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Abstract— We have developed a simple technique to 

decorrelate remote sensing color band data from depth in 
optically shallow water. The method linearizes color band data 
with respect to depth by subtracting an optically deep-water 
value from the entire waveband under consideration and taking 
the natural logarithm of the result. Next, this linearized 
waveband is rotated about the model 2 regression line computed 
against a bathymetry band. The rotated color band is 
decorrelated from water depth. We demonstrate the technique 
for a small area of Kailua Bay, Oahu, Hawaii using Quickbird 
multispectral and SHOALS LIDAR data. Results indicate that 
color band data are effectively decorrelated from depth, while 
bottom reflector variability is maintained, thus providing the 
basis for further analysis of the depth-invariant wavebands. The 
primary benefit of our technique is that wavebands are rotated 
independently, preserving relative spectral information. 
 

Index Terms— bathymetry, coastal remote sensing, Kailua 
Bay, LIDAR, Quickbird, radiative transfer, reflectance 
 

I. INTRODUCTION 

Remote sensing has long been a useful tool for study of 
coastal benthic environments (reviewed in [1]). Numerous 
case studies point to the ability of remote sensing technology 
to provide meaningful, quantitative data on ecological and 
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geomorphological systems [2]–[8]. Research into the 
technology itself has generated practical techniques for 
processing aquatic remote sensing imagery [9]-[13] and for 
linking optical remote sensing data with biophysical sea floor 
parameters [14]-[18]. The primary hindrance to routine use of 
remote sensing for study of optically shallow benthic 
environments is the presence of a highly (relative to air) 
absorbing and scattering water column of variable depth  [19]. 
The remote sensing problem is to deconvolve these unknown 
radiative transfer effects from an unknown and variable sea-
floor albedo signal. 
 The most commonly cited approach to compensate for 
water column radiative transfer effects is that of Lyzenga [12], 
[20], [21]. This simple physics-based technique is derived 
from two-flow irradiance transfer and exploits the intrinsic 
correlation between two color bands to generate a psuedo-
depth and a pseudo-color band. First, for each image band, the 
signal from an optically deep portion of the scene is subtracted 
from the entire band, and the difference is ln-transformed. 
This transformation has the effect of (approximately) 
linearizing the data with respect to depth. Next, a model 2 
regression is performed on two of the ln-transformed color 
bands, and the bands are rotated so that the regression slope 
becomes the abscissa in a new coordinate system. This new 
abscissa is primarily related to variations in water depth, while 
the orthogonal ordinate axis is primarily related to variations 
in bottom albedo for the convolved color bands. Theoretically, 
the psuedo-depth channel can be calibrated with appropriate 
ground truth information to provide absolute depth, and the 
pseudo-color channel is a depth-invariant index of sea-floor 
composition. 
 While it has proven to be a useful processing step [7], there 
are complications associated with Lyzenga’s method. First, 
the computed pseudo-depth channel is dependent on the 
relationship between bottom albedos in the two color bands. 
The result is that different bottom-types at the same actual 
depth appear at different pseudo-depths. More importantly, 
since it is a rotation of a convolution of two wavebands, it is 
difficult to interpret a physical basis for the psuedo-color 
band. Advancements on Lyzenga’s basic model include the 
recognition that water column optical properties can be 
spatially heterogeneous within a scene [22]. Other researchers 
have focused on merging external bathymetry data with 
Lyzenga rotation results, thus providing absolute calibration 
for the pseudo-depth channel and creating a bathymetric chart 
at the resolution of the digital image data [23]-[26]. 
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 We present a new method for decorrelating remote sensing 
color bands from bathymetry, inspired both by Lyzenga’s 
rotation approach and by efforts to merge LIDAR bathymetry 
data with color band data. Modern LIDAR systems have the 
ability to generate data at meter-scale spatial resolution, which 
is near that of high-resolution satellite image systems such as 
Ikonos (4 m) and Quickbird (2.4 m). Availability of such 
high-resolution data removes the need for computing water 
depth from passive imaging data, yet there is still a need to 
compensate for water column radiative transfer effects in the 
color-band data. Our approach is to linearize color bands with 
respect to depth following Lyzenga’s method. However, 
rather than rotating two color bands about the regression 
slope, we rotate a single color band against the high resolution 
bathymetry. In the resulting coordinate system, the ordinate 
axis represents color band data decorrelated from water depth: 
for a given bottom reflector-type (i.e., a constant albedo), 
intensity in the rotated color band is independent of water 
depth. We demonstrate this technique using Quickbird 
satellite imagery and a SHOALS LIDAR interpolated 
bathymetry surface. 

