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Factors controlling the distribution of shelf sand as a resource, a component of reef ecosystems, and a dynamic
substrate are poorly understood. An initial step in understanding sand accumulation in each of these roles is to identify
its areal extent and change through time. Digitized aerial photographs and digital images provide common, inexpen-
sive data sets that are generally underutilized for the purpose of marine substrate classification. Here we use only
two bands, blue and green (470 and 550 nm), to demonstrate the utility of simple aerial photography in classifying
marine substrate. Although these two are acquired from a hyperspectral data set, they represent blue and green in
an RGB image such as commonly available in digitized aerial photographs. We add as a third band the second
eigenchannel of a principal components analysis of these bands. Using an artificial neural network classification
model, we identify submarine and subaerial sandy substrate in a digital image of a detached reef island in the Red
Sea, Gezirat Siyul, Egypt. With careful selection of training and test groups, using small percentages of the total
classified image, we create an efficient and accurate classification model. The model, trained to identify two classes,
“sand” and “other than sand,” produces a classified image that provides sand locations and approximate areal cov-
erage. Confusion matrices for both training and testing groups have user’s accuracies in the 90 percentiles, indicating
accurate pixel classification.
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INTRODUCTION

Shallow marine sand is an important resource, an integral
component of the reef system, and a highly dynamic sub-
strate. Currently there is a dearth of information concerning
sand in each of these roles. As a result, our understanding of
shallow marine sand changes through time and our ability to
manage sand as a resource are not optimal. Inexpensive, ef-
ficient, and accurate image products that track sand spatial
distribution and temporal variability are significant assets
for improving understanding of sand dynamics.

Many available remotely sensed data sets, like aerial pho-
tographs, do not provide the high spectral resolution needed
to separate multiple information classes. However, when
identifying the monotonic signature of sand, multiple classes
are not necessary. Most substrate classifications of digital im-
agery rely on ground truth data to generate training classes
or a library of identified spectral returns or both. These meth-
ods require analysts to collect field data or acquire hyper/
multispectral imagery or both. Here, we develop a simple
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method to classify shallow sandy substrate without the aid
of ground truth data, a spectral library, or hyper/multispec-
tral imagery. The goal of this analysis was to minimize cost
while remaining entirely remote during analysis of the im-
age.

To achieve these goals we use analyst-derived training
classes to define an artificial neural network (ANN) that
models a three-band data set comprising blue (470 nm), green
(550 nm), and a third band consisting of the second eigen-
channel of a principal components analysis of the blue and
green wavelengths. Terrestrial image analysts have success-
fully used ANN classification programs in various environ-
ments (EGMONT-PETERSON et al, 2002; MoHANTY and Ma-
JUMDAR, 1996). They have high success rates with models
that apply basic classifications to the digital image (SERPICO
et al., 1996). It is our intent to generate an ANN that queries
for the simple presence or absence of sand, thus refining for
marine application, techniques previously used in terrestrial
settings.

STUDY SITE

Gezirat Siyul is a roughly triangular island formed by a
shore-detached reef platform along the Egyptian coast of the
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Figure 1. Original digital image of Gezirat Siyul, Egypt, with location
in the Red Sea as an inset image. Red pixels are sand training pixels.
Green pixels are other than sand training pixels. Yellow pixels are sand
test pixels. Magenta pixels are other than sand test pixels. Blue pixels
around the outside are masked out of the classification process. A data
gap in the flight lines trends 161° from the northern edge of the image.

Red Sea. The island has limited vegetation and is almost ex-
clusively sand in composition. The southern, eastern, and
western reef crests are ~700 m, ~850 m, and 1020-m in
length, respectively. A shallow sand and gravel bar extends
north of the island. A wide-fringing reef and large sand field
extend seaward from east, west, and north sides of the island
but vary in morphology (Fig. 1).

METHODS
Initial Data

Hyperspectral data of Gezirat Siyul and surrounding wa-
ters were acquired with 1-m pixel resolution on 3 April 2000.
The data were processed in a four-band format containing
georectified, eight-bit, pixel interleaved information for bands
at 470, 550, 608, and 850 nm.

