver located in the middle of the layer. In our inversion we 

have 11 model parameters, which represent the slowness of each layer, and each model 

parameter can have any of the 41 possible values. Therefore there are 41 11 
:=::;j 1018 

possible solutions in the solution space, which is large enough for using the exhaustive 

search method to find the best solution. 

The energy function used here is given by equation (3) and it includes the 

penalty function. To find the critical temperature we followed the algorithm given 

above in chapter 3. We search from log T = -2.0 to log T = 2.0 in steps of 0.5 

performing 50 iterations at each temperature. We use four different sets of random 

numbers and Fig. 5.4(a) shows the results of these runs. The average of these four 

plots is shown in Fig. 5.4(b) and the graph has a minimum at log T = -0.5. To obtain 

a better estimate of critical temperature we repeated the above mentioned procedure 

near this minimum, searching from log T = -0.8 to log T = -0.1 in steps of 0.1. The 

result of these runs is shown in Fig. 5.5( a) and the average of these plots is shown in 

Fig. 5.5(b ). From Fig. 5.5(b) we estimate the critical temperature as log Tcr = -0.6 

or Tcr = 0.2512. It may be interesting to note that the value of Tcr is less than unity. 

After determining Tcr we find the penalty weight Eby following the algorithm 

given in chapter 4. The value of Tcr mentioned in the above paragraph was found 

with E = 0. We search from log E = -3.0 to log E = 5.0 in steps of 1.0 performing 

50 iterations at each penalty weight. We used four different sets of random numbers 

and Fig. 5.6( a) shows the results. The average of these plots is shown in Fig. 5.6(b) 

and from this plot we chose log E = 2.0 or E = 100.0. The energy function E(m) now 

becomes -W(m) + 100.0 p(m). 
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After finding Tcr and E we compute the PPD after generating the slowness 

profiles at Tcr· To find the number of profiles needed for the convergence of the PPD 

we plot the PPD after 25, 75, 150 and 200 iterations for one set of random numbers. 

The result is shown in Fig. 5.7(a)-(d) and it can be seen that the PPD has converged 

at 200 iterations. Fig. 5.8( a)-( d) shows the PPD after 300 iterations for four different 

sets of random numbers and we see no significant difference between these plots. 

The final PPD diagram is constructed using all 1200 ( 4 *300) profiles and is shown 

in Fig. 5.9. In this diagram we see that except for the top two layers the PPD is 

narrow and has well defined peaks. The best fit slowness profile can be constructed 

by joining the peak of the marginal density function of each layer from the PPD 

diagram. The PPD is shown along with the sonic log slowness profile at the receiver 

well in Fig. 5.lO(a) and with the tomographic slowness profile in Fig. 5.lO(b) which 

were provided by EXXON. The PPD matches more closely with the tomographic 

slowness than the sonic log slowness. The PPD shows the average slowness profile 

between the source and the receiver wells whereas the tomographic and sonic slowness 

profiles represent the slowness near the receiver well. 

'Ne estimate cov(m) matrix for each set of profiles in Fig. 5.9 using equation 

(5) of chapter 3. From cov(m) we generate cor(m) matrix using equation (6) of the 

same chapter and the matrix is shown in Fig. 5.11. We see in this diagram that the 

model parameters in the middle layers are more dependent on each other than any 

other layers. 

5 .3.2 Larger D ata Subset 

In this example we have selected 30 sources and 30 receivers which are located from 

1150 ft to 1440 ft (351 m to 439 m) deep in the corresponding source and receiver 
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wells at 10 ft depth interval. The velocity in this region varies from 8750 ft/s to 14500 

ft / s. Here we encounter two bad sources, so we use 840 remaining good traces for 

inversion. We divide 300 ft thickness into 30 evenly thick layers with the source and 

the receiver located in the middle of the layer. Here we have 30 model parameters 

representing the slownesses of each layer and each model parameter can have any of 

the 41 possible values, and therefore there are 4130 ~ 1048 possible solution in the 

solution space. 

The energy function which we use here is given by equation (3). As before we 

search for the critical temperature from log T = -2.0 to log T = 2.0 in steps of 0.5 

performing 50 iterations at each temperature. We use four different sets of random 

numbers and Fig. 5.12(a) shows the results of these runs. The average of these four 

plots is shown in Fig. 5.12(b) and the graph has a minimum at log T = 0.0. We again 

search from log T = -0.4 to log T = 0.4 in steps of 0.1 and the result of these runs is 

shown in Fig. 5.13(a) and the average of these plots is shown in Fig. 5.13(b). From 

Fig. 5.13(b) we estimate the critical temperature as log Tcr = 0.1 or Tcr = 1.26. 

It may be interesting to note that Tcr is higher than the smaller data subset and 

also it is more than unity. As explained by Frazer and Basu (1992), Tcr is a measure 

of the energy barrier between the local minima. Since the value of the energy function 

is higher for the larger data subset than for the smaller data subset so we expect T er 

to be higher for the larger data subset . 

