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ABSTRACT

FRAZER, L.N.; GENZ, A.S., and FLETCHER, C.H., 2009. Toward parsimony in shoreline change prediction (I): basis
function methods. Journal of Coastal Research, 25(2), 366–379. West Palm Beach (Florida), ISSN 0749-0208.

Single-transect methods of shoreline change prediction are unparsimonious, i.e., they tend to overfit data by using
more parameters than necessary because they assume that both signal and noise at adjacent transects are indepen-
dent. Here we introduce some new methods that reduce overfitting by expressing change rate as a linear sum of basis
functions. In the method of IC-binning, the basis functions are boxcars—an information criterion is used to assign
contiguous alongshore locations into bins within which change rate is constant; the resulting rate is discontinuous
but may be useful for beach management. In the polynomial method, the basis functions are polynomials in alongshore
distance, and the change rate varies continuously along the beach. In the eigenbeaches method, the basis functions
are the principal components of the matrix of shorelines. To choose the number of basis functions in each method,
and to compare methods with each other, we use an information criterion. We apply these new methods to shoreline
change on Maui Island, Hawaii, briefly here, and in more detail in a companion paper. The polynomial method works
best for short beaches with rates that vary slowly in the alongshore direction while eigenbeaches works best for
shorelines that are long, or have rates that vary rapidly in the alongshore direction. The Schwarz information criterion
and the AICu version of the Akaike information criterion performed well in tests on real data and noisy synthetic
data.

ADDITIONAL INDEX WORDS: Coastal erosion, shoreline change rates, Hawaii beaches, information criterion, AICc,
AICu, AICm, SIC, gMDL.

INTRODUCTION

Storms, sea level rise, human impacts to sediment avail-
ability, and other causes of shoreline change result in exten-
sive damage to global coastlines. The widespread nature of
this problem means that coastal managers need good tools
and scientific databases to develop management policies.
Coastal managers in many states are implementing quanti-
tative methods, such as shoreline change rates, to identify
setbacks for construction in erosion hazard zones (National
Academy of Sciences, 1990).

The modeling of shoreline change has evolved through a
succession of research efforts. Coastal scientists and manag-
ers once preferred the end-point rate method, which uses only
two shoreline positions to calculate rate of change at each
alongshore location. Most coastal scientists now favor least
squares regression over end-point rate because least squares
utilizes data from all shoreline positions to calculate shore-
line change (e.g., Crowell, Douglas, and Leatherman, 1997;
Galgano and Douglas, 2000; Honeycutt, Crowell, and Doug-
las, 2001). Recently, Genz et al. (2007) incorporated mea-
surement and positional uncertainties into the shoreline
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change rate procedure; they thoroughly tested various forms
of weighted least squares, least absolute deviation, and least
median of squares on real and synthetic data with Gaussian
and non-Gaussian errors; they also introduced a binning
method that recognizes the lack of independence of data from
adjacent transects. The present paper and its companion
build on that effort.

Shoreline data sets seldom have as much data as the user
would like. Typically, change rates are calculated at shore-
normal transects that contain between 5 and 10 historical
shoreline positions unevenly spaced through time. These data
sets often have large scatter due to short-term beach changes
from storms, as well as seasonal and tidal effects, and this
scatter can mask the long-term change rate signal, resulting
in misleading predictions of hazard zones (Galgano and
Douglas, 2000; Honeycutt Crowell, and Douglas, 2001;
Zhang, Douglas, and Leatherman, 2002).

In this situation, it is important to be certain that data are
not being overfitted. The classical example of overfitting is
the use of an n � 1 degree polynomial to fit n noisy data
points: The fit is perfect, but if the fitted polynomial is used
for extrapolation or interpolation, the results can be non-
sense. Similarly in shoreline change, if the rate varies rapidly
in the alongshore direction, and that rapidly varying rate is
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Figure 1. (a) A beach at successive times, as determined by 100 tran-
sects. (b) The first beach has been subtracted from subsequent beaches,
revealing the rate at each transect. If each transect is regarded as inde-
pendent, the beach is a vector in a space of dimension 100. However, the
rate is well modeled by r � a � bx � cx2, so this beach is better regarded
as a vector in the three-dimensional space of [a, b, c].

used for long-term prediction, the predicted shoreline may
have more variability than the smoothing processes of nature
are likely to allow. We expect a future shoreline to vary in
the alongshore direction, just as present shorelines do, but
the high spatial-frequency part of that variability is less pre-
dictable than the low spatial-frequency part.

The importance of avoiding overfitting is sometimes re-
ferred to as Occam’s razor, or the parsimony principle—a
model with more parameters than are strictly necessary to
fit the data is referred to as an unparsimonious model. Fens-
ter, Dolan, and Elder (1993) were the first to apply a modern
information criterion to ensure parsimony in shoreline
change modeling. We extend their pioneering efforts by in-
cluding the alongshore dimension of shoreline change in the
model basis functions by incorporating the dependence of ad-
jacent transects in both model and noise, and by testing a
variety of modern information criteria.

Figure 1 illustrates the parsimony principle for an ideal-
ized beach determined by 100 transects surveyed at 5 differ-
ent times. If each transect is regarded as independent, the
rate is a point in a 100-dimensional space. However, this par-
ticular beach satisfies the relation

2y(x,t) � y(x,t ) � (t � t )(a � bx � cx ),1 1

so its rate is more parsimoniously regarded as a point in a
three-dimensional space [a, b, c]. The functions 1, x, and x2

are said to be the basis functions for this beach, and the pa-
rameters a, b, and c are the coefficients of the basis functions.
In practical work, simple powers of x are inefficient basis
functions, and orthogonal polynomials are preferred; howev-
er, the principle is the same. The example of Figure 1 sug-
gests that the model selection problem consists of two parts:
first one must decide what class of basis functions to use, and
then how many basis functions are required by the data. If
the basis functions are well chosen, few of them will be re-
quired, and the description of the shoreline change is parsi-
monious. However, it is not objective procedure to model a
shoreline using one class of basis functions and then select
linear combinations of the original basis functions as new ba-

sis functions. Basis functions must have a natural mathe-
matical ordering, although, as we shall see, that order can be
determined by the data.

In the following discussion, we apply the parsimony prin-
ciple to the shoreline change prediction problem using objec-
tive measures of parsimony, called information criteria (IC),
to compare various models. An IC is a statistic that tells
when data are being fitted to an overly complex model. An
IC is used the way an adjusted R2 statistic has traditionally
been used; the main difference is that an IC can be used to
compare models that are not necessarily nested; also, the ICs
we use perform much better than the adjusted R2 (McQuarrie
and Tsai, 1998). The value of any IC decreases with goodness
of fit and increases with model complexity; the model with
the lowest IC score is thus an optimal compromise between
parsimony and goodness of fit, among the models considered.

Our first application is to the single-transect and binning
methods offered by Genz et al. (2007). Their binning method
is here referred to as t-binning, because Student’s t-distri-
bution is used to find the bins. We offer an improvement,
called IC-binning, in which an IC is used to find the bins and
to decide how many bins are justified by the data. Next, we
introduce the polynomial method, in which prediction is car-
ried out by fitting polynomials to the data, as in the example
of Figure 1. We use Legendre polynomials (suitable for shore-
lines with ends) and trigonometric functions (suitable for an
island shoreline with no endpoints), but other types of poly-
nomials could be used.

