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[1] Large storms make it difficult to extract the long-term
trend of erosion or accretion from shoreline position data.
Here we make storms part of the shoreline change model by
means of a storm function. The data determine storm
amplitudes and the rate at which the shoreline recovers
from storms. Historical shoreline data are temporally
sparse, and inclusion of all storms in one model over-fits
the data, but a probability-weighted average model shows
effects from all storms, illustrating how model averaging
incorporates information from good models that might
otherwise have been discarded as un-parsimonious. Data
from Cotton Patch Hill, DE, yield a long-term shoreline
loss rate of 0.49 ± 0.01 m/yr, about 16% less than published
estimates. A minimum loss rate of 0.34 ± 0.01 m/yr is given
by a model containing the 1929, 1962 and 1992 storms.
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1. Introduction

[2] Shoreline change models use historical shorelines to
estimate the rate of change, or to predict a future shoreline,
as in Figure 1a. Storm influenced shorelines raise difficult
questions in this regard because shorelines tend to recover
from storms [Birkemeier, 1979; Kriebel, 1987; Morton,
1988; Morton et al., 1994]. After a storm, shoreline change
rate may return to its long-term trend [Galgano and
Douglas, 2000; Zhang et al., 2002] over 5–15 years,
depending on the magnitude of the storm. Should one
therefore remove storm-influenced shorelines from the data
when attempting to estimate the long-term trend? If so, how
can one tell whether a shoreline is truly storm influenced?
Here we address such questions by explicitly modeling the
transient part of the storm-induced change. The storm-
driven permanent change is implicitly modeled as part of
the long term trend.
[3] In modeling long-term shoreline change, data con-

taminated by large storms violate the least-squares assump-
tion that errors are normally distributed. One alternative to
least squares is to objectively edit storm effects from the
data using methods such as least median of squares (LMS),
sometimes referred to as re-weighted least squares (RLS)
[Rousseuw, 1984; Rousseuw and Leroy, 1987; Genz et al.,
2007]. Another alternative is to leave storms in the data and
fit the model by minimizing absolute differences rather than
squared differences (LAD) [Rousseuw and Leroy, 1987;

Genz et al., 2007]. Douglas and Crowell [2000] removed
storm points from the data until the misfit (average residual)
was comparable to the standard error of the measurements
plus 20% of beach width. They illustrated their procedure
using data from Cotton Patch Hill, Delaware, which was hit
by large storms in 1929, 1962, 1991 and 1992. We illustrate
our procedure with the same Cotton Patch Hill data ana-
lyzed by Douglas et al. [1998] and Douglas and Crowell
[2000, Table 1]. The 1991 and 1992 storms occurred
between surveys in 1990 and 1993. The 1991 storm was
smaller than the 1992 storm, and we model the effects of
these two storms using a single storm function with onset in
1992.

2. One-Dimensional Models With Storms

[4] A storm is defined here as any event that changes the
position of the shoreline suddenly, with subsequent slow
recovery toward the long term trajectory. Although seasonal
changes in shoreline can be rapid, recovery usually occurs
within a time much shorter than the time between historical
shoreline surveys, so we regard uncorrected seasonal effects
as part of the noise.
[5] The traditional 1D model for shoreline change is

yðtÞ ¼ bþ rt þ nðtÞ; ð1Þ

in which y is the cross-shore coordinate (shoreline location),
b is the intercept, r is the long-term shoreline change rate,
and n is uncorrelated noise with zero mean. The inverse
problem for shoreline change is to infer the change rate
from a time series of shoreline data y(t1), y(t2),. . ., y(tJ). The
intercept depends on the baseline used to measure y, and on
the time origin, both of which can be adjusted to condition
the solution of the inverse problem. In mathematical
parlance, the linear 1D model is a linear sum of the basis
functions 1 and t. If acceleration is included in the model,
there is a third basis function 1

2
at2, and Fenster et al. [1993]

showed that models with acceleration can be more
parsimonious than simple linear models. However, Crowell
et al. [1997] showed that the acceleration term is good at
fitting noise and that its inclusion in a model can lead to
inaccurate predictions. This situation is a reminder of the
importance of prior information in any inversion problem
and that parsimony by itself does not select a good model
unless candidate models are suitably chosen.
[6] Suppose that the data area is struck by a storm at time

ts. We use a basis function called the storm function, given
by

e
�gðt�tsÞ
þ ¼ e�gðt�tsÞ if t � ts

0 if t < ts;