 
 

II. MATERIALS AND METHODS 

A. Model 
For a given waveband, the remotely sensed signal (less 

atmospheric and sea surface effects) can be modeled as a 
linear function of bottom albedo and an exponential function 
of water depth (Fig. 1A) [19]. Variations from the exponential 
decay are due to backscattering in the water column. Taking 
the natural logarithm of the remotely sensed signal has the 
effect of (approximately) linearizing the color band data with 
respect to depth (Fig. 1B). Computing the model 2 linear 
regression between the ln-transformed color band and depth, 
and rotating the coordinate system about that regression line 
decorrelates the color band data from water depth (Fig. 1C). In 
other words, by rotating the ln-transformed color band 
according to its linear relationship with depth, we are left with 
a color band whose intensity no longer decreases with 
increasing depth. The decorrelated color band data do not 
have physically meaningful units, but can be calibrated to 
absolute albedo using techniques such as the empirical line 
method. This model requires that bathymetry information 
exists for each pixel in the color bands. 
 An important component of our model is the data from 
which we compute the model 2 linear regression. Considering 
an entire coastal scene, several different bottom-types are 
present, represented by different bottom albedos. After 
linearization, these albedos form roughly parallel lines, as in 
Fig. 1B. If all bottom albedos are equally present at all depths 
under consideration, then a regression computed for all pixels 
will return the correct slope. However, if some albedos are not 
present, then the regression line becomes skewed toward those 
albedos that are present. For example, if the first several “low 
albedo” points in Fig. 1B were missing, then the regression 
slope would be more strongly negative. That is, variability in 

the data is due to both bottom composition and water optical 
depth. Since our goal is to remove the variability due to depth 
while maintaining variability due to bottom composition, it is 
advantageous to compute the regression line using only a 
single bottom reflector-type [7] that is present throughout the 
scene. Then, the entire scene may be rotated about the 
regression line. 
 

B. Data 
We demonstrated this technique using two independent data 

sets for Kailua Bay, Oahu, Hawaii (Fig. 2A): (1) a Quickbird 
image acquired March 13, 2003 (scene ID 03MAR13205953), 
and (2) SHOALS (Scanning Hydrographic Operational 
Airborne Lidar Survey) LIDAR bathymetry data acquired in 
1999. The Quickbird scene exhibited excellent environmental 
quality, with very high water clarity, few breaking waves, no 
visible surface gravity waves, negligible glint, and almost no 
cloud cover. The image was georectified with a resolution of 
2.4 meters per pixel. For this study, we considered only the 
three visible wavebands in a 1500 × 1000 pixel subset of the 
image at the northern end of the Kailua Bay, extending from 
shore to optically deep water (Fig. 2B). The average distance 
between the irregularly spaced, non-gridded SHOALS data 
points was 2.8 meters. We used a continuous curvature 
surface gridding algorithm (Generic Mapping Tools’ surface 
function) to rasterize SHOALS LIDAR data, creating a 
bathymetric surface at the same 2.4 m pixel resolution as, and 
coregistered with, the Quickbird data (Fig. 2C). We created an 
image mask to remove the influence of clouds, subaerial 
surfaces, and artifacts in the bathymetric surface from the 
analyzed portion of the image, leaving 1,055,157 pixels for 
evaluation. 