Finally, we introduce the eigenbeaches method, in which
the basis functions used to fit the data are obtained from the
data themselves. In principle, all the methods considered
here can be used to model acceleration (including decelera-
tion) of shoreline change rate. However, acceleration is dif-
ficult to detect in most data sets and is seldom meaningful
unless the model has relatively few parameters, so we con-
sider acceleration here only in the polynomial and eigen-
beaches methods.

All our methods use generalized least squares to find pa-
rameter values. Generalized least squares (GLS) is the ex-
tension of ordinary least squares necessary to accommodate
correlated data errors. The shoreline surveys analyzed in this
paper were done years apart, so we assume that errors at
different times are uncorrelated. However, the beach loca-
tions measured in each survey are very close in the along-
shore direction, so we allow errors to be spatially correlated
as suggested by the data. Like ordinary least squares, GLS
assumes that the noise process is Gaussian, so it is not robust
to erroneous leverage points (Rousseuw, 1984; Rousseuw and
Leroy, 1987). Robustness in the context of the single-transect
method was carefully examined by Genz et al. (2007) using
real and synthetic data, and their results can be incorporated
into our methods in a straightforward way, although com-
putation times will then be much longer; a later section of
the paper explains how this can be done. Our focus is on
parsimony and models for shoreline change that allow spa-
tially correlated rates and noise.

For each method, we use GLS to find the best values for a
parameter vector of given length, and then use an IC to de-
cide what length parameter vector is appropriate. Finally, an
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Figure 2. Shoreline data from Waihee, Maui, with baseline removed.

Figure 3. (a) Information criteria values for LX applied to synthetic data
containing three basis functions plus noise; three out of five ICs identified
the correct model, which was strongly identifiable. (b) Information crite-
ria values for LX applied to real data from Waihee, Maui. The spike in
rate near transect 25 makes the LX model only weakly identifiable.

IC is used to decide which method fits a particular beach best
without overfitting the data. We assume that the method
that fits the data best without overfitting, and satisfies cross-
validation tests (prediction of known shorelines), is the best
method to predict a future shoreline position. Several infor-
mation criteria have been extensively used for scientific mod-
eling; because they do not always agree, we test five of them.

Our data example, Waihee (pronounced why-hay-eh) beach
on the island Maui, shown in Figure 2, was chosen because
it illustrates nicely how several of our methods fail when used
inappropriately. Waihee is relatively long, compared with
other Maui beaches, and it includes a rapidly accreting point,
near transect 25, so that in the alongshore direction change
rate behaves somewhat like a delta function.

INFORMATION CRITERIA

An information criterion (IC) is a test statistic, or score,
that determines the best model from a given set of models
that are not necessarily nested: the lower the score, the better
the model. The corrected Akaike information criterion (AICc)
(Hurvich and Tsai, 1989; Sugiura, 1978) is the most widely
used IC, and we tested it extensively. We also tested other,
similar statistics such as the Schwarz information criterion
(SIC) (Schwarz, 1978), and the minimum description length
statistic (MDL) (Rissanen, 1978). Our MDL is the mixture
form analyzed by Hansen and Yu (2001, 2003), and referred
to by them as gMDL. Because most of the discussion applies
directly to these other statistics with little change, we treat
AICc in some detail and present other methods mainly by
formula so that their differences from AICc are clear. In
statements that apply to any information criterion, we use
the acronym IC. We use the IC score in two ways: to find the
optimal model within a class of models and to compare the
best models between classes. For example, in the polynomial
methods we use IC scores to find the polynomial that best
fits the data, and in the binning methods we use IC scores to
find the bin configuration that best fits the data. Then we
use IC scores to compare the best binning model with the
best polynomial model.

In comparing ICs it is important to note that for any IC
the quantity a � b � IC has the same minimum as IC, where
a and b are any two positive numbers; thus two IC formulas
that look very different can represent the same IC, and the
literature is not standard. Our formula for AICc, derived heu-
ristically in Appendix A, is an extension of the formula in
Burnham and Anderson (2002, p. 66; divide their formula by

N) to data with correlated noise. Let d be a column vector of
data containing estimated shorelines at various times, and
let Gm̂ be the data vector predicted from a particular model
of shoreline change with system matrix G and best fit param-
eter vector m̂. Then the AICc score of the model is given by

AICc � log(RSS/N) � 2K/(N � K � 1) (1a)

1/N T �1˜ ˜RSS � �C � (d � Gm̂) C (d � Gm̂). (1b)dd dd

In these equations, RSS is effectively a sum of squared re-
siduals; N is the number of data points (length of d); the best-
fit parameter vector m̂ has length M; K is the number of
parameters in the statistical model (if there is only one var-
iance parameter, K � M � 1); and C̃dd is an N � N estimated
data covariance matrix with determinant �C̃dd �. The deter-
minant property �aA� � aN �A� shows that RSS is invariant to
scaling of C̃dd.

The main thing to notice about the AICc formula is that as
the model improves, the first term declines with the residu-
als, while the second term is a penalty that increases with
the number of parameters in the model. The best model is
the one that lowers the residuals the most for the least pen-
alty. The argument of the logarithm in an IC formula is not
required to be dimensionless because a change of units from
meters to centimeters, for example, adds a constant
log(10,000) to the IC formula without changing the location
of the minimum.

Our formulas for AICm, AICu, and SIC differ from our
AICc formula only in the penalty terms. Our AICm is the
AICck of McQuarrie and Tsai [1998, p. 22, their equation
(2.14)], and our formula for AICu is the AICu of McQuarrie
and Tsai [1998, p. 32, their equation (2.18)]. Our formula for
SIC (Schwarz, 1978) is standard in the literature. The for-
mulas are:

AICm � log(RSS/N) � (N � K)/(N � K � 2),

AICu � log(RSS/N) � log[N/(N � K)]

� (N � K)/(N � K � 2),

SIC � log(RSS/N) � K log(N)/N.

The formula for gMDL is more complex and is given in
Appendix B. Figure 3 shows the values of different ICs vs.
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Table 1. �IC scores for best fit models of different classes applied to the data from Waihee, Maui, shown in Figure 1. Four ICs favor the EXT model, with
EX a close second, and the remaining IC favors EX, with EXT a close second.

Method �AICc �AICm �AICu �SIC �gMDL

Single-transect 2.700 2.705 2.969 3.185 1.465
T-BIN 1.317 1.319 1.370 1.427 1.039
IC-BIN 0.724 0.725 0.767 0.809 0.232
LX 4.797 4.801 5.031 7.123 6.662
RX 4.762 4.766 5.010 5.225 5.284
EX 0.118 0.118 0.115 0.107 0
LXT 3.965 3.976 4.457 3.439 4.557
RXT 3.738 3.766 4.572 3.342 4.995
EXT 0 0 0 0 0.170

Table 2. Degrees of freedom for all methods. I � no. of transects, J � no.
of time points at each transect, Tb � no. of transects in a bin, Nb � no. of
bins, K1 and K2 � no. of terms.