�
ð2Þ
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in which g � 0 is the recovery rate (the inverse time scale of
recovery). The augmented model for shoreline change is
now

yðtÞ ¼ bþ rt þ se
�gðt�tsÞ
þ þ nðtÞ ð3Þ

in which s is the storm amplitude parameter. Since the time
of the storm is known, model (3) has two more parameters
than model (1). It is linear in b, r and s, but nonlinear in g.
The fact that the storm function is discontinuous at ts does
not make it more difficult to use, because basis functions are
not required to be continuous, only independent of each
other. Versions of (3) implemented with different storms or
combinations of storms are regarded as different models,
and we use an information criterion (below) to rate the
relative goodness of models. Most historical data sets
contain only 6–10 shorelines, and the information criterion
usually excludes models in which each storm has its own
recovery rate; therefore we use the same recovery rate
parameter for all storms.
[7] If some storm-induced shoreline change is permanent,

an appropriate model would be (3) plus a function spH(t� ts)
in which H is the unit step function and sp is the amplitude of
the permanent change. In temporally sparse historical data

with multiple storms we find that such step functions can
trade off with both our storm function and the rate function
to such an extent that a model with only step functions fits
the data fairly well. Admitting models consisting only of step
functions replaces the problem of estimating a long-term rate
parameter with the problem of estimating frequencies and
amplitudes of storms. Moreover, models consisting only of
step functions ignore the abundant evidence that storm-
altered shorelines do recover to a large extent. Accordingly,
for historical data we explicitly model only the transient part
of the storm, leaving the permanent part as a component of
long-term trend. Although it is not needed for this paper,
beach nourishment can be modeled like a storm. For nour-
ishment that alters a shoreline the storm function is used, but
for offshore nourishment, which does not immediately alter a
shoreline, we use the function e+

�g(t�tn)(1 � e+
�g(t�tn)), where

tn is the time of nourishment.

3. Linearization

[8] As the model is nonlinear in g, we find g by maxi-
mizing the profile likelihood [e.g., Coles, 2001, p. 34]. In
order to include the effects of uncertainty in g we then
linearize the model in a neighborhood of the maximum

Figure 1. (a) Shoreline data from Cotton Patch Hill, DE, with fits from various models. The circled data points are post-
storm shorelines. All models had an intercept, a long-term rate (R), and some models had one or more storms (1929, 1962,
1992). The model with lowest residuals (dotted line) had all three storms. The model with the lowest AICc value (solid line)
had only the 1962 storm. The –..– model had only rate and intercept, but post-storm data were not used. (b) Profile
likelihood of storm recovery rate and process noise for the shoreline model with only the 1962 storm. The likelihood is
scaled to have maximum value 100, and the MLE is at h = (11.2 m)2, g�1 = 7.2 y. (c) Confidence intervals (95%) for
shoreline position based on long-term rate for various models. Except for model R, the confidence intervals are conditioned
on the absence of storms. (d) The probability-weighted model average (dotted line), the predicted shoreline position
(dashed) using only the rate and intercept from the average model, and 95% confidence interval (solid lines). The inset
shows the probabilities of the component models.
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likelihood estimate (MLE) ĝ. Since recovery rate is neces-
sarily positive, and our noise model is Gaussian, we use
m = ln g � ln ĝ as a parameter in the linearized model.
As @egt/@lng = gtegt, the linearized model is

yðtÞ ¼ bþ rt þ
XKs

k¼1 ske
�ĝðt�tsk Þ
þ þ m

XKs

k¼1 ðt � tskÞĝŝke�ĝðt�tsk Þþ

þ nðtÞ; ð4Þ

in which sk is the amplitude of the kth storm, Ks is the
number of storms, and the coefficient of m is a single basis
function.