We utilized the 470- and the 550-nm bands from the pro-
cessed image data. Bands at both 608 and 850 nm did not
register returns for any significant depth below sea level and
consequently were not included in our analysis. To begin
identifying differences in bottom type, we applied a principal
components analysis and used the second eigenchannel from

these two bands. The transformed data highlights features
not evident in the original image (RICHARDS and Jia, 1999).
The first eigenchannel was dominated by changes in bathym-
etry, while variation in the second eigenchannel was more
closely related to diversity in the bottom types, though not
accurately enough to classify the image. For input values for
the neural network, we used three eight-bit channels: 470
nm, 550 nm, and the second eigenchannel.

Artificial Neural Network

We use the ANN provided by PCI Geomatics in the Xpace
software. ANNs are computer replications of biological sys-
tems. Input data are interlinked to a set of multiple, simple
decision tools (neurons) that conduct basic operations on the
data before passing them forward to the next set of neurons.
PCI's ANN is a back-propagation network that utilizes the
Generalized Delta Rule for learning. This is a type of multi-
layer feed-forward network that adjusts the connection
weights between each layer during the back-propagation pro-
cess (PCI GEoMATICS STAFF, 2003).

Training

We specified pixels within training classes using a polygon
seeding tool that starts from a single pixel and moves out-
ward choosing similar pixels. We chose initial seed pixels by
their color and location within the image. This process re-
quires an experienced marine geologist capable of identifying
sandy substrate in remotely sensed images of submarine en-
vironments without @ priori knowledge. Figure 1 shows the
“sand” training pixels as red areas and the “other than sand”
training areas as green pixels. Tolerance within the seeding
program can be adjusted between levels 1 and 50, from most
stringent to most relaxed, respectively. We chose to use val-
ues between one and six to limit the cluster size of the train-
ing pixels and ensure those pixels chosen were similar to the
original seed pixel. We also chose to collect small clusters of
pixels from spatially well-distributed locations across the vis-
ible sea floor, the island, and exposed portions of the reef.
The sand training class comprised 61,323 pixels, or 0.67% of
the classified image. The other than sand training class com-
prised 51,120 pixels, or 0.56% of the classified image.

Individual training pixels are fed through the network dur-
ing the training portion of the program. In creating the net-
work, we chose the number of layers in the ANN, the cutoff
tolerances for individual pixel errors, total normalized error,
maximum number of iterations, and the speed or learning
and momentum rates at which the connections between the
layers are adjusted. We used three layers for the network.
Pixel values for each channel constitute the input layer. Ini-
tial discrimination and conversion to a new coordinate system
occur in the hidden layer. Final discrimination and class la-
beling occur in the output layer.

After all training pixels have passed through the network,
the program conducts an error analysis for all individual pix-
els and for each training group. If errors are outside the pre-
determined cutoff limits and the maximum number of learn-
ing cycles has not been reached, then the total normalized
error for all training pixels is used by the Generalized Delta

Journal of Coastal Research, Vol. 21, No. 6, 2005



Artificial Neural Network Classification of Sand in a Digital Image 1175

Rule to reweight each connection during back-propagation
(CLoTHIAUX and BACHMANN, 1994). Then the next learning
cycle is begun.

We used 0.005 as our maximum normalized total error,
0.001 as our maximum individual error, and 1000 as our
maximum number of learning cycles. The amount of re-
weighting, or the magnitude of corrections, is controlled by
both the learning rate and the momentum rate. Learning
rate, between 0.1 and 1.0, controls how quickly the network
stabilizes, with high rates possibly converging early. Momen-
tum rate, between 0.1 and 1.0, controls the step size of cor-
rections, with high rates possibly overstepping and prevent-
ing convergence. We chose to use moderate values of 0.6 and
0.5, respectively, which increased both computing time and
accuracy.

