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ABSTRACT

GENZ, A.S.; FRAZER, L.N., and FLETCHER, C.H., 2009. Toward parsimony in shoreline change prediction (II):
applying basis function methods to real and synthetic data. Journal of Coastal Research, 25(2), 380–392. West Palm
Beach (Florida), ISSN 0749-0208.

There is a need to supply coastal managers with statistically defensible hazard predictions that can be used to im-
plement coastal setbacks and other management policies. The goal of this article is to evaluate the widely used single-
transect method, as well as several new methods: t-binning, IC-binning, polynomial methods, and eigenbeaches, to
identify which method(s) best predicts a 50-year eroded shoreline position. The polynomial and eigenbeach methods
allow for acceleration (the rates vary with time). The methods are compared using data from nine beaches on Maui,
Hawaii, and four sets of synthetic data. Evaluations of the methods are based on an information criterion, color maps
of residuals, long-term (50 year) predictions, and cross-validating the most recent shoreline, which has a short-term
span of 5–9 years. The newer methods identified significant rates at 74% of the transects, vs. 0% for single-transect
on beaches in Maui, Hawaii. The cross-validation results showed that the polynomial and eigenbeach methods, without
acceleration, best predicted the most recent shoreline. Contrary to the cross-validation results, synthetic results
showed that the polynomial and eigenbeach methods with acceleration predicted the 50-year shoreline better than
methods without acceleration. Nonacceleration methods predicted short-term positions better, and acceleration meth-
ods predicted long-term positions better. We conclude that the polynomial and eigenbeach methods improve the sig-
nificance of the rates compared with the single-transect method.

ADDITIONAL INDEX WORDS: Coastal erosion, shoreline change rates, Hawaii beaches, coastal management, erosion
hazard zones, information criterion.

INTRODUCTION

This article is the second of a two-part series on predicting
future shorelines. The first article (hereinafter, article 1) fo-
cused on the theoretical framework of methods of shoreline
change, introducing three new basis function methods: IC-
binning, polynomial methods, and eigenbeaches. Article 1
also examined various information criteria (IC) that can be
used to find parameters and compare methods. In this article,
we applied the new and existing methods to discover which
method best predicted long-term change.

By identifying the most accurate method for predicting fu-
ture shorelines, coastal managers can apply construction set-
backs and other management tools based on statistically de-
fensible, future hazard zone. Currently, 23 of the 29 coastal
U.S. states and territories establish construction setbacks
(Bernd-Cohen and Gordon, 1999). Of those, 8 states use ero-
sion rates in determining setbacks (Heinz Center, 2000). Ero-
sion rates for all these setbacks are based on the single-tran-
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sect (ST) method of calculating a rate at each shore-normal
transect along a beach, which is problematic because nearby
transects are not independent of each other.

For this study, we defined a hazard zone as the 50-year
shoreline prediction at the 95% confidence interval. This time
frame was based on the Maui County, Hawaii, construction
setback laws. The new and existing statistical methods are
evaluated by applying them to beaches on Maui, Hawaii. We
also used synthetic data to compare long-term predictions for
all methods, specifically, the 50-year hazard predictions.
MATLAB codes for the methods in this article are available
from the authors.

STUDY AREA

Maui, Hawaii, beaches are divided into three regions with
distinct wave regimes: Kihei, West Maui, and the North
Shore (e.g., Fletcher et al., 2003; Rooney et al., 2003) (Figure
1). Kihei is predominantly affected by south swells, refracted
north swells, and kona storm waves. Kona storms are low-
pressure systems that generate wind and wave action from
the south and southwest. West Maui is affected by North Pa-
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Figure 1. Sandy beaches on Maui, Hawaii, fall into three distinct re-
gions: Kihei, West Maui, and the North Shore.

cific swells, south swells, and kona storm waves, whereas the
North Shore is influenced by North Pacific swells and trade
wind waves (Eversole and Fletcher, 2003; Fletcher et al.,
2002; Makai Ocean Engineering and Sea Engineering, 1991;
Rooney and Fletcher, 2005). The beaches in Maui, Hawaii,
are predominantly sandy (calcareous) and are either pocket
beaches or longer, open-ended beaches. Unlike the East and
Gulf coasts of the United States, Maui, Hawaii, does not con-
tain barrier islands; therefore, in this article, we did not test
barrier island beaches.

We tested three beaches within each region that included
both hardened and natural shorelines (Table 1). At Kihei, we
tested Big Beach, Kamaole 1, and Onuoli. All three are sandy
beaches, with no hardened structures, and no offshore fring-
ing reefs. The backshore of Kamaole 1 is developed with ho-
tels and private homes (Makai Ocean Engineering and Sea
Engineering, 1991).

Baldwin, Kaehu, and Spreckelsville are found at the North
Shore of Maui, Hawaii. Baldwin is a large sandy beach with
two offshore rock platforms at either end of the beach. The
rock platform on the east end of the beach acted as a tombolo,
with land accreting in front of the rock platform in the early
1900s. Since then, shoreline recession has decreased the tom-
bolo effect, resulting in massive erosion on the adjacent
beach. Similar to Baldwin, Spreckelsville has an offshore pro-
tective rock outcrop, which previously acted as a tombolo but
is currently eroding at a high rate. A revetment, built after
1975, is directly onshore of this feature (Makai Ocean Engi-
neering and Sea Engineering, 1991). Kaehu is a cobble beach
offering some protection from large North Pacific swells. Two
stream mouths act as borders at each end of the beach. Kae-
hu does not contain any hardening structures.