 

C. Processing 
Following Lyzenga [12], [20], [21] for each waveband, we 

determined the minimum value from a portion of the scene 
covering optically deep water. We subtracted this deep-water 
value from the entire band then computed the natural 
logarithm. To constrain the model 2 regression, we defined a 
region of interest in a nearshore-to-offshore transect that 
encompassed 2,164 pixels of carbonate sand (a relatively 
homogeneous reflector), with depths ranging from near sea 
level to 20 m. Using these transect pixels, we performed a 
regression for each color band against corresponding depth 
values extracted from the SHOALS image. Since these are 
two-variable systems, we used Principal Component Analysis 
to compute the perpendicular regression coefficients [27]. The 
first principal component described the major axis of the 
bivariate data, which in this case represented the attenuation 
of signal with depth.  The orthogonal second component 
described the minor axis of the bivariate data, in this case 
variations of signal within the homogeneous sand reflector-
type. This second principal component provided the rotation 
coefficients to rotate the entire ln-transformed color band, thus 
decorrelating it from depth. To quantify the utility of rotation, 
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we computed the correlation of each color band with depth 
before and after rotation, using the transect pixels. 
 

III. RESULTS 
 Fig. 3 shows the sand transect pixels for each color band 

plotted against depth at each processing step: initial data (Fig. 
3A), ln-transformed data (Fig. 3B), and rotated data (Fig. 3C). 
These graphs illustrate decorrelation in both blue and green 
bands, and a lack of decorrelation in the red band. Figure 4 
shows gray scale images of each color band before and after 
processing. Rotation greatly enhances contrast of bottom 
features in the blue and green bands, while the rotated red 
band exhibits mostly noise. For sand transect pixels, 
correlation coefficients with depth before rotation (and after 
ln-transformation) are 0.979, 0.991, and 0.857 for the blue, 
green, and red bands, respectively.  After rotation, correlation 
coefficients are 0.001, 0.002, and 0.012 for the blue, green, 
and red bands, respectively. Rotation clearly decorrelates the 
blue and green bands from water depth, while the red band 
retains a higher correlation with known water depth. 

 

IV. DISCUSSION 
 Our proposed technique relies on the strong linear 
relationship between ln-transformed color bands and depth in 
optically shallow water. We have invoked a simplified two-
flow irradiance transfer model as the physical basis for this 
relationship. Maritorena, et al. [19] provide an excellent 
derivation of the model and clearly demonstrate its utility for 
describing shallow water reflectance. To the best of our 
knowledge, all case studies on the matter have found the 
model’s approximations to be perfectly adequate (e.g., [12], 
[9], [7]), despite the fact that most remote sensing studies 
consider radiance (often in units of digital counts) as opposed 
to irradiance or reflectance. It is nevertheless important to 
understand that this is a one-dimensional model, describing 
only the vertical variation of light within the water column, 
including the seafloor. 
 The first implication is that the atmosphere and sea surface 
are not included. Prior to application of the model, 
compensation must be provided for non-water column 
radiative transfer effects such as aerosol scattering or sun 
glint. Algorithms exist for such compensations (e.g., [28], 
[11]). For the image used in this study, only minor glint 
effects are present, and subtracting deep-water radiance from 
the entire scene acts as a zero-order atmospheric correction. 
 The second implication is that the model assumes a 
vertically homogeneous water column with respect to optical 
properties. The coastal zone is often a complex hydrodynamic 
environment, resulting in vertical variations of biotic and 
abiotic optically significant water column constituents. 
However, Maritorena et al. [19] point out that it is possible to 
assume a “bulk” attenuation that describes the entire water 
column. In fact, our method does not rely on knowledge of 
actual attenuation values, but simply that attenuation is 
approximately exponential through the water column 