Method Degrees of Freedom, � IC Parameter Count, K

Single-transect J � 2 3I
Binning Tb(J � 1) � 1 I � 2Nb � 1
PXT N � (I � K1 � 2K2 � 1) I � K1 � 2K2 � 2
Eigenbeaches N � (I � K1 � 2K2 � 1) I � K1 � 2K2 � 2

number of parameters for the LX method (see the following
discussion) applied to shoreline data from Waihee, Maui. In
comparing models with an IC, only the difference in IC values
is meaningful. Accordingly, the usual practice is to subtract
the IC of the best (lowest IC) model from the scores of each
model to get the �IC value for each model. The best model
always has a �IC of zero. Table 1 gives the �IC scores for
various methods and ICs applied to data for Waihee, Maui.

It can be seen that as more parameters are added (increas-
ing K), the penalty terms of each IC increase at different
rates. For a fixed number of model parameters, as the num-
ber of data points N approaches infinity, the penalty term of
AICc goes to zero rapidly, the penalty term of SIC goes to
zero more slowly, and the penalty terms of AICm and AICu
go to unity. Therefore, for very large amounts of data, AICu
and AICm are most parsimonious, followed by SIC and AICc.
Another clue to behavior is obtained by setting K � N � 3;
then AICu again has the largest penalty function, followed
by AICm, AICc, and SIC.

Parsimony is essential in an IC, but there are additional
desiderata. One desideratum is consistency: the property that
as the number of data goes to infinity, the true model will be
picked with probability 1 if it is among the models being con-
sidered. Another desideratum is asymptotic efficiency (Shi-
bata, 1980), the property that as the number of data goes to
infinity, the model nearest to the true model (nearest in the
sense of least squares or of Kullback-Leibler discrepancy) will
be picked with probability 1. Consistency is a desirable fea-
ture for problems in which there is a well-verified theory so
that the basis functions are known; many problems in chem-
istry and physics are in this category. Asymptotic efficiency
is desirable when the dimension of the true model is likely to
be large, and the basis functions are poorly known. SIC and
gMDL are consistent; AICc and AICm are asymptotically ef-
ficient; and AICu steers a middle course between consistency
and asymptotic efficiency (McQuarrie and Tsai, 1998, p. 43).

Another important concept is model identifiability. A mark
of a strongly identifiable model is that few basis functions
are needed. An example of a weakly identifiable model is one
whose coefficients decline slowly with increasing order. Iden-
tifiability can be examined for particular data sets by plotting
the coefficients of unit-energy basis functions. For example,
if the coefficients decline abruptly at a certain order, the mod-
el is strongly identifiable. It can be seen that a poor choice of
basis functions will make a strongly identifiable model ap-
pear to be weakly identifiable. For example, a beach with an
abrupt change of rate in the middle will be strongly identi-
fiable with EX and IC-binning but only weakly identifiable
with LX (methods given later in this article). On the other
hand, a beach along which rate varies smoothly will be
strongly identifiable with LX and EX but weakly identifiable
with IC-binning. If the basis functions are correctly chosen,
and the model is strongly identifiable, the IC should have a
well-defined minimum at the correct combination of basis
functions.

McQuarrie and Tsai (1998) tested a variety of ICs (though
not gMDL, which is new) in least squares regression for a
large suite of randomly generated system matrices, with both
strongly and weakly identifiable models. They emphasize
that an IC is a statistic, like mean or variance, and that with
any data set there is a finite probability that a given IC will
pick the wrong model. They calculated the probability that
an IC will underfit or overfit for various values of N and K.
Our tests on real and synthetic data are consistent with the
conclusions of McQuarrie and Tsai (1998, table 2.1) for
strongly identifiable models. To quote a specific example, for
K � 6 and N � 100, AICu has the lowest probability of ov-
erfitting, but it has a tendency to underfit as N reaches 100.
SIC is less likely to underfit as N approaches 100, but it is
more likely to overfit for smaller values of N. In the context
of shoreline change, if data are to be modeled independently
at each transect, AICu is the preferred IC; for the large-N
models of this paper (IC-binning LX/T and EX/T), SIC per-
formed about as well as AICu.

Counting the number of parameters for purposes of IC can
be confusing when models are not nested. Table 2 summariz-
es the count for various methods. For the single-transect
method (see the following discussion), the number of param-
eters is three times the number of transects because three
quantities are being estimated at each transect: the change
rate, an intercept (implicit because of a baseline shift), and
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Figure 4. Our baseline and time-origin shift linear data (a) so that the
best-fit WLS line has zero intercept, as in (b). However, quadratic data
(c) are not shifted to zero-intercept (d), so the shifted data cannot be
modeled solely by the first and second powers of t � t̄. Models with ac-
celeration terms therefore also require an equal number of intercept
terms. With acceleration in the model, the baseline shift and time shift
are still useful because they condition the matrix whose inverse is cal-
culated in the least squares problem.

the variance. For binning methods, the number of parameters
is twice the number of bins (because there is a rate and var-
iance in each bin), plus the number of transects (because
there is an intercept for each transect), plus one for the cor-
relation length of the spatial noise process. For the PXT and
eigenbeaches methods, the number of parameters is the num-
ber of transects (because there is one intercept for each tran-
sect), plus the number of basis functions plus one for the sin-
gle variance scaling factor, plus one for the correlation length
of the alongshore noise. In practice, the number of parame-
ters is invariably greatest for the single-transect method and
least for the eigenbeaches method.

We noted earlier that when any IC is replaced by a � b �
IC for positive a and b, it will select the same model because
the expression a � b � IC takes its minimum at the mini-
mum of IC. However, there is an application in which the
multiplier b is important: Suppose the ith model has IC value
ICi; then the quantity pi 	 exp(�ICi/2) can be regarded as
the relative probability of model i. This only works if the IC
is scaled so that the first term (the RSS term) is �2 times
the log(likelihood), which is how that term originated (see
Appendix A).

BASELINE AND TIME ORIGIN

Beach data consist of beach locations yij at alongshore lo-
cations xi and times tj; here location means the distance of
the shoreline from a given baseline. The transect index i runs
from 1 to I, and the time index j runs from 1 to J; in other
words, yij � y(xi, tj). Because older shoreline surveys are
thought to be less reliable than modern surveys, we assume
here that data variance depends on time, but not on x, so the
covariance matrix has a block for each transect.

To condition the matrices in our numerical procedures, it
is helpful to shift observations to a new baseline and time
origin generated from the data themselves. The new baseline
is a weighted average of shorelines, with weights from the
relative survey errors . The new baseline and time origin,
̃j

are given, respectively, by

�1

�2 �2ȳ � 
̃ y 
̃ and� �i j ij j� �� �j j

�1

�2 �2t̄ � 
̃ t 
̃ .� �j j j� �� �j j

The relative survey errors are calculated by the method
̃j

in Fletcher et al. (2003) and Genz et al. (2007) from seven
types of data error; in our calculations they are a priori es-
timates and are therefore not included in the parameter
counts for an information criterion.