The three beaches from West Maui are Kaanapali, Kahana,
and Napili. Kaanapali is a 1.15-km, white, sandy beach,
which is affected by strong seasonal changes. Beach profile
data in Kaanapali suggest that beach width varies an aver-
age of 50 m seasonally (Eversole and Fletcher, 2003; Vitousek
et al., 2007). An offshore shallow fringing reef is present at
this beach, and the backshore is highly developed with many
resorts. Kahana is 0.67 km long and north of Kaanapali, with

a developed backshore. Revetments are found on both ends
of the beach, making them convenient littoral boundaries.
Napili is a small pocket beach north of Kahana. Its backshore
is developed with hotels and residences. The offshore for both
Kahana and Napili is basaltic rock (Makai Ocean Engineer-
ing and Sea Engineering, 1991).

Maui, Hawaii, shoreline positions are produced from two
types of images: aerial orthophotographs and National Oce-
anic and Atmospheric Administration (NOAA) topographic
sheets (T-sheets), which pass the National Map Accuracy
Standards. Shore-normal transects are spaced at 20 m, and
the low-water mark is digitized as the shoreline position
(Fletcher et al., 2003). Studies specific to the Hawaiian coast
indicate that the low-water mark, as evidenced by a morpho-
logic feature (the beach toe), is an accurate proxy of shoreline
change (Coyne, Fletcher, and Richmond 1999; Fletcher et al.,
2003; Rooney and Fletcher, 2000). Because our baselines are
located offshore, if the low-water mark increases landward
over time, the beach is eroding; hence, in change-rate calcu-
lations a positive slope indicates erosion and a negative slope
indicates accretion. The measurement and position uncer-
tainties used in our generalized least squares (GLS) proce-
dure are the errors associated with the process of generating
shoreline positions (see Fletcher et al., 2003, for discussion of
errors and uncertainties in this data set).

METHODS

Of the existing shoreline change methods, ST is the most
widely used method in calculating shoreline change today
(Table 2). Change rates are calculated at each transect using
shoreline data in different years from that transect only.
Thus, neighboring transects do not influence the rate at a
specific transect. A variety of methods have been used to cal-
culate the change rate at each transect (e.g., endpoint rate,
average of rates, least squares) (e.g., Crowell, Douglas, and
Leatherman, 1997; Dean and Malakar, 1999; Dolan, Fenster,
and Holme, 1991; Fenster, Dolan, and Elder, 1993; Honey-
cutt, Crowell, and Douglas, 2001).

T-Binning (or t-bin) was recently introduced by Genz et al.
(2007) as an alternative to ST. t-Bin identifies groups of tran-
sects that have indistinguishable rates by calculating rates
of different transect groups, then comparing the groups using
the Student’s t-test. If the rates at the groups are not signif-
icantly different, then the groups are combined into a larger
group with a single rate. User-input is needed to identify the
bins. In contrast to ST, t-bin does not assume transects are
independent of each other. t-Bin rates, however, are discon-
tinuous in the alongshore direction (spatially, along the
beach). The rate of one bin of transects can differ greatly from
the rate of an adjacent bin of transects, which is unlikely to
be an accurate portrayal of beach processes.

Article 1 introduced IC-binning (or IC-bin), polynomial
methods, and eigenbeaches as new techniques for quantifying
shoreline change. Here, we apply those new methods, along
with ST and t-bin, to shoreline data from nine beaches in
Maui, Hawaii. IC-bin is similar to t-bin, except that it doesn’t
use the Student’s t-test and doesn’t require user input. IC-
bin uses an IC to identify bins. IC-bin starts with a one-bin
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Table 2. A description of the shoreline change methods.

Method Basis Function Acceleration?

Single-transect (ST) Delta function no
Binning t-Binning (T-BIN) Boxcar no

IC-Binning (IC-BIN) Boxcar no
Polynomial methods LX Legendre polynomials no

LXT Legendre polynomials yes
RX Trigonometric functions no
RXT Trigonometric functions yes

Eigenbeaches EX Principal components of beach data no
EXT Principal components of beach data yes

model that groups all transects into one bin and calculates
an IC score. Next, an IC score is calculated for each possible
two-bin models. The two-bin model with the lowest IC score
is the best-fit two-bin model. The bin model increases by 1,
and the best-fit three-bin model is identified. The bin model
(whether it is a one-bin model, a two-bin model, or higher)
with the lowest IC score is the IC-bin model. The IC used
throughout this article was a form of the Akaike Information
Criterion (AICu) (McQuarrie and Tsai, 1998).

Polynomial methods include four methods, all of which use
basis functions on a finite interval to describe shoreline
change (Frazer, Genz, and Fletcher, 2008; article 1). Basis
functions are building blocks used to create functions by lin-
ear combination. Legendre polynomial method (LX) and Le-
gendre polynomial method with acceleration (LXT) use Le-
gendre polynomials as their basis functions. Legendre poly-
nomials are used with all shorelines, at all transects, to mod-
el the rate and/or acceleration along a beach. For LX, the
change rate varies spatially alongshore, but not with time.
LXT allows for acceleration in the shoreline change rate,
which can be positive or negative (deceleration) in the model,
letting the change rate vary both temporally and spatially.
The acceleration is assumed to be constant through time, but
the rate is allowed to vary. Trigonometric function method
(RX) and trigonometric function method with acceleration
(RXT) are similar to LX and LXT, respectively, except that
they use the trigonometric functions sine and cosine as their
basis. The reason for using different basis functions is that
Legendre polynomials include a linear basis function that
does not exist in the trigonometric functions sine and cosine.
Thus, for a beach, where rate increases linearly in the along-
shore direction, Legendre polynomials give a more parsimo-
nious description of the shoreline data than sines and cosines.

Similar to polynomial methods, eigenbeaches includes two
methods—one that permits acceleration (EXT) and one that
excludes acceleration (EX) (Frazer, Genz, and Fletcher, 2008;
article 1). The basis functions for EX and EXT are the prin-
cipal components of all the shoreline data at all transects.
RXT, LXT, and EXT do not assume that acceleration is pre-
sent in the data, but they allow acceleration if it improves
the fit of the model to data as indicated by the IC scores.
When acceleration does not improve the fit, LXT, RXT, and
EXT automatically revert to LX, RX, and EX, respectively.