considered as a whole. Deviation from this exponential 
attenuation, as may occur in vertically stratified waters, has 
the potential to detrimentally affect the technique. 
 The final implication of the model is that it does not 
account for horizontal variation in water column optical 
properties. That is, it is assumed that attenuation is constant 
throughout the scene. For the present study, this is a 
reasonable assumption, given the excellent environmental 
conditions under which the imagery was acquired: the study 
area is small, Kailua Bay is open to the ocean, allowing 
significant water exchange, and neither wind nor surface 
gravity waves are present in the image, with no apparent 
sediment resuspension. However, just as optical properties 
vary vertically around coral reefs, they also vary horizontally 
across spatial scales of 10’s of m to km [29], [30]. Such 
variability must be considered before application of this 
model. If significant variability is found, then the image may 
be divided into subsets, each with relatively constant optical 
properties, or algorithms may be applied which automatically 
account for such variability, such as that proposed by Tassan 
[22]. 
 Another important consideration for application of this 
method is the depth-of-detection limit, which is the depth 
where the seafloor-returned signal is no longer strong enough 
to provide for bottom detection and/or discrimination. In this 
study, the linear relationship between ln-transformed color 
bands and depth is clearly apparent in both the blue and green, 
but is notably absent in the red (Fig. 3B). Examination of the 
data reveals that the blue and green bands exhibit strong 
seafloor-return signals (SNR ~100) to depths of 40 and 25 m, 
respectively, while the red band loses the seafloor signal at 
only 5 m depth (Fig. 3 and 4C). For most of the scene under 
consideration, the balance of variability in the red channel is 
comprised of sea surface clutter and sensor noise. Thus, it is 
inappropriate to apply the rotation to this channel, and the 
appearance of seafloor features in the rotated red band (Fig. 
4F) is an artifact of the lack of decorrelation from the depth 
band. 
 Discounting environmental and sensor noise, variability in 
the color bands comes from two sources. First, and most 
significant, is attenuation due to water optical depth. For an 
homogenous bottom-type, and therefore a relatively 
homogenous reflector, Fig. 3A indicates ranges of 
approximately 150, 400 and 200 digital counts for the blue, 
green, and red color bands, respectively, across the depths 
considered in this study. The second source of variability 
arises from differences in reflector type. The green band in 
Fig. 3A shows a range of about 75 digital counts near 4 m 
depth, indicating local differences in sand albedo in those 
pixels. After rotation, Fig. 3C still shows this local variation, 
but the global depth-dependent variation is no longer present. 
Thus, this technique effectively removes variations due to 
water depth, while maintaining variations due to bottom 
signal.  
 Removal of variation associated with water depth is 
possible because of the approximately linear relationship 
between ln-transform reflectance and water depth, as 
measured by the correlation coefficient. High correlation 
coefficients, 0.979 and 0.991 measured for the sand pixels in 
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blue and green log-transformed bands respectively, indicate an 
almost perfect linear relationship. Visually, it is easy to see 
this relationship in Fig. 3B. In striking contrast are the same 
sand pixels in the ln-transformed red band. These pixels pass 
into optically deep waters by 5 m, no longer varying as a 
result of depth and blowing up during the ln-transform. 
Though by other standards these pixels’ correlation coefficient 
of 0.857 may seem high, in this case it is unacceptable by 
comparison to the almost perfect linear relationship exhibited 
when the bottom is in optically shallow waters. Consequently, 
after rotation the red sand pixels in Fig. 3C do not display the 
same narrow range of variation, resulting from minor 
differences in sand albedo, as do both blue and green. Fig. 3C 
is evidence of a non-linear relationship rotated via a linear 
regression resulting in red sand pixels that display a strange, 
non-linear behavior with depth. Again, though a correlation 
coefficient of 0.012 may seem low by normal standards, in 
this case it is completely unacceptable. 
  The only discontinuity in the linear relationships of the 
blue and green ln-transformed sand pixels with depth is 
around 2 m. There is a slight steepening of the trend in this 
shallow region of the scene. One possible source for this 
discontinuity might be localized sediment resuspension from 
the higher energy environment of the near-shore breaker 
region. This would create different water column optical 
properties than the rest of the transect. Another possibility is 
that there may be a different type of sand, and subsequent 
albedo, in this region, again resulting from the higher energy 
environment. Either or both of these could result in the minor 
change in slope in the shallowest 2 m of the scene. 
 The output of our method is analogous to that of Lyzenga’s 
method, in that both methods generate pseudo-color bands 
whose numerical values have no readily interpretable physical 
meaning. The distinction between the two methods is that 
output from Lyzenga’s method represents a convolution of 
two color bands, while output from ours is a set of 
independently decorrelated color bands. The principal 
advantage is that our method maintains the relative intensities 
of different bottom reflectors within the primary wavebands, 
which does provide for more direct knowledge-based 
interpretation. There is also potential that our pseudo-color 
bands may be calibrated to absolute reflectance through 
techniques such as the empirical line method, thus allowing 
application of spectral classifiers built using libraries of in situ 
reflectance data. 
 Because it is a rotation of axes into a new coordinate 
system, this method requires a depth value for each pixel to be 
rotated. In this study we have a best case scenario: the 
footprint of the LIDAR data is very close to the pixel size of 
the multispectral image, and we therefore have accurate values 
with which to perform the rotation. It may be possible to 
utilize depth data from a lower resolution source, interpolating 
to the resolution of the color bands. Provided that the 
interpolated surface adequately (though “adequate” has yet to 
be quantified) represents actual depth variations, rotation 
should provide significant decorrelation. 
 In summary, we have developed a method to decorrelate 
color band data from depth in optically shallow water. The 
method follows ideas introduced by Lyzenga [12], [20], [21], 