As shown in Figure 4, if the model is linear with time, the
baseline shifts result in a fit with zero intercept. If the model
includes a t2 time variation, conditioning of the system matrix
is improved by the change of baseline and time origin, but an
intercept must now be included in the model because t2 and
1 are not linearly independent functions. Inclusion of a t2 de-
pendency in a model is necessary to address the question of
whether change rates are increasing or decreasing, and for
that purpose a good model is

1
(0) (1) 2 (2)y � ȳ � m � (t � t̄ )m � (t � t̄ ) m .j j j2

Note that acceleration is constant in this model, and that
estimates of acceleration and rate are centered at t � t̄. For
the single-transect method, we do not look for acceleration
because it is usually excluded by the IC, but we allow accel-
eration in the PXT and eigenbeaches methods. If a model
with acceleration terms has a lower IC score than any model
without such terms, that is evidence of acceleration. Note
that although the time functions t � t̄ and (t � t̄)2/2 are or-
thogonal in the usual inner product on any interval symmet-
ric about the origin, their orthogonality is not exact in the
case of sampled, weighted data. Accordingly, models with and
without acceleration will have slightly different rates at t̄.

GENERALIZED LEAST SQUARES

To reduce repetition, we collect here the generalized least
squares (GLS) relations that will be used to fit data and to
predict 50-year shoreline positions for various methods. Our
process model is

d � GM � n, (2)

in which d is an N � 1 data vector of beach data, m is an M
� 1 parameter vector, G is an N � M system matrix con-
taining the basis functions, and n is an N � 1 column vector
of samples from a zero-mean, Gaussian noise process with
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Figure 5. Autocorrelation of residuals (dashed line) and best-fit decaying
exponential (solid line).

covariance matrix Cdd. This GLS problem can be transformed
to an OLS problem by left-multiplying Equation (2) by C ,�1/2

dd

but we work with untransformed data, so the covariance ma-
trix is explicit in formulas. Shoreline data in the data vector
are arranged in different ways for different methods, but if
the data vector consists of time blocks, the covariance matrix
is block diagonal. Because the covariance is unknowable—to
estimate it directly, we would have to repeat the same ex-
periment many times—we begin with an a priori estimate
C̃dd, then use the data to adjust the estimate. The estimated
parameter vector is

m̂ � (GTC̃ G)�1GTC̃ d,�1 �1
dd dd (3)

and the best estimate proportional to C̃dd is

Ĉdd � �C̃dd,�̂ (4)

in which the constant of proportionality is

v � (N � M)�1 (d̂ � Gm̂)TC̃ (d̂ � Gm).�1�̂ dd (5)

Here the subscript � is a shorthand for the degrees of free-
dom, N � M, and a reminder to ensure that the division by
N � M is not forgotten during calculations. The parameter
covariance matrix, often referred to as the model covariance
matrix, is obtained from the estimated data covariance ma-
trix by the relation (e.g., Menke, 1989)

Ĉmm � (GTĈ G)�1.�1
dd (6)

Having estimated the parameters of the shoreline model,
we extrapolate to predict the shoreline location at some fu-
ture time tf. A future shoreline location at alongshore coor-
dinate xi is just a function yi � q m where qi � qi(tf) is aT

i

column vector of length M, which we refer to as a prediction
kernel. The future shoreline location thus has estimator

ŷi � yi � q m̂T
i (7a)

with estimated variance given by

� q Ĉmmqi.2 T
̂i i (7b)

A 100(1 � �/2)% confidence interval for y is given by

ŷi � ȳi � q m̂  t(�, 1 � �/2) i
T 
̂i (7c)

in which t(�, 1 � �/2) is the value of Student’s t-distribution
with � � N � M degrees of freedom (Draper and Smith,
1998). Table 2 gives the degrees of freedom and IC parameter
counts for the different methods. Occasionally it is desirable
to estimate change rate at a particular time, and this is done
via relations analogous to Equations (7a), (7b), and (7c), using
prediction kernels given later in the paper.

We estimate spatial covariance from the data themselves
via the following procedure, which assumes that sources of
error do not vary in the alongshore dimension, and that they
vary with time only in magnitude, not scale length. First, we
fit the data using the single-transect method (see following
discussion) with the diagonal matrix C̃dd � diag( , , . . . ,2 2
̃ 
̃1 2

) (i.e., weighted least squares). Then we estimate the spa-2
̂J

tial correlation distance L by fitting a decaying exponential
to the autocorrelation of the data residuals computed accord-
ing to the following recipe: Let ni:j � yi:j � ŷi:j be the data
residual at transect i and survey j. We remove the mean of

the residuals at each survey from all the residuals at that
survey, so that �i ni:j � 0. The autocorrelation at lag k is then
estimated by ck � I�1 J�1 �j �i nI�k:jni:j scaled to have value
1 at zero lag. Figure 5 shows the autocorrelation data for
Waihee, Maui, and the best-fit exponential decay for various
lags. The expression for ck shows that long lags are under-
weighted compared with short lags; and the fit was done us-
ing only data out to the first zero of the autocorrelation. Us-
ing the estimate for correlation distance, we build an esti-
mated covariance matrix C̃dd that is block diagonal with one
block for each survey. The time blocks are scaled by the a
priori uncertainties for each survey, but each time block is
proportional to exp(��xi � xj�/L), where xi and xj are transect
locations, and L is the correlation distance. We used this
scheme because it does not require iteration and does not
depend on the basis functions.

CALCULATIONS

Currently, two techniques are used in computing shoreline
change rates along a beach—rates from single transects and
rates from binned transects. Both techniques utilize shoreline
data sets generated from topographic surveys (NOAA
T-sheets and LIDAR surveys) and vertical aerial photo-
graphs.

Single-Transect Method

Most coastal scientists calculate shoreline change rates at
each transect along a beach; for example, the Digital Shore-
line Analysis System (DSAS) currently calculates shoreline
change in this way (Thieler et al., 2005). With the use of
ArcGIS, DSAS creates transects that are separated by a dis-
tance defined by the user. At each transect, shoreline change
rates from different statistical methods (e.g., end-point rate,
least squares regression) and their uncertainties are calcu-
lated. For each transect, three parameters are estimated
from the data: slope, intercept, and variance; hence the total
number of parameters is three times the number of transects.
If the correlation distance of the alongshore noise exceeds the
transect separation, single-transect overfits the data. Figure
6 shows the rates for various methods, including single tran-
sect.
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Figure 6. Change rates from various methods, Waihee, Maui. Positive
change rates indicate erosion. In panel (a) the basis function sums for
LX, LXT, RX, and RXT are truncated abruptly (boxcar window in the
transform domain), while in panel (b) the best fit coefficients for those
methods are modulated by half of a Hanning window. Rates shown for
models with acceleration (EXT, LXT and RXT) are those at the time of
the most recent survey, while rates for constant-rate models (EX, LX, RX,
t-bin, IC-bin) are centered at t̄. Rates found with the single-transect meth-
od (open circles) are significant for AICm and gMDL, but not for other
ICs. The polynomial methods (LX, LXT, RX, RXT) struggle to fit the spike
in local accretion near transect 25 because spikes and jumps in rate are
only weakly identifiable with smooth basis functions. IC-bin favors a
three-bin model under all ICs but gMDL. EXT gives the best fit to data
(see Table 1) followed closely by EX, which agrees best with single-tran-
sect.