Network training ends when one of the three preset cutoff
limits is reached. If the process is stopped because it reaches
the maximum number of learning cycles, then the analyst
needs to either choose new training pixels (because the clas-
ses are not distinct enough for the network to separate them)
or choose higher tolerances for individual error and total nor-
malized error.

We trained our network to ask two simple questions: “Is
this or is this not sand?” and “Is this or is this not something
other than sand?” By choosing one training class to identify
all other bottom types, we have simplified our query and al-
lowed the network to focus on a simple discrimination be-
tween sand pixels and all other pixels. Once the network has
been trained to a sufficiently low error, as seen in Table 1,
the next important step is to ensure that low error cutoffs
are not the result of local error minima instead of a global
error minimum (HEWITSON and CRANE, 1994). One method
to check the model’s global accuracy is to compare its results
against test pixel sets.
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Figure 2. Spectral plot of all training pixels. Red, blue, and green are
sand, other than sand, and misclassified training pixels, respectively.
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Figure 3. Spectral plot of all test pixels. Red, blue, and green are sand,
other than sand, and misclassified test pixels, respectively.

Figure 4. Classified image. Classified sand pixels are visible. Green pix-
els are classified as other than sand. Blue pixels around the outside are
masked out of the classification process.
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Table 1. Confusion matrix for the training pixels.

Table 2. Confusion matrix for the test pixels.

Training Set Classes

Test Set Classes

Other Total Total
Thematic Map Than Identified User’s Thematic Map Other Than Identified User’s

Classes Sand Sand Pixels Accuracy Classes Sand Sand Pixels Accuracy
Sand 59,835 397 60,232 99.34% Sand 5881 4 5885 99.93%
Other Than Sand 1488 51,120 52,608 97.17% Other Than Sand 341 6103 6444 94.71%
Total Training Class Pixels 61,323 51,517 Total Testing Class
Producer’s Accuracy 9757% 99.23% Pixels 6222 6107
Normalized total error 0.0039607 Producer's Accuraty  94.52% - 99.95%
Maximum individual error 1.6830440
Total learning cycles 1222

Testing

ANN testing, an empirical testing method, is accomplished
by choosing test sets of pixels for each class (ZHANG, 1996).
Test pixel sets must not overlap training pixel sets (Kumar
et al., 1997). Using the pixel seeding tool with strict toleranc-
es between one and four allowed us to select many small,
similar packages of pixels for testing. Again, initial seed pixel
selection requires an experienced marine geologist, as they
are chosen according to color and location within the image.
Figure 1 shows the test pixels. Yellow areas are sand test
pixels, and magenta areas are other than sand test pixels.
The trained ANN is exported to the test sets of pixels, and
their success rates for properly classifying the known pixels
are recorded within a confusion matrix (Table 2). This success
rate, when combined with both the statistics produced from
the training process error analysis and an analyst-computed
confusion matrix (Table 1), allows the analyst to assess the
overall performance of the ANN. Our test set for sand com-
prised 6222 pixels, or 10.15% the volume of the training class.
Our test set for other than sand comprised 6107 pixels, or
11.85% the volume of the training class.

Application

Once the network was trained, tested, and determined to
be viable, it was exported to the entire image. The image was
masked to remove all areas were the sea floor or subaerial
environment was not visible. Figure 1 shows the mask; it is
the blue area around the outside of the island and its reefs.
Total pixel count for the classified image is 9,174,405. Each
pixel in the unmasked region was passed through the net-
work individually and labeled as either sand or other than
sand.

RESULTS AND DISCUSSION

Results for creating the neural network from the training
classes are displayed in Table 1 as a confusion matrix. Con-
fusion matrices have two important outputs: the producer’s
accuracy and the user’s accuracy. The producer’s accuracy
shows the percent of the training pixels for a class that were
properly identified as that class. The user’s accuracy shows
the percent of pixels identified as a class that was actually
from that training class. The user’s accuracy is most useful
because it is a way of quantifying how well the network iden-

tified the pixels it was presented (RICHARDS and J1a, 1999).
User’s accuracy for the sand at 99.34% and other than sand
at 97.17% was sufficient to warrant testing the network.

