The main factors considered are the component's quality (Q) factor and its self-resonant frequency (SRF).

The Q factor describes a ratio of an inductor's reactance to effective resistance. This value is frequency dependent, and therefore the test frequency is often specified. Specifically, Q affects the sharpness of a resonant filter and the center frequency of an LC circuit. Because a high value of Q is preferred, datasheets specify a minimum Q value.

SRF simply describes the frequency at which an inductor quits working as an inductor. For RF design, an SRF should be chosen with a minimum value that exceeds the operating frequency of one's circuit.

The main factors considered are the component's quality (Q) factor and its self-resonant frequency (SRF).

The Q factor describes a ratio of an inductor's reactance to effective resistance. This value is frequency dependent, and therefore the test frequency is often specified. Specifically, Q affects the sharpness of a resonant filter and the center frequency of an LC circuit. Because a high value of Q is preferred, datasheets specify a minimum Q value.

SRF simply describes the frequency at which an inductor quits working as an inductor. For RF design, an SRF should be chosen with a minimum value that exceeds the operating frequency of one's circuit.