Altogether, we evaluated a total of nine methods, all of
which use GLS. An IC score is calculated for each method.
As noted above, the IC used throughout this article was AICu.

For each method, we calculate an AICu score for all transects
having no rate and an AICu score with a rate. The AICu score
with the lowest value is reported for that method.

Shoreline Data Analysis

Shoreline data from the nine study sites in Maui, Hawaii,
range from 1912 to 2002. The number of shorelines at each
beach ranges from five shorelines (two beaches) to nine shore-
lines (one beach). We applied all nine basis function methods
to Maui, Hawaii, data and compared them using four differ-
ent standards. We used the IC score to evaluate all methods.
The IC score is used in two ways: first, to find the number of
basis functions in each method; and second, to compare all
nine methods to each other. The basis function method with
the lowest IC score is considered the best method for the
beach in question.

We also examined the data residuals of each method along
a beach. Residuals are generated by subtracting the modeled
shoreline position from the known shoreline position. If a
beach has five transects and five shorelines, there are 25 re-
siduals. Each method will produce five modeled shorelines
(ST must be repeated five times, once at each transect,
whereas all other methods need a synthetic data set once). A
method that results in low residuals, models a shoreline bet-
ter than a method that produces high residuals. For visual
interpretation, color maps of the residuals were created.
These were used to look for patterns of misfit. In particular,
we wanted to know whether the rate discontinuities at bin
borders lead to larger residuals near the borders; if so, then
binning may not be an appropriate method for that beach.
Conversely, if a method with smooth basis functions, such as
RX, has residuals that change sign at specific beach locations,
a binning method may be superior for that beach.

We also calculated the 50-year predicted hazard position to
determine whether different methods predict similar future
positions. If different methods agree, the credibility of the 50-
year prediction is increased.

Finally, we used the cross-validation approach to predict
the most recent shoreline using all methods. To do this, we
assigned all shorelines, except the most recent shoreline, to
our training data set. The most recent shoreline was the test-
ing datum. We then modeled the training data to predict the
testing datum. Although this is a short-term prediction (5–9
years), it allowed us to compare the accuracy for each method
using real data. As our data are limited, long-term predic-
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tions, such as a 50-year prediction, using real data were not
practical. Similar to Honeycutt, Crowell, and Douglas (2001),
we calculated the error in prediction (EIP), which is the dif-
ference between the predicted and testing datum. The mean
EIP indicates whether a method is overestimating or under-
estimating the shoreline, and the mean of the absolute values
of the EIP (or �EIP�) estimates the average magnitude of the
error. We compared the mean �EIP� for each method with an
analysis of variance (ANOVA) test at the 95% confidence in-
terval.

Synthetic Analysis

Crowell, Douglas, and Leatherman (1997) used sea-level
data to compare minimum description length to endpoint rate
and least-squares regression. As the sea-level database is his-
torically rich, Crowell, Douglas, and Leatherman (1997) were
able to compare short-term and long-term predictions by de-
pleting historical sea-level data to mimic temporal distribu-
tions of historical shorelines. They compared forecasts made
with such data to a nondepleted, more recent test period. We
did a similar long-term comparison, but we used synthetic
data in lieu of sea-level data. An advantage of using synthetic
data is that one can assign a true value before introducing
noise to the data and then compare the resulting predictions
to the true value. However, unlike synthetically derived data,
the short-term and long-term fluctuations of sea-level data
resemble those of shoreline data (Crowell, Douglas, and
Leatherman, 1997). Also, the simulated noise in the synthetic
data may be a poor model for noise in actual data. In the
analysis of synthetic data, we focused on long-term changes
because we wanted to identify the basis function method that
best predicts future hazard zones.

We generated a synthetic beach that had 25 transects with
11 shorelines ranging in years from 1900 to 2000 (one shore-
line per decade). We used a beach of 25 transects because it
reflected a typical medium-sized Maui, Hawaii, beach. We
assigned known terms for rate, intercept, and acceleration to
generate the synthetic shorelines and a ‘‘future’’ shoreline po-
sition at year 2050. We then generated Gaussian noise for
each synthetic shoreline. Before adding the noise to the
shoreline positions, we ran a one-quarter, one-half, one-quar-
ter smoother on the noise three times for each time series to
correlate the noise in the alongshore direction. Once the noise
was added to the shoreline data, we attempted to predict the
synthetic 2050 shoreline position using all nine methods.

We ran four different synthetic data sets, varying the rate
and acceleration spatially for each synthetic data set to de-
termine which method best describes shoreline change under
differing rate-change circumstances. Also, we examined the
effects of including acceleration in the analysis of data that
have no true acceleration and the effects of excluding accel-
eration from the analysis of data that actually contain accel-
eration. Within each synthetic data set, 50 trials of Gaussian
noise were used. The noise process had a zero mean with a
standard deviation of five times the true rate.

In synthetic data set 1, the parameters did not vary spa-
tially. The intercept, rate, and acceleration were constant in
the alongshore direction. We assigned a rate of 1 m/y, an

intercept of 3 m, and an acceleration of 0.01 m/y/y at each
transect.

In synthetic data set 2, the intercept and acceleration were
constant in the alongshore direction. Their values were the
same as in synthetic data set 1. The rate, however, varied
along the beach (modeled by a polynomial).

In synthetic data set 3, the intercept and rate were con-
stant in the spatial direction and had the same values as
synthetic data set 1. The acceleration term varied along the
beach (modeled by a polynomial). Although we allowed ac-
celeration to vary spatially, it was constant temporally. Ac-
celeration did not change over time—it changed based on the
location of the transect along the beach.

In synthetic data set 4, the intercept was constant along
the beach and was equivalent to the value in synthetic data
set 1. The rate, which was modeled by a polynomial, varied
along the beach. We omitted the acceleration term in this
synthetic data set to see how well the methods that allow for
acceleration performed.