The network required 1222 learning cycles to fall beneath
the limit for normalized total error. The tolerance was in-
creased from 0.001 to 0.005 after the first 1000 learning cy-
cles. The final normalized total error was 0.0039607, and the
final maximum individual error was 1.6830440, as seen in
Table 1. Analysis of incorrectly identified pixels in each class
indicates that margins between bright, hard-bottom sub-
strate and sand, in shallow water, are repeatedly misclassi-
fied as hard bottom. Additionally, dark material, possibly
rubble or algae-covered sand, within sand fields are repeat-
edly misclassified as sand. Pixels for each training class are
displayed in blue vs. green spectral space in Figure 2. The
green pixels, those misclassified in both classes, are overlap-
ping in the margin between the two classes.

Results from sending test pixels through the network are
displayed in Table 2 as a confusion matrix. Pixels for each
test class are displayed in blue vs. green spectral space in
Figure 3. There are differences in the accuracies reported for
the training and test statistics. We believe these differences
are the result of both normal variation of the image’s spectral
characteristics and analyst error associated with pixel selec-
tion. Using small percentages of the classified image to create
and test the classification model allows for some skewness to
the results due to analyst error. However, high accuracies
calculated within the confusion matrices of both training and
test sets, though different, indicate a valid classification mod-
el that is ready to export to the image.

Finally, the masked image (Figure 1) was passed through
the neural network as individual pixels, and the result was
a classified image (Figure 4). Final image classification yields
class distributions of 53.78% sand and 46.22% other than
sand. Each pixel is approximately 1 m? thus, the approxi-
mate areal coverage of sand is 2221 m?, and other than sand
is 2059 m?.

CONCLUSION

The ANN approach to image classification in shallow ma-
rine and subaerial coastal environments is particularly useful
when attempting to segment the data into two broad infor-
mation classes. Limited initial data consisting of red, green,
and blue channels does not provide enough information to
compare with hyper/multispectral signature libraries and re-
quires some preclassification processing to assist in discrim-
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ination by a supervised classification model. We found prin-
cipal components analysis to be a useful preprocessing tool,
with the first eigenchannel displaying variation resulting
from bathymetric changes and the second eigenchannel dis-
playing variation associated with substrate change. Including
subaerial sand in our sand class and subaerial nonsand fea-
tures in our other than sand class extended the range of our
neural network from submarine through subaerial environ-
ments.

There is inherent difficulty in creating a classification mod-
el that functions in both environments simultaneously while
producing accurate results. Training and test pixels are cho-
sen by the analyst without the aid of ground truth data; thus,
there exists a potential error for incorrect class identification
and pixel labeling. Care should be taken when choosing the
amount and location of both training and test pixels. Training
groups that are too large, that provide inadequate spatial cov-
erage across the image, or both can lead to a skewed network
favoring one section of the spectral information.

Use of a seeding tool with strict control on tolerance set-
tings is critical for selecting viable training and test groups.
Learning and momentum rates have a significant impact on
network accuracy; thus, increased computing time resulting
from lower rates is considered a worthwhile investment in
network accuracy. Testing is an important step for validating
that the error results were a product not of local error min-
ima but rather of the global error minimum and are repre-
sentative of the entire image and not just the training pixels.

ANN classification techniques in this application will re-
quire new models for each data set, or digital image. Our
study indicates that ANN classification, when applied to a
single image, is an effective and efficient sand identification
tool. Figure 4 shows the classified image with the areas cho-
sen as sand left visible. However, because of the robust na-
ture of this model when applied to simple distinctions, it may
be used to classify several different data sets that cover a
continuous area of both submarine and subaerial environ-
ments. Testing this application should be the next step in
identifying an efficient and accurate method for initial sand
resource identification from spectrally limited but readily
available digitized aerial photographs and digital imagery.
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