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Abstract. We investigate the occurrence and dynamics of rogue waves using large-
scale, three-dimensional, phase-resolved simulations. The direct simulations are
based on a high-order spectral method. The method resolves the phases of a large
number (up to O(107)) of wave modes, and accounts for nonlinear interactions
among them up to an arbitrary high order. Significantly, the simulations obtain
exponential convergence, near linear computational effort, and are efficiently
implemented on high-performance parallel computers. With this capability we
are able to obtain long time (up to O(104) sec) nonlinear evolutions of large (up
to O(102∼3) km2) phase-resolved three-dimensional wave-fields. Our interest is
to use these simulations to obtain the frequency and distribution of rogue wave
occurrences and the nonlinear wave-wave interaction, in particular modulation
instability, mechanisms underlying the generation and evolution of such rogue
waves in open seas.
We present the findings from a typical simulation of a nonlinear wave-field
generated from JONSWAP spectrum. The occurrence and distribution of rogue
waves are analyzed. The local spatial/temporal characteristics of the rogue wave
are shown. Energy flux is investigated to explain the formation of rogue waves.

Introduction

The occurrence of rogue waves has been reported by ship
crews (Lavrenov, 1998; Lawton, 2001) and has also been ob-
served in the field wave elevation data (measured at offshore
platforms (Haver, 2000); and at floating buoys (Pelinovsky et
al. , 2004) and the satellite ocean surface images (Dankert et
al. , 2002). Typically, rogue waves have a wave height of two
to three times that of the local significant wave height, and
a wavelength comparable to the dominant wavelength of the
wave-field. Such large steep waves may cause catastrophic
damages to offshore structures and surface ships.

Despite a large number of studies, the key mechanisms
underling the occurrence and generation of rogue waves re-
main unclear. In the context of linear wave theories, ex-
treme waves may be formed by a superposition of multi-
ple wave components with an appropriate phase combina-
tion (Brown and Jensen, 2001). However, the probability
of such extreme waves from linear superposition is much
smaller than that observed in the field. Moreover, the dura-
tion of such extreme waves is much shorter than that of typ-
ical rogue waves observed in the field. When wave-current
and wave-bottom interactions are considered, wave focus-
ing can result from wave refraction by variable current and

bottom topography (Gerber, 1993; Lavrenov, 1998). While
this mechanism might be important in the nearshore area, it
does not explain the occurrence of rogue waves observed in
deep ocean with weak current. When nonlinear wave effects
are accounted for, nonlinear modulation instability (Janssen,
2003) and/or nonlinear quartet/quintet resonant wave-wave
interactions may play significant roles in the development of
rogue waves. Based on the field data measured at nine differ-
ent locations near Japan, Yasuda and Mori (1997) found that
the occurrence probability of rogue waves varies with the
significant wave height of the wave-field. Nevertheless, the
dependence on other physical wave parameters of the wave-
field such as frequency distributionand directional spreading
were not addressed. Based on a nonlinear Schrodinger equa-
tion, Onorato et al. (2001, 2002) recently found that for a
wave-field given by JONSWAP spectrum, the occurrence of
rogue waves increases with the Phillips parameter and the
enhancement coefficient, but decreases with the directional
spreading. However, this approach is limited to narrowband
wave-fields. The effects of (broad) bandwidth and long time
nonlinear evolution of the wave-fields on rogue wave forma-
tion are still unknown.

In this work, we apply direct large-scale, phase-resolved
simulations of three-dimensional nonlinear wave-field evo-

101



102 WU, LIU, AND YUE

lution to investigate the occurrence and dynamics of rogue
waves. The main focus is on the understanding of the effect
of nonlinear modulation instability upon the development of
rogue waves. Unlike field observations and laboratory ex-
periments which usually obtain either temporal data at a few
locations in space or spatial data at a few instants, the present
direct simulations provide both temporal and spatial data of
a large-scale wave-field. This allows us to study systemati-
cally the statistical properties of rogue waves, such as occur-
rence frequency and spatial/temporal distributions, the lo-
cal spatial/temporal characteristics and kinematics of rogue
waves, and their dependence on physical parameters of the
wave-field such as wave height, frequency distribution, and
directional spread.