Binned Transects

Genz et al. (2007) introduced binning as a technique that
reduces the effects of data scatter by identifying adjacent
transects that have indistinguishable rates, and grouping
them together into cells (bins) with a single rate. The reso-
lution of the rate is not as high as with single transects, but
the error in the change rate estimate is reduced within each
bin compared with single-transect. Binning methods give
rates that are discontinuous at the bin boundaries, but this
is useful if a beach is to be divided into distinct management
zones.

The forward model for beach erosion is

yij � ȳi � r(tj � t̄) � nij; xi ∈ bin

in which nij is a noise sample at time tj, and the rate r is the
same for each transect in the bin. As noted previously, our
baseline shift has made it unnecessary to include an inter-
cept. The inversion for bin boundaries is by search, but for a
given set of bin boundaries, we use GLS to find the rate with-
in each bin. In Equation (5) the degrees of freedom count is
� � Tb(J � 1) � 1, where Tb is the number of transects in
the bin, and J is the number of surveys. We use formula (1a)
to calculate an IC for the whole beach, setting N equal to the
total number of data points in the data set, and K equal to
the number of transects (one intercept per transect), plus
twice the number of bins (a rate and variance for each bin)
plus one for the correlation length parameter.

The binning technique of Genz et al. (2007) was based on
the t-test for independence of adjacent change rates, and it
required significant user input. In the following discussion,
we give an improved binning technique that is less subjective
and easier to use. Hereinafter, we refer to Genz’s et al. (2007)
technique as ‘‘t-binning,’’ for the t-test, and the improved
technique of this paper as ‘IC-binning’, for the IC score used
to select the bins. Any IC can be used to select the bins.

t-Binning

t-Binning uses Student’s t-test statistic (Kleinbaum et al.,
1998) to determine whether a binned group rate is statisti-
cally significant. With a bin-window length of four transects,
the first four adjacent transects are grouped and a t-test is
used to determine whether their change rates are signifi-
cantly different. The window then shifts by one transect, and
the transects in the new window are used to calculate a
change rate and a t-test statistic. The window keeps shifting
until it reaches the end of the beach. Then the window spac-
ing is increased to six transects and the process is repeated.
This is done until the window spacing equals half the number
of transects. Once complete, transect groups with a signifi-
cant t-test at each window size are displayed. Another t-test
is computed on significant transect groups within each win-
dow size. Based on the t-test results, the user identifies clus-
ters of transects within each window. The next step is to com-
pare clusters of transects in one window size to overlapping
clusters of other window sizes. This step also utilizes the t-
test, and the user makes the final decision of how the tran-
sects are grouped together. t-Binning is not practical for long
stretches of beach, as varying t-test results make it difficult
to identify bins. For Waihee, Maui, the best-fit t-bin model
had five bins, as shown in Figure 6, and K � 104.

IC-Binning

IC-binning uses scores from an IC to identify bins, and it
is considerably simpler than t-binning. The one-bin model
has one rate for the whole beach. For a beach with I tran-
sects, there are I � 1 possible two-bin models corresponding
to the I � 1 choices for the bin boundary, and each two-bin
model has a rate for each bin. Continuing in this way, one
arrives at the I-bin model, in which each transect has its own
bin; this model is the single-transect model, now seen to be
a special case of binning. IC-binning systematically calculates
an IC score for each bin configuration, then chooses the con-
figuration with the lowest score. As models are examined in
order of increasing number of bins, the IC score first declines
then begins to rise as the number of bins begins to overfit
the data. As soon as the IC score begins to rise, we stop ex-
amining models, and the model with the lowest score is cho-
sen. IC-binning is computationally intensive because of the
large number of candidate models, although the computation
for each model is relatively rapid. For Waihee, Maui, AICc,
AICm, AICu, and SIC favored a three-bin model (Figure 6)
for which K � 100, while gMDL favored a four-bin model (K
� 103) over a three-bin model. Only models up to four bins
were examined because of long execution times. For beaches
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Figure 7. Fifty-year hazard prediction from various methods, Waihee,
Maui.

this size or larger, IC-binning should be powered by a Gibbs
sampler or a genetic algorithm.

Polynomial Methods

In all the methods of this paper, the shoreline change rate
is represented as a linear sum of basis functions. In the bin-
ning method, each basis function is a unit ‘‘boxcar,’’ equal to
unity within its bin and vanishing elsewhere; in the single-
transect method each boxcar narrows to a delta function. By
contrast, in the polynomial methods the basis functions are
linear sums of powers of x. In the LX method (see next sec-
tion), the first basis function represents the average rate of
the entire beach. In the single-transect method, the basis
functions are as local as possible whereas in the LX and RX
methods the basis functions are global.

Similar to binning, the polynomial technique reduces the
number of parameters. However, unlike binning, the rates
vary smoothly along the beach, eliminating the discontinu-
ities that result from binning and single-transect. Rates pro-
duced by the polynomial technique can have lower error than
rates produced by binning models, although this depends on
the particular shoreline—a shore with sharp littoral cells
might be best fit by a binning model. We refer to models in
which rates are assumed time-independent as PX models (for
polynomials in x) and to models in which rates can change
with time as PXT models (for polynomials in x and t). LX and
LXT mean that Legendre polynomials are used, while RX and
RXT mean that trigonometric functions (sines and cosines)
are used.

LX and LXT

Because LX is a special case of LXT, we present only the
latter. For LXT, the parameter vector consists of coefficients
of Legendre polynomials (Weisstein, 1999) sampled at the
transect locations. The forward model for beach erosion con-
tains an intercept sum, a rate sum, and an acceleration sum:

K K0 1

(0) (1)y � ȳ � � P [z(x )] � (t � t̄ ) � P [z(x )]� �ij i k k i j k k i0 0 1 1
k �0 k �00 1

K21
2 (2)� (t � t̄ ) � P [z(x )] � n ,�j k k i ij2 22 k �02

where the Pk(z) are Legendre polynomials on the interval
[�1, 1], and the nij are samples from the noise affecting data
at time tj. The function z(x) maps the interval (x1, x1) to the
interval (�1, 1) by z(x) � �1 � 2(x � x1)/(x1 � x1).

The terms in the LX model have straightforward physical
interpretations. In the rate sum, i.e., the sum with factor (tj

� t̄), the average rate of shoreline change is the coefficient
of P0 because P0 (x) � 1. Similarly, because P1 (x) � x, the
coefficient of P1 in the rate sum is simply related to the flux
of the area from one end of the beach to the other. Roughly
speaking, in the rate sum, transfers of amplitude from terms
of even degree to terms of odd degree represent transfer of
area in the alongshore direction. In the acceleration sum (the
third sum in the model), the coefficient of P0 gives the aver-
age acceleration of shoreline change.

The LX model is obtained as a special case of LXT by omit-

ting the acceleration terms and (because of the preprocessing
baseline shift) the intercept terms; i.e., the first and third
summations in the LXT formula are omitted. When these
terms are present for LXT, we fix the index K0 equal to K2.
If transects are not evenly spaced along a beach, the sampled
Legendre polynomials are not necessarily orthogonal, and we
orthonormalize them with the Gram-Schmidt procedure.