RESULTS

Shoreline Data Analysis

If acceleration is allowed, then the change rates vary
through time at each transect. Therefore, when we discuss
rates from acceleration methods, we refer to the rates at each
transect at the most recent year. If the IC score identifies no
rate, then the change rate is zero.

Overall, Kihei showed acceleration on one beach. Big Beach
had no rates for ST, EX, and EXT. LXT and RXT did not find
acceleration and, therefore, reverted to LX and RX, respec-
tively. LX and RX modeled a constant erosion rate (0.26 m/y)
along the beach. IC-bin identified five bins; however, bin
models greater than five bins could have a lower IC score.
IC-bin only tested models up to five bins because Big Beach
is a large beach and testing models greater than five bins on
large beaches was too time intensive (a six-bin model took
more than 7 d for a synthetic data set). With the five-bin
model, the erosion rate was constant (0.29 m/y) in the north-
ern half of the beach, decreasing to 0.001 m/y in the southern
part of the beach. t-Bin identified three bins with similar, but
less-dramatic, erosion-rate trends. All methods, except for
LXT, RXT, and EXT, identified no rates for Kamaole, i.e., the
change rates were equal to zero for this beach. LXT and RXT
identified acceleration that was constant in the alongshore
direction. EXT found acceleration varying in the alongshore
direction, with the rates having minimal to no erosion in the
north and accretion to the south. For Onuoli, all methods
followed a similar spatial pattern of erosion except ST, which
identified no rates within this beach. Erosion rates are higher
in the southern part of Onuoli and lower in the northern part
of the beach. Acceleration was not identified at this beach.

North Shore showed acceleration for two of the three
beaches. For Baldwin, t-bin, IC-bin, LX, RX, and EX showed
erosion throughout the beach, with erosion increasing near
the offshore rock bench on the western end of Baldwin. EXT
did not find acceleration and equaled EX. Acceleration was
detected by LXT and RXT, with slow accretion for most of the
beach and rapid erosion near the offshore rock bench at the
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Figure 2. Rates for Baldwin. Rates found with single-transect (open cir-
cles) are not significant. t-Bin found eight bins and IC-bin found five bins.
LXT and RXT found acceleration at this beach. EXT did not find accel-
eration and equaled EX.

Table 3. �IC scores.

Method

Kihei

Big Kamaole 1 Onuoli

North Shore

Baldwin Kaehu Spreckelsville

West Maui

Kaanapali Kahana Napili

ST 1.60 1.80 1.33 2.53 1.02 2.43 1.50 2.17 0.56
t-Bin 0.41 0.03 0.50 0.59 0.47 0.42 0.03 0.38 0.05
IC-bin 0 1.82 0.24 0.21 0.24 0.32 1.51 0.23 0
LX 0.35 0.03 0.31 0.20 0.27 0.34 0 0.19 0.05
RX 0.35 0.03 0.30 0.27 0.49 0.29 0.02 0.23 0.05
EX 0.43 0.03 0 0.11 0.11 0 0.01 0.08 0.04
LXT 0.35 0 0.31 0 0.27 0.34 0 0.19 0.05
RXT 0.35 0 0.30 0.08 0.49 0.29 0.02 0.23 0.05
EXT 0.43 0.03 0 0.11 0 0 0.03 0 0.04

western end (Figure 2). Single-transect was the only method
that had no rates for Kaehu. All methods, except ST showed
accretion at the northern end of the beach, followed by low
to no erosion for the rest of the beach. LXT and RXT found
acceleration and higher erosion rates than the other methods.
Similar to Kaehu, ST was the only method that had no rates
for Spreckelsville. All methods indicated erosion for Spreck-
elsville, with much higher erosion rates on the shoreline
fronting the offshore reef platform. No acceleration was de-
tected at this beach. LX had the lowest erosion rates for the
area fronting the offshore reef platform because it identified
a constant erosion rate that did not fluctuate in the along-
shore direction.

EXT was the only method that detected acceleration in two
of the three beaches in West Maui. Single-transect, t-bin, and
IC-bin found no rates for Kaanapali. Only EXT identified ac-
celeration, and its rate trend differed greatly from the other
methods. EXT found accretion in the south part of the beach,
whereas all other methods with rates found erosion. At the
northern part of Kaanapali, LX and RX found accretion, and
EX and EXT found erosion. At Kahana, ST found no rates.
EXT indicated acceleration, and its rates differed greatly
from all other methods. EXT rates showed minimal erosion
throughout the beach. The other methods showed high ero-
sion throughout the beach, with the highest erosion found in
the central portion of the beach. Single-transect found no
rates for Napili and no acceleration. t-Bin, LX, and RX found
rates that were constant in the alongshore direction. IC-bin
and EX showed higher erosion on the central part of the
beach.

IC Scores

In comparing IC scores across methods, acceleration meth-
ods had the lowest IC score for four of the nine beaches. Table
3 shows the �AICu scores, with the lowest score equal to zero.
EX equaled EXT (EXT did not find acceleration) at Onuoli
and Spreckelsville. LX equaled LXT at Kaanapali. LXT and
RXT had the lowest IC for Kamaole. IC-bin had the lowest
score for Big Beach and Napili. Single-transect had the high-
est IC score for seven of the nine beaches. IC-Bin had the
highest score for Kamaole and Kaanapali.