4. Noise and Recovery Rate

[9] We model the noise n(t) as a zero-mean Gaussian. We
assume the noise consists of observational noise (measure-
ment noise) and process noise, and that the two noise
processes are unrelated. Observational noise is estimated
prior to modeling [Crowell et al., 1991; Douglas and
Crowell, 2000; Fletcher et al., 2003; Genz et al., 2007].
Douglas and Crowell [2000] estimated the uncertainty in
the high water line at Cotton Patch Hill as 6.5m, for a
process noise variance of (6.5 m)2, but here we estimate
process noise from the data. Our data covariance matrix has
the form

Cy ¼ nnT
� �

¼ Co þ hCp; ð5Þ

in which Co is the covariance matrix of measurement noise,
Cp is an unscaled covariance matrix of process noise, and h
is a scaling parameter to be estimated from the data. We
assume that observational noise at one time is uncorrelated
with observational noise at other times, so Co is diagonal.
Observational error ranged from 2.6 m in 1997 to 8.9 m in
1845 (Table A1 of section A in Text S1 of the auxiliary
material1).
[10] Process noise should be correlated, as white noise

convolved with a storm function gives a covariance matrix
Cp(i, j) = (g/2)exp(�gjti � tjj), but our experiments
suggest that g is poorly resolved by the residuals in historical
data sets because the data are too sparse. In the numerical
calculations presented here we take Cp to be the identity
matrix (as did Douglas and Crowell [2000]). Table 1 gives

the process error for the models of this paper. The best-fit
model (R,S62) has a process error of 11.2 m that is roughly
35% of the beach width. The three-storm model with the
0.1 m process error over-fits the data.
[11] Our likelihood function is the usual Gaussian,

LðmjyÞ ¼ ð2pÞ�N=2 Cy

�� ���1=2 exp � 1

2
ðy� GmÞTC�1y ðy� GmÞ

� �
;

ð6Þ

in which G is the system matrix (design matrix, configura-
tion matrix), and m is the column vector of model coeffi-
cients. For the model of equation (4), the parameter vector is
m = [b, r, s1, s2,. . ., m]T, and the columns of G are the basis
functions evaluated at each survey time. The first column of
G is all ones, and the second column is [t1, t2,. . ., tN]

T, and we
conditionG by removing the mean from all columns after the
first. Maximizing the likelihood with respect to the param-
eter vector m gives the usual relation

0 ¼ GTĈ
�1
y ðy� Gm̂Þ; ð7Þ

and maximizing the likelihood with respect to the noise
parameter h gives the nonlinear relation

0 ¼ tr Ĉ
�1
y Cp

n o
� ðy� Gm̂ÞT Ĉ�1y CpĈ

�1
y ðy� Gm̂Þ: ð8Þ

The noise parameter enters both these equations through the
definition Cy = Co + hCp. We find the MLE ĥ by a 1D
search: pick a value of h; compute m(h) as the solution of
(7) and substitute it into (8). The value of h satisfying (8) is
the MLE ĥ, and m(ĥ) is the MLE m̂. In practice, since the
recovery rate parameter also requires a search, we find both
parameters by maximizing the profile likelihood with
respect to g and h, as shown in Figure 1b. If a prior
distribution were available for g and h we would multiply it
times the profile likelihood to obtain a posterior profile. In
temporally sparse data sets with early storms we find that
storm recovery rate g can trade off with long-term rate r. To
minimize this effect, we estimate g separately for each
model, then fix g at its model probability-weighted average,
ĝ, then use that average g with every model. For the Cotton
Patch Hill data, g�1 ranges from 7.2–12.1 y, and (ĝ)�1 =
8.4 y.
[12] Equation (7) leads to the definition of a gener-

alized inverse matrix G�g such that m̂G�gy. Thus G�g =
(GTCy

�1G)�1GTCy
�1. If Co were zero, the noise parameter ĥ

would cancel out of the expression for G�g, and the
parameter covariance matrix would be given by the usual
formula Cm = G�gCy(G

�g)T. For our noise model, the
noise parameter does not cancel out of the expression for
G�g, and thus a data variation dy causes a corresponding
variation in G�g as well as in m̂. The parameter covariance
matrix is derived in the auxiliary material.