A mathematically inclined reader may wonder why Legen-
dre polynomials were used instead of the Chebyshev poly-
nomials Tn(x) because the latter more closely resemble sines
and cosines. The answer is that Legendre polynomials are
orthogonal in the usual inner product, whereas each Che-
byshev polynomial has a dual function that is singular at x
� 1. Accordingly, a matrix whose columns consist of sam-
pled Chebyshev polynomials may have a poorly behaved in-
verse. For a local analysis at one end of a beach, Laguerre
polynomials can be used, and for a local analysis in the in-
terior of a long beach, Hermite polynomials can be used. Cod-
ing details for LXT are given in the mathematical version of
this paper available from the authors.

To calculate an IC score for the polynomial method, we use
Equations (1) with K � I � K1 � 2K2 � 2. Because there are
I transects, it follows that 0 � K1, K2� I, and the number of
possible LXT models is I2. If we had admitted basis function
sums with missing lower-order terms, the number of possible
models would have been 22I, and the IC scores of LXT might
have been lowered further. For Waihee, Maui, the best-fit LX
model had K � 174, and the best-fit LXT model had K � 242.
Figure 7 shows the 50-year prediction of the shoreline, and
Figure 8 shows the residuals for all methods.

RX and RXT

Legendre polynomials are a reasonable choice for most
beaches because P0(x) � 1 and P1(x) � x. However, for island
shorelines without endpoints, sines and cosines can give mod-
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Figure 8. Residuals in meters for various methods, Waihee, Maui. Black lines on the residuals for t-bin and IC-bin indicate bin boundaries. White areas
indicate missing data, except for EX and EXT, which interpolated missing data. Inclusion of acceleration improves the fit to the 1920 survey. EX and
EXT give the best fits to data.

els with lower IC scores. To use trigonometric functions in-
stead of Legendre polynomials, we make the substitutions

⎧ n � 0
cos �z(x) if n � 0, 2, 4, . . .[ ]2⎪

⎨P [z(x)] →n

n � 1⎪sin �z(x) if n � 1, 3, 5, . . .[ ]2⎩

In other words, if n is even, Pn(z(x)) is replaced by
cos[n�z(x)/2] and if n is odd, Pn(z(x)) is replaced by sin[(n �
1)�z(x)/2]. This correspondence was chosen so that the sub-
stituted trigonometric functions are roughly similar in shape
to the Legendre polynomials they replace. As noted in the

preceding section, we refer to the resulting method as RXT,
and the version without acceleration as RX. For Waihee,
Maui, the best-fit RX model had K � 179 and the best-fit
RXT model had K � 242.

Eigenbeaches (EX and EXT)

In the previous section we expanded the rate and acceler-
ation in preselected polynomials, but in this section we look
for a different set of basis functions based on the beaches
themselves. To make this notion more precise, suppose that
the linearized beach physics is approximately described by
dy/dt � Ay � f. Here, as usual, y is an N � 1 column vector
with component yi(t) representing the shoreline at alongshore
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Figure 9. (a) Eigenbeaches scaled by eigenvalue for Waihee, Maui. (b)
Eigenvalue coefficients vs. time. The coefficient of the eigenbeach with
largest eigenvalue shows the clearest trend with definite acceleration.

location xi relative to the baseline ȳi. The beach operator or
‘‘beach process’’ is an N � N matrix, A, and the source term
f(t) is another N � 1 column vector. In many physics prob-
lems, A has the decomposition U�UT, where the columns of
U are the eigenvectors of A, and the matrix � is diagonal. It
follows that

t

�(t�t ) T �(t�t�) T1y(t) � U e U y(t ) � dt�e U f (t�) ,1 �[ ]
t1

a result that is easy to verify by differentiation. We do not
need to compute anything with this equation; it is given here
only to show that the beach at any given time is a linear sum
of the eigenvectors of A. The coefficients in the linear sum
are the rows of the column vector [. . .] on the right-hand side
of the expression for y(t). To find the eigenvectors, we collect
successive beaches as columns of a matrix, subtract the mean
column from each column, and then find the principal com-
ponents of this beach matrix. If our conception of the beach
physics is even approximately correct, the principal compo-
nents of the beach matrix will give a more parsimonious de-
scription of the change process than can be gotten with poly-
nomials, so it makes sense to use them as basis functions.
We refer to these principal components as eigenbeaches.

We use eigenbeaches for prediction in the same way that
we used Legendre polynomials previously. The first eigen-
beach takes the place of the function P0(z(xi)); the second ei-
genbeach takes the place of the function P1(z(xi)), and so forth
up to Pp(z(xi)). In the polynomial method, the summation up-
per limits K0, K1, K2 cannot exceed the number of transects
I, but in the eigenbeaches method, these upper limits cannot
exceed the number of surveys J. As for most data sets J K

I, there is a strong suggestion that fewer terms are needed
in each sum than in the polynomial method, and this turns
out to be the case. Eigenbeaches with acceleration is referred
to as EXT, and without acceleration, as EX.

In the EX/T method, because the basis functions come from
the data, it is inappropriate to use the same data to compute
the RSS term in an IC. We therefore divide the original data
set into two data sets. We use the first data set to generate
basis functions, then use those basis functions to model the
second data set. We repeat this procedure, interchanging the
data sets. For our final model, we use all the data at once to
generate the basis functions, but the allowed number of rate
basis functions, K1, is related to the number of rate basis
functions from the two earlier runs by choosing the integer
nearest to 2�1/2 (K � K ) with a similar formula for accel-(1) (2)

1 1

eration basis functions. The logic behind this procedure is
that signal-to-noise ratio increases roughly as the square root
of the number of data. Figure 9a shows the eigenbeaches for
Waihee Maui, and Figure 9b shows the time variation in the
coefficients. For Waihee, the best-fit EX model had K � 97,
and the best-fit EXT model had K � 100.

While this paper was in review, two papers appeared that
use methods related to our EX method: Miller and Dean
(2007a, 2007b) used empirical orthogonal functions (EOF) to
characterize modes of shoreline variability. Miller and Dean
(2007a) used the characteristic shape of their spatial EOFs
to develop parametric and nonparametric basis functions tai-

lored to particular shorelines, and Miller and Dean (2007b)
related modes of shoreline variability to physical parameters
in the nearshore environment. Because their interest was in
variability rather than long-term prediction, they used time
EOFs as well as space EOFs. Because our interest is long-
term prediction, our time functions are simple rate and ac-
celeration terms. To understand how the two approaches can
be combined, imagine a data set with dense time samples in
a 5–10 year interval, and sparse time samples in a 50-year
interval. With a reasonable stationarity assumption, the
samples in the 5–10 year interval can tell us about the noise
in the 50-year interval. If we orthogonalize the 5–10 year
spatial EOFs with respect to the 50-year EOFs, the 5–10 year
EOFs can be used to estimate the noise covariance for the
long term process, leading to more accurate long term pre-
dictions and confidence intervals. Thus, denser, modern data
multiply the value of older sparser data.