Residuals

We analyzed residuals to see whether discrete borders
(from binning) affected the residuals in the alongshore direc-
tion. Residuals between known shorelines and modeled
shorelines ranged between �59.1 m and 50.73 m. This large
range is attributed to high residuals in Baldwin. When com-
paring the magnitude of the mean residuals (or mean �resid-
uals�), EXT had the lowest residuals for five of the nine beach-
es (Table 4). For all five of these beaches, EXT found accel-
eration. IC-bin had the lowest residuals for Big Beach (IC-
bin also had the lowest IC score at this beach). EX equaled
EXT at Spreckelsville and had the lowest residuals. t-Bin,
LX, and RX had the lowest residuals at Napili (LXT and RXT
did not find acceleration, so it equaled LX and RX, respec-
tively). t-Bin and IC-bin had the highest residuals for two
beaches. LX and RX had the highest residuals at Big Beach.
LX and RX also had highest residuals at Spreckelsville and
Baldwin, respectively. LXT and RXT had the highest resid-
uals at Kamaole.

Although differing methods had lowest mean �residuals� at
differing beaches, they were not significantly different from
all other methods (excluding binning at two beaches, binning
did worse) on seven of the nine beaches. Significance, in this
case, refers to the 95% confidence level from an ANOVA test
on the �residuals� of all methods. At Baldwin, LXT had the
lowest mean �residuals�; LXT and RXT were significantly dif-
ferent from all other methods. AT Kaehu, EXT had the lowest
mean �residuals�, but was not significantly different from EX,
LX, and LXT.

Of the seven beaches that had bins, only Onuoli, Baldwin,
and Spreckelsville had slightly higher residuals at the edge
of the borders (Figure 3). The other four beaches showed no
discernibly high residuals at the bin borders.



386 Genz, Frazer, and Fletcher

Journal of Coastal Research, Vol. 25, No. 2, 2009

Table 4. Mean of the absolute value of the residuals (�residuals�) results.

Method

Mean �residual� (m)

Kihei

Big Beach Kamaole 1 Onuoli

North Shore

Baldwin Kaehu Spreckelsville

West Maui

Kaanapali Kahana Napili

ST — — — — — — — — —
t-Bin 3.80 — 3.49 9.40 3.07 5.86 — 3.44 4.83
IC-bin 3.76 — 3.15 9.32 3.27 5.32 — 3.40 4.89
LX 4.05 — 3.39 9.33 2.89 6.08 9.08 3.36 4.83
RX 4.05 — 3.26 9.58 3.26 5.23 9.09 3.40 4.83
EX — — 2.86 9.17 2.91 5.06 9.11 3.42 4.86
LXT 4.05 11.32 3.39 6.31 2.56 6.08 9.08 3.36 4.83
RXT 4.05 11.32 3.26 6.79 3.26 5.23 9.09 3.40 4.83
EXT — 10.09 2.86 9.17 2.41 5.06 8.98 2.66 4.86
Min (m) 3.76 10.09 2.86 6.31 2.41 5.06 8.98 2.66 4.83
Max (m) 4.05 11.32 3.49 9.58 3.27 6.08 9.11 3.44 4.89
Difference (m) 0.29 1.23 0.63 3.27 0.86 1.02 0.13 0.79 0.06

Figure 3. Color maps of residuals at Onuoli. Black lines signify the borders of IC-bin and t-bin.
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Table 5. ANOVA results of the 50-y hazard prediction. Each grouping contains methods that were not statistically different from each other at the 95%
confidence interval.

Big Beach Kamaole 1 Onuoli Baldwin Kaehu Spreckelsville Kaanapali Kahana Napili

t-Bin LXT ST LXT ST t-Bin LX t-Bin ST
IC-bin RXT t-Bin RXT t-Bin IC-bin RX IC-bin t-Bin
LX EXT IC-bin t-Bin IC-bin LX EX LX IC-bin
RX LX LX RX LXT RX LX
LXT RX RX EX RXT EX RX
RXT EX EX LXT ST LXT EX

LXT LXT RXT EXT RXT
RXT RXT EXT EXT
EXT EXT

ST ST T-BIN ST ST ST
EX T-BIN IC-BIN T-bin EXT
EXT IC-BIN LX IC-BIN

LX RX EXT
RX EX
EX EXT

ST

Figure 4. Fifty-year hazard predictions at Baldwin. LXT and RXT
agreed with each other. IC-bin, t-bin, LX, RX, and EX had similar pre-
dictions (EXT reduced to EX). Single-transect had insignificant rates at
this beach.

Fifty-Year Hazard Line

We ran an ANOVA test on the 50-year hazard predictions,
from all the methods at each beach, to test whether the mean
predictions of the different methods differed significantly
from each other. Three of the nine beaches (including the no
rates of ST) had statistically insignificant 50-year hazard
lines for all nine methods at the 95% confidence level (Table
5). The hazard predictions with acceleration were signifi-
cantly different from the predictions with nonacceleration
methods for Baldwin and Kamaole (EXT equaled EX at Bald-
win). Although Kamaole showed no significant difference be-
tween the acceleration methods, EXT deviated from predic-
tions of the other acceleration methods, with EXT showing
both higher erosion and higher accretion, but the mean value
for EXT was not different from the other acceleration meth-
ods. The acceleration methods at Baldwin showed accretion
for most of the beach, whereas the nonacceleration methods

showed either no erosion or some erosion (Figure 4). The
methods that had no rates at Big Beach and Spreckelsville
were significantly different from the methods that had rates.
The predictions with EXT were not significantly different
from the predictions with methods that had no rates at Kaan-
apali and Kahana.

Prediction of Most Recent Shoreline

Similar to results using all shoreline data, ST had no rates
for all beaches. t-Bin had no rates for seven beaches and
found rates only at Baldwin and Spreckelsville. EXT indicat-
ed acceleration for three of the nine beaches, whereas LXT
and RXT identified acceleration for four beaches.