After determining Tcr we find the penalty weight E by searching from log E = 

-3.0 to log E = 5.0 in steps of 1.0 performing 50 iterations at each penalty weight. We 

used four different sets of random numbers and Fig. 5.14(a) shows the results. The 

average of these plots is shown in Fig. 5.14(b) and from this plot we chose log E = 

3.0 or E = 1000.0. The energy function E(m ) now becomes -W(m) + 1000.0 p(m). 

Similar to the previous example we find the number of profiles needed for the 
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convergence of the PPD by plotting the PPD after 50, 200, 300 and 500 iterations for 

one set of random numbers. The result is shown in Fig. 5.15(a)-( d) and it can be seen 

that the PPD has been converged at 500 iterations. Fig. 5.16(a)-(d) shows the PPD 

after 600 iterations for four different sets of random numbers and we see no significant 

difference between these plots. The final PPD diagram is constructed using all 2400 

( 4 *600) profiles and is shown in Fig. 5.17. In this diagram we see that the PPD 

of the middle layers have well defined peaks and the topmost and the bottommost 

layers have very wide PPD. Since more rays pass through the middle layers, there the 

model parameters are well resolved. The PPD is shown along with the sonic slowness 

profile at the receiver well in Fig. 5.18( a) and with the tomographic slowness profile 

in Fig. 5.18(b). The PPD matches with the tomographic slowness profile more in the 

middle layers and in other layers it generally has peaks at higher slowness values than 

the corresponding tomographic slowness. 

As before we estimated cor(m) matrix and it is plotted in Fig. 5.19. The layers 

in the middle are found to be more dependent on each other than the end layers. 

This inter dependency is more prominent in between 1210 ft and 1250 ft. 

5.4 DISCUSSION 

In this chapter we have investigated the use of a global optimization method, simu

lated annealing to solve a non-linear seismic inverse problem assuming a 1-D acoustic 

earth model. The result of this paper suggests that SA is more efficient than ex

haustive search, gradient search, and Monte Carlo search methods to solve non-linear 

inverse problem when the solution space is large and multimodal. A simple local 

search method (a descent algorithm) is rapid to execute but it can get trapped in a 

local minimum. One way to improve the solution in this method could be to run the 
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Figure 5.19: The correlation matrix. White is 1.0 and black is -1.0. 
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descent algorithm several times starting from different initial solutions and consider 

the best solution found. Studies of a number of different problems (Lundy & Mees 

1986, van Laarhoven & Aarts 1987) have shown that in a given amount of computing 

time SA can obtain better solutions than repeating a descent algorithm using differ

ent starting models. Even though SA is proved superior than the descent algorithm 

in several different problems, if the problem has no local minima but only a global 

minimum then one run of descent algorithm will reach that minimum faster than SA. 

Some of the drawbacks of SA are that it is computationally expensive and 

the best choice of cooling schedule is critical. One approach to speed up SA is to 

implement the parallel version of the algorithm (Aarts & Korst 1989). For the cooling 

schedule it can be said that whatever cooling schedule is chosen, it is important not 

to spend too long at high temperatures as this can waste CPU time, and also the 

temperature should be lowered as slowly as possible. Here we have skirted these 

problems by finding the critical temperature of the system and performing SA at 

that temperature which we called 'freeze bath method' (Frazer & Basu 1992). Even 

though determination of critical temperature of a system poses another big problem, 

by using the method applied by Basu & Frazer (1990) we can rapidly determine the 

critical temperature without following any trial and error process. 

In our technique we have deviated from conventional SA method by g1vmg 

emphasis on constructing the PPD and determining the best model from it rather 

than picking up the model having the lowest energy after the SA runs. The vastness 

of our model space makes the construction of the actual PPD impossible, but we 

can construct a PPD which closely resembles the actual one using the models which 

significantly contribute to the actual PPD. Our method of SA actually tries to find 

those good models in the least amount of time. For this reason we gave a lot of 

emphasis on finding the critical temperature of the system because at this temperature 
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we have pretty high chances of finding good models scattered over the whole solution 

space. 

Here we have assumed that the earth is stratified and it has layers of equal thick

ness and the number of layers are the same as the number of sources or receivers. This 

assumption has caused the overparametrization problem, which resulted in picking up 

oscillatory velocity profiles because the energy values of those models are as high as 

the non-oscillatory velocity models. This problem has been taken care of by applying 

a penalty function and finding the optimum penalty weight. Fig. 5.20(a)-(d) showed 

the PPD for the larger data set after generating 600 profiles at Tcr for four sets of 

random numbers without using any penalty function. We see in this diagram that 

600 profiles are not enough for the PPD to be converged as compared to the previous 

example. And also the PPD here is mostly flat in most of the layers . 

Some results have been published which compare SA with other global opti

mization methods. Frazer et al. (1990) and Scales et al. (1992) have applied SA and 

GA to geophysical inversion problem. Since both methods are developing rapidly and 

research is continuing to find the best way of implementing them in different prob

lems, so it is perhaps premature to make relative judgements. In conclusion we can 

say that in any problem if one of these two methods can be implemented successfully, 

then the other method can also be implemented with success. 
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