Robustness

As promised in discussion at the end of the Introduction,
we outline how to make the methods of this paper robust to
violations of the additive Gaussian noise assumption. Dra-
matic examples of the need for robustness are shown in fig-
ures 1–3 of Douglas and Crowell (2000), and in figure 4 of
Genz et al. (2007). Of course, unusual data points associated
with large storms can be removed from data sets, but the
effects of storms and the duration of those effects are not
always known; moreover, the editing of data introduces an
undesirable subjectivity into the analysis. Robust methods in-
clude least absolute differences (LAD), and least median of
squares (LMS). In LAD processing—which has a very long
history, beginning with Laplace, and is sometimes referred
to as L1 processing, as opposed to L2 (least squares) process-
ing—the generalized least squares likelihood function is re-
placed by

�N/2 �1/2 �1/22 �C � exp[��2�C (d � Gm)� ],dd dd 1

in which �. . .�1 is an instruction to sum of the absolute values
of components. Because the covariance matrix is symmetric
and positive definite, its positive square root is easily com-
puted. This likelihood function does not have continuous de-
rivatives, so one must find the optimal model by searching,
using either enumeration (which is best up to 5–6 parame-
ters), or by Markov chain Monte Carlo methods (MCMC) such
as Gibbs sampling (e.g., Basu and Frazer, 1990; Brooks and
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Frazer, 2005; Dosso, 2002; Sambridge and Mosegard, 2002).
Models with 10–20 parameters are not onerous for today’s
desktop computers, and MCMC methods have advantages
not available to least squares. For example, they allow easy
incorporation of prior information, even if the prior is not
conjugate, and they can be used with other information cri-
teria, such as the deviance information criterion (Spiegelhal-
ter et al., 2002).

With regard to use of an IC in LAD processing, Hurvich
and Tsai (1990) derived an IC under the assumption of La-
place (double exponential) noise; in tests on synthetic data
with Laplace noise, they found that their L1 version of AICm
did not perform better than the usual L2 version of AICm,
and it took significantly longer to compute. Accordingly, the
use of L2 ICs on data with L1 noise does not appear to be an
issue of concern.

In least median of squares (LMS), one looks for the param-
eter vector that minimizes the median of the squared resid-
uals instead of the average of the squared residuals (Rous-
seuw, 1984; Rousseuw and Leroy, 1987). Data points identi-
fied as outliers by the LMS processor are then discarded, and
the remaining data are analyzed with (in our case) general-
ized least squares. Rousseuw and Leroy (1987) give a number
of examples in which LAD breaks down and LMS does not.
If a storm is known a priori to be fairly uniform in intensity
along a shoreline, it may be appropriate to omit an entire
survey rather than simply omitting points that do not agree
with the trend. For the methods of this paper, the LMS pro-
cessor can use the same search techniques as LAD. Many
Hawaii beaches have been processed with LMS-RLS with
good results (Fletcher et al., 2003; Rooney, 2002; Rooney and
Fletcher, 2005). In their comparison of LAD and LMS meth-
ods with other methods for single transect processing, Genz
et al. (2007) found that LAD and LMS were both superior but
that neither was notably superior to the other if there was
only one storm point present in the data. Figure 4 of Genz et
al. (2007), has several storm points, and it would not have
been processed correctly by LAD. In the context of another
problem, Antille and El May (1992) give an example in which
LMS breaks down but LAD does not. Birkes and Dodge
(1993) give a readable introduction to both LAD and LMS.

DISCUSSION

Moving Windows

A reviewer of this paper asked: Why not analyze the data
in a moving window? To address this question, note that a
moving window procedure resembles our IC-binning method,
but with a sliding bin; the rate output at each x would be
calculated using data in a window centered at that x. More
sophisticated moving-averaging schemes address this diffi-
culty by allowing the rate to vary smoothly within the moving
window. In local polynomial regression, for example, the data
in the window are fit to a polynomial, and an IC is used to
determine the order of the polynomial, just as we do here for
the whole data set. The parsimony argument against all such
methods is that analyzing a shoreline with 100 transects in
this way still delivers 100 change rates, just as in a single-
transect analysis. By comparison, our LX and EX procedures

parse shoreline change into a small number of physically
meaningful components. In the language of physics, they re-
duce the dimension of the configuration space. Reduction of
dimension nearly always leads to increased understanding
and better predictions, especially in nonlinear systems.

Windowing in the Transform Domain

It is often useful to regard basis function methods as a kind
of filtering. For example, if the sampled Legendre basis func-
tions are orthogonalized (we do this with the Gram-Schmidt
procedure) and if noise is uncorrelated, then LXT consists of
a Legendre transform of each survey, followed by regression
of the coefficients of like degree to the time functions {1, (t �
t̄), ½(t � t̄)2}, then truncation in degree, then inverse trans-
formation. From this point of view, the function of an IC is
to tell us how long to make the boxcar window applied to the
data in the transform domain. However, to avoid ringing over
alongshore discontinuities in rate, one can replace the boxcar
with, say, half of a Hanning window (Bracewell, 2000), as in
Figure 6(b). EX, it should be noted, does not ring across
alongshore discontinuities in rate because such discontinu-
ities will be represented in the lowest order eigenbeach; how-
ever, truncation still leads to artifacts. In using a boxcar win-
dow, we implicitly assume that use of an IC keeps truncation
artifacts below the level of noise, which might be the case for
strongly identifiable models but is unlikely to be the case for
weakly identifiable models. Notably, the use of an IC pro-
vides a natural alternative to the tapering of coefficients,
which is to weight the predictions of different order models
by their relative IC-probabilities pi 	 exp(�ICi/2). Such ex-
tensions to our procedures raise questions that are beyond
the scope of this paper but will be explored elsewhere.

Noise

Our treatment of noise is as simple as possible to compare
different methods in an uncomplicated way. We assume that
noise is additive and Gaussian, that the scale length of the
noise process is the same at each transect location, and that
the noise in any one survey is uncorrelated with the noise in
other surveys. We also assume that noise power is indepen-
dent of transect, and that the relative levels of noise in dif-
ferent surveys are known. Except for the additive noise, all
of those assumptions can be relaxed at the cost of greater
computation time. We estimated alongshore correlation
length from the residuals of the single-transect method, then
used that correlation length estimate with the other methods.
In theory, results can be improved by estimating noise iter-
atively from the residuals for each method—ideally, the best
model is the one that causes the data residuals to be uncor-
related in space and time—but our experiments with itera-
tively determining noise were inconclusive, possibly because
of confounding by weakly identifiable models. Our handling
of noise in the EXT method also raises questions because
noise contaminates the basis functions themselves, an effect
that we attempted to minimize by using cross-validation to
compute the residuals in the IC formulas.

As noted in the preceding discussion, a GLS problem is
transformed to an OLS problem by multiplying the data vec-
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tor by the inverse square root of the noise covariance matrix.
We elected to work with untransformed data partly because
of questions such as: In the binning method, should bins be
selected with transformed data or untransformed data? Mul-
tiplication by the inverse covariance matrix amplifies small
spatial wavelengths and might result in a best-fit model with
more bins than would be found with untransformed data. In
retrospect, such questions now seem to us to be addressable
independent of the transform from GLS to OLS, and it is
mainly a matter of correct coding.