5. Prediction

[13] To predict the shoreline location at time t, we use the
linearized model formula (4). It is helpful to express this as
y(t) = qTm̂ where q is a column vector—we refer to it as a
prediction kernel—containing the value of each basis func-

Table 1. Process Error for Models

Model Process Error (m)

Averaged model 12.5
R 30.9
R, S29 30.4
R, S62 11.2
R, S92 30.2
R, S29, S62 8.2
R, S29, S92 29.9
R, S62, S92 9.8
R, S29, S62, S92 0.1
R (no post-storm data) 9.5

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GL040061.
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tion at time t. For a prediction of the long-term rate, the
prediction kernel is just q = [0, 1, 0,. . ., 0]T. For a prediction
of the actual rate at time t, the elements of q are the time
derivatives of the basis functions in (4). For example,
suppose we want only the component of shoreline displace-
ment due to the first storm, at time t. The first storm involves
the parameters s1 and m, and the prediction kernel is

q ¼ 0; 0; e
�ĝðt�ts1Þ
þ ; 0; :::; 0; ðt � ts1Þŝ1ĝe�ĝðt�ts1Þþ

h iT
: ð9Þ

Here one might guess that the last element of q could be
replaced by zero, since m̂ is always zero at the MLE.
However, the last element in q contributes to the variance by
coupling the uncertainty in m to the uncertainty of the
prediction. In each case, the variance of the prediction is
given by the scalar qTCmq where Cm is the parameter
covariance matrix given in the auxiliary material. Figure 1c
shows the 95% confidence interval for shoreline predicted
with several models.

6. Information Criteria

[14] An information criterion (IC) is a function whose
value increases with the sum of squared residuals and with
the number of model parameters (model complexity). The
best model is the one with the lowest IC value. The use of
an IC prevents over-fitting data with too many storms, but it
is not a panacea, since the choice of basis functions affects
the performance of the IC [McQuarrie and Tsai, 1998]. In a
case where the true basis functions are included in the
candidate basis functions, an IC that picks the true basis
functions with probability 1 as the number of data
approaches infinity is said to be consistent. In the case
where at least some of the true basis functions are missing
from the set of candidate basis functions, an IC that picks
the combination of basis functions that best approximates
the true model is said to be asymptotically efficient. The
corrected Akaike Information Criterion (AICc) used here is
asymptotically efficient [McQuarrie and Tsai, 1998].
[15] An important feature of any information criterion I is

that for any positive numbers a and b, the quantity a + bI
takes its minimum at the same model as I and is therefore an
equally good information criterion. The AICc formula of
this paper is

AICc ¼ 8̂þ 2K=ðN � K � 1Þ ð10Þ

in which N is the number of data points, K is the number of
model parameters, and 8̂ = L̂/N � 1 � log(2p), where L̂ is
�2 times the logarithm of the maximum likelihood. The
second term in equation (10) is sometimes referred to as the
complexity penalty or simply the penalty. The constant
addends in the definition of 8̂ make our AICc formula agree
with the formula found in most books when our noise model
is simplified to the usual noise model. For the noise model
of this paper (equation (5)), 8̂ is given by

8̂ ¼ N�1 log Ĉy

�� ��þ ðd � Gm̂ÞT Ĉ�1y ðd � Gm̂Þ
n o

� 1; ð11Þ

in which m̂ is the MLE of the parameter vector, and Ĉy =
ĥCp + Co where ĥ is the MLE of the noise parameter h,

and j � j indicates a determinant. If C0 = 0, the expression
for 8̂ simplifies to

8̂ ¼ log Cp

�� ��1=NN�1ðd � Gm̂ÞTC�1p ðd � Gm̂Þ
h i

ð12Þ

which is independent of ĥ. If C0 = 0 and Cp is proportional
to the identity matrix, 8̂ simplifies to

8̂ ¼ log N�1ðd � Gm̂ÞT ðd � Gm̂Þ
h i

ð13Þ

which is the expression found in the book by Burnham
and Anderson [2002], and many papers.
[16] Usually the parameter count K is equal to the number

of basis functions plus one (for the variance of the noise),
but if one or more basis functions contain the recovery rate
g, it must be included in the count. As we are interested
mainly in long-term rate r, we do not count intercept as a
parameter. (Notice that shifting all the data points by a fixed
amount does not change the estimated long-term rate.)