but differs in that individual ln-transformed color bands are 
rotated against a bathymetry band rather than other color 
bands. The method produces pseudo-color bands that are 
suitable for direct knowledge-based interpretation or for 
calibration to absolute reflectance. The method is both simple 
and efficient, and it is potentially useful in remote sensing 
applications aimed at studying the seafloor. 

 Currently we are using this method to decorrelate 
QuickBird Satellite imagery from depth in near-shore scenes 
on Oahu, Hawaii. These images are then classified to identify 
sandy substrate on the reef in water depths from 0 to 20 m. 
For this application the method works very well. 
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Figure 1. Conceptual model for decorrelating color band data from depth. (A) 
Within a given waveband, the bottom-reflected radiance signal decreases 
approximately exponentially with depth. Deviations from exponential decay 
are due to scattering effects. Values shown here are modeled using Hydrolight 
4.1 forward radiative transfer model. (B) After subtracting the value for 
optically deep water, the natural logarithm of the bottom-reflected signal 
decreases approximately linearly with water depth. Different bottom albedos 
appear as parallel lines with the same slope. (C) Rotating the axes through the 
angle defined by the slope effectively decorrelates color band data from depth, 
while maintaining the relative intensities of different bottom albedos. 
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Figure 2. Study site location and data. (A) Map of Oahu, Hawaii. Study site 
within Kailua Bay is outlined. (B) Initial QuickBird image for study site, 
displayed as an RGB image. (C) Shoals LIDAR data interpolated to a depth 
image and displayed in rainbow hues varying from red at 0 m to black at 40 m. 
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Figure 3. Plots of sand transect pixels for each stage of the process. (A) Initial 
data. Sand transect pixels for blue, green, and red bands are plotted with depth 
values on the x-axis and color band DN values on the y-axis. (B) ln-
transformed data. Sand transect pixels are plotted with depth values on the x-
axis and log-transformed DN values on the y-axis. (C) Rotated data. Sand 
transect pixels are plotted with depth values on the x-axis and rotated color 
band values on the y-axis. 
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Figure 4. Gray scale images of initial bands and rotated bands. All images are 
masked to remove all terrestrial components, anomalies in the depth data, and 
surface disturbances on the water. (A) Initial blue band. (B) Initial green band. 
(C) Initial red band. (D) Rotated blue band. (E) Rotated green band. (F) 
Rotated red band. 
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