LX and RX predicted the most recent shoreline the best for
Big Beach (Table 6). LXT and RXT reverted to LX and RX at
this beach. All other methods had no rates at Big Beach. Sin-
gle-transect, t-bin, IC-bin, LX, RX, and EX had no rates at
Kamaole. These methods had significantly lower mean �EIPs�
than the methods that calculated rates (LXT, RXT, and EXT)
at the 95% confidence level. For Onuoli, ST and t-bin had
rates of zero, with significantly higher mean �EIPs� than the
other methods. EX had the lowest mean �EIP�, but was not
statistically significant from the mean �EIPs� of IC-bin, LX,
and RX at the 95% confidence level. LXT, RXT, and EXT
reverted to LX, RX, and EX at Onuoli.

Single-transect had rates of zero at Baldwin, yet had the
lowest mean �EIPs�. The predictions with ST were not signif-
icantly different from predictions with LXT and RXT, both of
which identified acceleration (EXT did not find acceleration).
All other methods predicted higher erosion for the most re-
cent shoreline. Single-transect and t-bin had no rates at Kae-
hu, yet their mean �EIPs� were similar to all other methods,
excluding LXT. LXT had the highest mean �EIP�; it was the
only method to identify acceleration. At Spreckelsville, no
methods, except ST, had significantly different mean �EIPs�,
even though RXT identified acceleration (Table 6).

At Kaanapali, ST, t-bin, and IC-bin had no rates and had
the lowest mean �EIPs�. However, the mean �EIPs� were not
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Table 6. Cross-validation results. EIP � error in prediction, mean �EIP� is the average magnitude difference between the predicted and known shoreline
position.

Method

Mean �EIP� (m)

Kihei

Big Beach Kamaole 1 Onuoli

North Shore

Baldwin Kaehu Spreckelsville

West Maui

Kaanapali Kahana Napili

ST 8.52 5.45 8.57 11.64 2.22 12.42 8.13 8.82 7.19
t-Bin 8.52 5.45 8.57 19.10 2.22 6.81 8.13 8.82 7.19
IC-bin 3.06 5.45 4.38 18.68 1.27 6.44 8.13 3.42 7.19
LX 3.29 5.45 5.01 18.56 1.43 5.07 10.70 2.52 7.19
RX 3.29 5.45 5.01 19.48 2.57 7.26 10.51 3.36 7.19
EX 8.52 5.45 3.71 18.61 1.45 7.20 8.67 3.96 6.39
LXT 3.29 12.51 5.01 13.02 3.49 5.07 10.70 5.47 7.19
RXT 3.29 12.51 5.01 13.90 2.57 8.85 10.51 5.85 7.19
EXT 8.52 16.81 3.71 18.61 1.45 7.20 8.30 3.96 6.08

significantly different from all other methods. Only EXT
identified acceleration at this beach. At Kahana, ST and t-bin
had no rates and the highest mean �EIPs�. LXT and RXT iden-
tified acceleration and had higher mean �EIPs� than the non-
acceleration methods, which had mean �EIPs� that were not
significantly different from each other. Only EX and EXT had
rates at Napili, yet their mean �EIPs� were not significantly
different from all the other methods with no rates (Table 6).

Synthetic Analysis

Overall, ST and t-bin had the highest IC scores (worst fits),
but predictions made with ST were not greatly different from
predictions made with other nonacceleration methods. t-Bin
predictions were different from other nonacceleration meth-
ods when rates varied in the alongshore direction. t-Bin IC
scores were highest for these synthetic data sets. EXT and
LXT had the lowest IC scores (best fits) when acceleration
was present in the synthetic data. When no acceleration was
present, both EX and EXT had the lowest IC scores. Predic-
tions with the acceleration methods were better than non-
acceleration methods when acceleration was present and
were similar to nonacceleration methods when acceleration
was not present. LXT and RXT had lower mean �EIPs� than
EXT, but variation between them was minimal. One possible
reason EXT had higher mean �EIPs� than the other acceler-
ation methods is that EXT uses principal components of the
beach data as its basis functions, which, in this case, include
noise.

Synthetic Data Set 1: Constant Rate and Acceleration
in Alongshore Direction

The rate and acceleration were constant for each transect
along the beach; therefore, the 50-year position did not
change along the beach. Single-transect, t-bin, IC-bin, LX,
RX, and EX underestimated the 50-year positions, whereas
the means of the predictions with LXT, RXT, and EXT were
1 m less than the known 50-year position (Figure 5). LXT
and RXT had the lowest mean �EIPs� (Table 7). All methods
identified rates that were not equal to zero. Acceleration was
identified for all 50 trials.

Synthetic Data Set 2: Constant Acceleration and
Varying Rate in Alongshore Direction

In this synthetic data, acceleration was constant for each
transect; hence, although the rate was different at each tran-
sect (it was modeled with a polynomial), the rate at which
the rate changed with time was the same at each transect.
T-Bin had the highest IC score for all 50 trials. EXT had the
lowest IC score for 35 of the 50 trials. LXT had the lowest IC
score for the other 15 trials. RXT had the lowest mean �EIP�,
followed closely by LXT. EXT predictions had more variabil-
ity around the known shoreline position, causing its mean
�EIP� to be slightly higher than LXT and RXT. All methods
identified rates that were not equal to zero, and LXT and
RXT identified acceleration in all 50 trials. EXT did not iden-
tify acceleration in two trials. Predictions with ST were not
different from IC-bin, LX, RX, and EX.

Synthetic Data Set 3: Constant Rate and Varying
Acceleration in Alongshore Direction

In this test, the change rate was held constant along the
beach but varied temporally. Single-transect and EX had
rates of zero for all 50 trials. They also had the highest mean
�EIPs�. t-Bin, IC-Bin, LX, and RX identified constant rates in
the alongshore direction and had lower mean �EIPs� than ST
and EX. LXT, RXT, and EXT all identified acceleration, with
LXT having the lowest mean �EIP�.

Synthetic Data Set 4: Varying Rate and No
Acceleration in Alongshore Direction

For this synthetic beach, the rates varied along the beach,
but were constant with time. LXT and RXT did not allow for
acceleration for 35 and 48 of the 50 trials, defaulting to LX
and RX, respectively. EXT did not identify acceleration for 11
of the 50 trials. LX had the lowest mean �EIP�, followed close-
ly by RX, ST, EX, and RXT. T-Bin had the highest mean
�EIP�.