7. Model Likelihood and Model Average

[17] The number of possible models included in equation
(4) is 23+Ks, but we exclude all models without rate or
intercept. As several models have similar IC scores we
average models based on their prior probability and IC
weights [e.g., Burnham and Anderson, 2002, p. 75], re-
ferred to here as IC likelihood. We omit model selection
error [Buckland et al., 1997] for consistency with methods
utilizing only rate and intercept. Our method is related to
Bayesian model averaging [Hoeting et al., 1999], but is
thought to be less computationally intensive.
[18] In order to define an IC likelihood, it is numerically

prudent to first subtract the IC score of the best model from
all the other models. Each model thus has a delta-IC given
by Dj = ICj � mini(ICi). The IC likelihood of the jth model
is then given by

wj ¼
exp � 1

2
Dj

� 	

P
j exp �

1

2
Dj

� 	 : ð14Þ

The IC-likelihoods sum to 1, and are interpreted as model
likelihoods conditional on the data used to compute the IC
scores. We incorporate prior information about model
probabilities using the probability calculus of Tarantola
and Valette [1982]. Let pj be the prior probability of model j
and mj be the non-informative probability of model j. The
posterior probability of model j is then

pj ¼
wjpj=mjP
j wjpj=mj

: ð15Þ

If one has no prior information about various models, pj =
mj, and so pj = wj. Here we take the non-informative
probability to be uniform, so mj is the same for each j. (Even
when prior probabilities are uniform, the pj are useful. For
example, to compute the average of models that do not
include a particular storm, set pj = 0 for each model
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containing that storm.) The 1962 storm has a storm erosion
potential index three times greater than other storms [Zhang
et al., 2001, Figure 8], and it is prominent in the Cotton
Patch Hill data. Accordingly, we give a prior probability of
zero to each model that does not include the 1962 storm. We
give the model with no storms, only long-term rate, a prior
probability half as large as that of models that include the
1962 storm. This is conservative with regard to the
uncertainty because the model with no storm has the
highest residuals, and one could reasonably exclude all
models with no storm. The model priors, likelihoods and
posterior probabilities are given in Table 2.
[19] To see how model-averaging affects predictions, let

f be the quantity whose value is to be predicted. The model-
averaged f is given by

f
_ ¼

X
j
pjfj ¼

X
j
pjq

T
j m̂j; ð16Þ

where qj
T is the prediction kernel and m̂j is the MLE of the

parameter vector for model j.
[20] As the model probabilities pj depend on the data, the

formula for s
f
_

2 requires some care and is derived in the
auxiliary material. Figure 1d shows the model average and
the probabilities of its component models. Although the
model with three storms is not the model with the highest
probability, it gives by far the best fit to the data, as shown
by its low process error in Table 1; it is interesting and
desirable that the average model also shows the effects of all
three storms.

8. Discussion and Conclusions

[21] As the times of large storms are known, their effects
can be incorporated into models of historical shoreline
change by use of the storm function, a one-sided exponen-
tial with delay. Parsimony in the form of an IC prevents
over-fitting the data by inclusion of too many storms, and
model averaging is an objective way of reconciling com-
peting models. Subjectivity is explicit in the form of a prior
probability for models. The method may have some advan-
tages over other methods, such as least absolute deviations,
because it gives a more precise estimate of long-term rate,
as well as information about the magnitude of storms
(auxiliary material). At Cotton Patch Hill, DE, the minimum
long-term rate of shoreline loss is 0.34 ± 0.01 m/y (from
a model with all three storms).The model-averaged rate,

0.49 ± 0.01 m/y, is about 16% lower than earlier estimates.
The sudden shoreline loss associated with the 1929, 1962
and 1992 storms was 19.4 ± 7.9 m, 94.8 ± 11.7 m and 9.6 ±
6.5 m, respectively. Here we outlined and solved the 1D
problem, which is fundamental in shoreline change studies.
Our solution to the 2D problem uses the methods of this
paper to model the temporal coefficients of alongshore basis
functions [Frazer et al., 2009] and will be presented
separately.

[22] Acknowledgments. Funding for this study was provided by the
U.S. Geological Survey, the University of Hawaii Sea Grant College and
the Hawaii Department of Land and Natural Resources.
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