CONCLUSIONS

In any survey, it is always desirable to have as many tran-
sects as possible to reduce the effects of noise. However, tran-
sects that are close together are not independent, and so the
traditional single-transect model leads to overparameteriza-
tion of the data. Here we have introduced three new classes
of methods for predicting beach erosion: IC-binning, polyno-
mial methods, and eigenbeaches. These methods all utilize
basis functions, and the traditional single-transect method
can be regarded as a limiting member in which each basis
function is a delta function. The use of more general basis
functions leads to parsimony via a reduction in the number
of model parameters compared with the traditional single-
transect method. The reduced number of parameters is a
matter of practical importance because it occasionally allows
one to detect acceleration or to make a statistically defensible
prediction with a data set that seems hopelessly noisy when
transects are independently analyzed. IC-binning, which in-
cludes the single-transect method as a special case, forces
rate to be piecewise constant along the beach, which may be
useful for shoreline managers. The polynomial methods parse
patterns of change into components that are easily interpret-
ed, and they force rate to vary smoothly along the beach,
which may be appropriate when the rate is to be used for
long-term prediction. The eigenbeaches method avoids as-
sumptions about rate smoothness by generating its basis
functions from the data themselves. These methods are not
exhaustive—imagine piecewise LX—but they illustrate the
possibilities. Our tests of various ICs support the much more
extensive work of McQuarrie and Tsai (1998) in finding that
AICu is a dependably good IC, especially when sample size
is less than 100. For sample sizes of several hundred or more,
we found that SIC also did well. For a given shoreline, the
difference between good ICs like AICu and SIC is probably
much less important than the difference between single-tran-
sect, binning, PXT, and EXT.

In summary, we favor LXT for short, smooth shorelines
without hardening, and EXT for long shorelines and shore-
lines with hardened sections. EXT seems to us to be the
method most worthy of further development. The single-tran-
sect method should always be run first and compared with
other methods, even when the rates it gives are not signifi-
cant. If different methods agree, a prediction is more likely
to be meaningful, and if they do not agree, it is prudent to
try to understand why.
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APPENDIX A. AICc WITH CORRELATED NOISE

Here we briefly justify the IC formulas used in the body of
the paper. A reader who has never encountered ICs before
might first want to read the derivation in Burnham and An-
derson (2002, p. 362) or Linhart and Zucchini (1986, p. 243).
All IC formulas are based on likelihood and penalty, and we
extend them to correlated data by using the likelihood func-
tion for correlated data. Practically speaking, the net effect
of the extension is to change the definition of RSS that ap-
pears in the IC formulas. The new definition of RSS reduces
to the old one when the data are uncorrelated. The extension
is given here for AICc, and the extensions of the other ICs
are obvious.

The likelihood of data parameter vector m, given data d, is
defined to be the probability density function of d given pa-
rameter vector m. Our model is d � Gm � n, where n is a
Gaussian noise process with covariance matrix Cdd, so the
likelihood function is

1
�N/2 �1/2 T �1L(m � d) � (2�) �C � exp � (d � Gm) C (d � Gm) .dd dd[ ]2

We also need the quantity LL, defined to be �2 times the
logarithm of the likelihood,

LL � N log(2�) � log �Cdd� � (d � Gm)TC (d � Gm).�1
dd

Although Ĉdd is a matrix, it is customary to regard it as a
single parameter, and this is done by assuming that C̃dd is
proportional to some a priori estimate C̃dd with constant of
proportionality �. Thus, � is the variance parameter to be
estimated.

Intuitively it is obvious that models with low LL (high like-
lihood) fit the data better than models with high LL (low
likelihood). A first version of the AICc formula is obtained by
adding a penalty term to LL evaluated at maximum likeli-
hood values,

AICc � LL(m̂, ) � 2KN/(N � K � 1),�̂

in which m̂ and are the values that minimize LL, and the�̂
penalty term reduces the bias caused by having more param-
eters in the model (Hurvich and Tsai, 1989; Sugiura 1978).

To find m̂ and , we differentiate LL with respect to m and�̂
�, then set the derivatives to zero, obtaining m̂ �
(GTC̃ G)�1GTC̃ d, and � N�1(d � Gm̂)TĈ (d � Gm̂), the�1 �1 �1�̂dd dd dd

maximum likelihood estimators (MLE) of m and �, respec-
tively. Putting the MLEs into the AICc formula gives
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�1 1/N T˜AICc � N � N log(2�) � N log[N �C � (d � Gm̂)dd

�1˜� C (d � Gm̂)] � 2KN/(N � K � 1).dd

The determinant property �aA� � aN�A� shows that this re-
sult does not change if C̃dd is multiplied by any positive num-
ber. Because the number of data points N is common to all
terms in the formula, and because N does not depend on
method, we divide by N. Finally, because the first two terms
in AICc are the same for every model, we omit them from the
formula, obtaining Equation (1a).

APPENDIX B. gMDL WITH CORRELATED NOISE

In the nomenclature of Hansen and Yu (2001, 2003), the
version of MDL used by Fenster, Dolan, and Elder (1993) is
a modified SIC criterion (Hansen and Yu refer to it as BIC),
and the SIC is a two-stage MDL. From Hansen and Yu (2001,
2003) we adapt the mixture MDL they refer to as gMDL. Our
gMDL statistic is

⎧ K 2 K
2log S � log F � log N, if R �

N N N⎪
⎨gMDL �

DSS 1⎪log � log N, otherwise.
N N⎩

To compute the gMDL formula, it is helpful to code the
following quantities:

1/N T �1˜ ˜DSS � �C � d C d, the sum of squared data,dd dd

T �1 �1 T �1˜ ˜d̂ � G(G C G) G C d, the predicted datadd dd

1/N T �1˜ ˜ˆ ˆRSS � �C � (d � d) C (d � d), the residual sumdd dd

of squares

FSS � DSS � RSS, the fitted sum of squares

S � RSS/(N � K), the S-statistic

F � FSS/(KS), the F-statistic

N
�1d̄ � N d , the mean of the data vector,� i

i�1

1/N T �1˜ ˜MSS � �C � (d � d̄) C (d � d̄), the sum of squareddd dd

deviations from the mean,

2R � 1 � RSS/MSS, the R-squared statistic,

2 2 2C̃ � diag(
 C , 
 C , . . . , 
 C ), the block-diagonaldd 1 L 2 L J L

data covariance matrix,

2
 : 1 � j � J, the a priori, data-uncertainty scalingj

factors, one for each survey,

(C ) � exp(� �x � x �/L), the submatrix for each time block,L ij i j

L, the correlation length of the spatial noise process.

In mixture MDL a posterior probability density function
(pdf) of m is analyzed instead of a likelihood function and the
prior is a conjugate prior whose parameters are referred to
as hyperparameters. In the MDL formula just given, the hy-

perparameters are hidden because their values have been se-
lected using maximum likelihood (Hansen and Yu, 2001,
2003). Adjustment of a prior pdf using data violates the
Bayesian spirit of MDL, so mixture MDL is likely to undergo
future theoretical refinement. In the name gMDL, the ‘‘g’’
comes from Zellner (1986) who noted that mixture MDL was
simplified computationally by use of a prior for m that has a
covariance matrix proportional to (GTG)�1; Zellner (1986)
called this a g-prior. Our adaptation of gMDL to correlated
noise assumes a prior for m with covariance matrix propor-
tional to (GTC̃ G)�1.�1

dd
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