DISCUSSION

If notable changes in the shoreline occur through time,
methods that test for acceleration are recommended. Based
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Figure 5. Fifty-year hazard predictions in the first synthetic data set of the synthetic analysis. The yellow line is the true 50-y position, the blue lines
are the predicted 50-y predictions at each trial, and the red line is the mean positions of all trials.

Table 7. Mean �EIP� results of the four synthetic data sets.

Method

Mean �EIP� (m)

Run 1 Run 2 Run 3 Run 4

ST 44.91 44.92 1008.97 4.17
t-Bin 44.90 85.49 908.80 77.18
IC-bin 44.90 44.92 908.80 5.67
LX 44.90 44.92 908.80 3.69
RX 44.91 44.92 908.80 4.17
EX 44.91 44.84 1008.97 4.17
LXT 3.56 10.25 4.66 8.12
RXT 3.33 8.38 6.14 4.82
EXT 4.19 19.77 6.43 10.63

on the synthetic results, LXT, RXT, and EXT predicted the
50-year position better than all other methods. However, the
cross-validation results showed that predictions with accel-
eration methods were not better than the nonacceleration
methods (acceleration was identified at six of the nine beach-
es). When acceleration was identified, its predictions were
generally not significantly different from either the nonac-
celeration methods or cases where rates equaled zero. At
Baldwin, the acceleration methods were significantly better
than the nonacceleration methods but were insignificantly
different from ST, which had rates of zero. At Kaanapali and
Napili, the acceleration methods were insignificantly differ-
ent from both the nonacceleration methods and ST. At Ka-
hana, the nonacceleration methods were significantly better
than the acceleration methods. Kamaole was the only beach
where rates equal to zero were better than predictions with
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acceleration. Although ST had rates equal to zero for all nine
beaches, its predictions were not significantly different from
the other methods in five beaches. In the four beaches where
ST was significantly different from the other methods, the
ST predictions were inferior to the other methods. Therefore,
in our cross-validation study, acceleration was not always
preferred but was similar to predictions made without accel-
eration.

One possible disconnect between the two results is that the
synthetic data sets tested long-term change, and cross-vali-
dation tested short-term change. Similar to the Crowell,
Douglas, and Leatherman (1997) study, using temporally rich
sea-level data as a proxy for shorelines to determine how well
long-term predictions fare with data that have similar noise
patterns to historical shorelines might give us insight into
the long-term trends of shoreline data. However, one problem
with sea-level data is that it doesn’t vary in the alongshore
direction. To overcome this issue, known beach slopes along
the shoreline (possibly extracted from lidar data) could be
used in combination with the sea-level data to account for
alongshore variability. The best solution, though, would be to
have a more comprehensive shoreline database.

Single-transect had the highest AICu score for seven of the
nine beaches. Single-transect failed to find rates more often
than any other method. When a goodness of fit is determined
from a trend with 5 to 10 shoreline positions, the signal-to-
noise ratio is low. Therefore, ST will identify rates equal to
zero more frequently than any other method.

The IC score always identified the model with the lowest
residuals, except at Kamaole, Kaanapali, and Napili (see Ta-
bles 3 and 4). In the cross-validation study, the predictions
with rates equal to zero at these three beaches were not sig-
nificantly different from all other methods. These three
beaches also had the highest residuals in the shoreline anal-
ysis. For these three cases, a model with no rates (as in ST)
produces equal, if not better, results. Kamaole is a dynamic
beach without a fringing reef, allowing the beach to undergo
the full force of the wave climate, which has caused the beach
to experience episodes of accretion and erosion throughout its
history (Makai Ocean Engineering and Sea Engineering,
1991). Kamaole experienced kona storms in the early 1960s
that caused high erosion, which resulted in a 1963 shoreline
position that was more erosive than any shoreline past or
present at that beach (Rooney and Fletcher, 2005). The in-
clusion of this shoreline decreases the goodness of fit of the
model on the data. Coastal scientists have investigated and
debated the impact of storm shorelines on historical shoreline
analyses, and many have concluded that storms do cause
short-term changes, but do not affect the long-term trend, if
the shoreline recovers to its prestorm position (Douglas and
Crowell, 2000; Galgano, Douglas, and Leatherman, 1998; Ho-
neycutt, Crowell, and Douglas, 2001; Zhang, Douglas, and
Leatherman, 2002). Similar to ST, binning methods, polyno-
mial methods, and eigenbeaches are not immune to the ef-
fects of storms. Ways to overcome this are to remove the
storm shoreline for the entire beach, use reweighted least
squares (RWLS) to remove statistical outliers (Eversole and
Fletcher, 2003; Genz et al., 2007), use least absolute deviation
(LAD) to downplay the influence of an outlier, or model the

storm shorelines and include them in the overall shoreline-
change model. All these solutions can be used in both ST and
newer methods.

Kaanapali is influenced by a strong seasonal signal that
affects the historical shoreline analysis. Although we try to
account for seasonal changes in our uncertainty analysis, it
is not enough on beaches that have strongly variable behav-
ior. All methods showed minimal erosion, no erosion, or ac-
cretion at the northern part of the beach; however, the most
recent shoreline positions in the north had eroded more than
what was accounted for by all the methods. This could be
because the most recent shoreline was taken in May. Kaan-
apali, at this time, usually starts accreting sand to the north,
but the beach might not reflect the accretion in May. With
strong seasonal behavior, rates of zero would explain the
change more accurately than any modeled rate. Napili is a
small pocket beach that is stable with minimal erosion; only
EX and EXT had rates that were not equal to zero. Although
the predictions with EX and EXT were better than the meth-
ods with rates equal to zero, the predictions between all
methods were not significantly different, with a difference of
�1 m (Table 6).

Baldwin is the only beach where acceleration methods pre-
dicted the most recent shoreline significantly better than the
nonacceleration methods. However, ST had insignificantly
different predictions when compared with the acceleration
methods (ANOVA). Dramatic erosion took place between
1912 and 1960, followed by either minimal erosion or accre-
tion after that. The deceleration in the erosion rate was se-
vere enough that the acceleration methods were able to model
the shoreline with greater accuracy than the nonacceleration
methods. Single-transect identified no rates at this beach,
which is compatible with the decrease in erosion rate found
with the acceleration methods. Therefore, ST predictions for
this beach were insignificantly different from methods with
acceleration. Other beaches do identify acceleration, but pre-
dictions with acceleration methods are either insignificantly
different or significantly worse than the nonacceleration
methods. One reason could be that the acceleration is mini-
mal and the nonacceleration methods are sufficient at pre-
dictions of 5–7 years (cross-validation).

Based on synthetic results, LXT, RXT, and EXT outper-
formed the nonacceleration methods. When acceleration was
not present in the synthetic data, EXT identified acceleration
for 39 of the 50 trials, whereas a majority of RXT and LXT
synthetic data sets did not, and reverted to RX and LX. EXT,
in this case, modeled the noise. Although noise might influ-
ence EXT more than the other methods, its mean �EIPs� were
only �2 m different from LXT (Table 7). The advantage of
including unknown beach physics in the EXT model super-
sedes the effects of noise on this method. In all other syn-
thetic data sets where acceleration was present, nonacceler-
ation methods did not predict the future hazard position as
well as the acceleration methods. Considering that the accel-
eration methods did reduce to the nonacceleration methods
in most trials when acceleration was not present and that the
acceleration methods predicted the 50-year position better
than the nonacceleration methods when acceleration was pre-
sent, we conclude that the acceleration methods are able to
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Figure 6. Hazard zone of single-transect at Baldwin. The 50-y hazard
position (red circle) is surrounded by uncertainty bands (blue zone) at the
95% confidence interval.

Figure 7. Hazard zone of LX at Baldwin. The 50-y hazard line (red line)
is surrounded by uncertainty bands (blue zone) at the 95% confidence
interval.

Figure 8. Hazard zone of LXT at Baldwin. The 50-y hazard line (red
line) is surrounded by uncertainty bands (blue zone) at the 95% confi-
dence interval.

predict the 50-year position more accurately than the other
methods.

Acceleration

Many scientists have recognized the problems with imple-
menting linear regression (e.g., Crowell, Douglas, and Leath-
erman, 1997; Douglas, Crowell, and Leatherman, 1998; Fens-
ter, Dolan, and Elder, 1993; Galgano, Douglas, and Leath-
erman, 1998). One often-noted drawback is the assumption
that a beach erodes at a constant rate. Quasiperiodic varia-
tion on a seasonal or decadal span, as well as major storms,
can either accelerate or decelerate erosion on beaches (Crow-
ell, Douglas, and Leatherman, 1997; Douglas, Crowell, and
Leatherman, 1998; Galgano, Douglas, and Leatherman,
1998; ; Morton, Gibeaut, and Paine, 1995; Zhang, Douglas,
and Leatherman, 2002). Morton, Gibeaut, and Paine (1995)
concluded that acceleration and deceleration were needed to
accurately model future shoreline positions. Fenster, Dolan,
and Elder (1993) tried to address this problem by fitting non-
linear trends to shoreline positions at individual transects
using a different version of the minimum description length
statistic (MDL) equation. As each transect contains limited
data points, and high percentages of linear fits at individual
transects are statistically insignificant, the resulting nonlin-
ear fit would be an overparameterization of the data. Fenster,
Dolan, and Elder (1993) recognized this issue and adopted a
two-line system—the low-weight line and the zero-weight
line, leaving the choice of which line to use up to the analyst.
However, Crowell, Douglas, and Leatherman (1997) showed
that results from the Fenster, Dolan, and Elder (1993) meth-
od were not superior to simple linear regression.

LXT, RXT, and EXT allow acceleration or deceleration;
however, these methods prevent overparameterization by
modeling all transects within a beach system simultaneously.
In our analysis with all shoreline positions, EXT identified
acceleration in four of the nine beaches, LXT identified it in
three beaches, and RXT only found acceleration in two beach-
es. When acceleration was present for all three methods, the

results generally concurred with each other. As each method
uses different basis functions to identify acceleration, the
good agreement between them is striking. One problem with
these methods is that short-term predictions of known shore-
lines are more variable than predictions using methods with
no acceleration.

Hazard Zones

Most remote-sensing software can project hazard zones on
aerial photogrammetry. These hazard zones can aid in estab-
lishing construction setbacks. Figures 6–8 (ST, LX, and LXT)
depict 50-year hazard lines with their uncertainties at the
95% confidence interval at Baldwin. The hazard zones are
based on rates of the different methods. Single-transect had
no significant rates because it identified no rates for all
beaches. The new methods had, on average, significant rates
at 74.62% of all transects.



392 Genz, Frazer, and Fletcher

Journal of Coastal Research, Vol. 25, No. 2, 2009

CONCLUSIONS

Hazard maps can be used to identify possible hot spots of
erosion and to implement preventative measures, such as set-
backs. Therefore, it is important to use methods that produce
statistically defensible results. Single-transect had a higher
chance of identifying rates equal to zero, making the rates
insignificant. Nonacceleration methods predicted short-term
positions best, and acceleration predicted long-term changes
using synthetic data best. Acceleration methods did well
when shoreline positions had prominent shifts through time
and should be used for these cases. Long-term predictions
need to be more thoroughly investigated by cross-validating
a known position using either a large shoreline database or
a database that can be used as a proxy to shoreline data (e.g.,
sea-level data).
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