Direct simulations of nonlinear wave-field evolution are
obtained using a high-order-spectral (HOS) method (Dom-
mermuth and Yue, 1987). The HOS method is developed
based on the Zakharov equation and mode-coupling idea. It
follows the evolution and resolves the phases of a large num-
ber (O(107)) of wave modes, and accounts for their nonlin-
ear interactions up to an arbitrary high order. In particu-
lar, this method achieves an exponential convergence and a
(near) linear computational effort with respect to the num-
ber of wave modes and the interaction order. Together with
these, its high scalability on high-performance computing
platforms makes the HOS an effective approach for direct
simulations of large-scale nonlinear ocean wave-field evolu-
tion.

Specifically, in this study, we simulate the nonlinear evo-
lution of a wave-field generated from JONSWAP spectrum
with cos2θ directional spreading. Based on the simulation
results, rogue wave events are identified during the evolution
of the wave-field, and the local spatial and temporal charac-
teristics of each rogue wave event are analyzed. The focus
is on the understanding of the formation mechanism of such
events from the viewpoint of energy flux/transfer. Some pre-
liminary results on statistics of rogue waves are also pre-
sented.

HOS simulations of three-dimensional
nonlinear wave-field evolution

We apply the high-order spectral method to simulate the
nonlinear evolution of a large-scale three-dimensional ocean
(surface) wave-field in deep water. For simplicity, we as-
sume that there is no wind input. The dissipation due to wave
breaking is modeled by a low-pass filter in wavenumber do-
main (for small scale spilling breaking) and a local smooth-
ing in physical domain (for large scale plunging breaking).
In the interest of present study, the nonlinear wave-wave in-
teractions are considered up to the third order (M=3) though
the higher order effects can be accounted for without diffi-
culty in HOS simulations. A square computational domain,

28.7km × 28.7km is used. Doubly periodic boundary con-
ditions in the horizontal directions are employed.

In the simulation, the spatial resolution is NX × NY =
4096×4096 with ∆x=∆y=7.0 m. The waves captured in the
simulation are those with wavelengths between 28.0 m and
28.7 km. The wavenumber resolution is 0 ≤ kx/∆k ≤ 1024
and −1024 ≤ ky/∆k ≤ 1024 with ∆k = 0.00022 m−1

To obtain an initial nonlinear wave-field for HOS simu-
lations, we employ a linear wave-field (with random phase
for each wave component) as the initial condition and simu-
late its nonlinear evolution using HOS for a period of time,
say Ta. The effect of non-physical phase combination of
the initial wave-field is removed by smoothing out breaking
waves during this period of evolution. The resulting nonlin-
ear wave-field at t = Ta is then used as the initial condition
of HOS simulations for the study of rogue wave develop-
ment.

In this study, the initial linearized wave-field is given by

η(x, y, t = 0) =
1024∑
m=0

1024∑
n=−1024

ηmn ,

φ(x, y, t = 0) =
1024∑
m=0

1024∑
n=−1024

φmn ,

where

ηmn = Amn cos[m∆k x + n∆k y + αmn] ,

φmn =
gAmn

ωmn
sin[m∆k x + n∆k y + αmn].

In the above, η represents the free surface elevation and φ is
the velocity potential on the free surface. And ωmn, Amn ,
and αmn are respectively the frequency, amplitude and phase
of the wave component with wavenumber (kxm, kyn) =
(m∆k, n∆k). The phase αmn is assigned by a random
value in [0, 2π]. The amplitude Amn is obtained from the
wavenumber spectrum Sk(kx, ky):

Amn = [2Sk(m, n)]
1
2 ∆k (1)

where Sk(m, n) ≡ Sk(kxm, kyn) ≡ Sk(m∆k, n∆k). The
wavenumber spectrum is related to the frequency-direction
spectrum (in deep water) S(ω, θ) by:

Sk(m, n) =
g2

2ω3
mn

S(ωmn , θmn) (2)

where g is the gravitational acceleration, and θmn is the
propagation direction of the wave component (kxm, kyn).

If the initial linear wave-field is directly used for non-
linear HOS simulations, spurious high-frequency standing
waves may be generated since the initial wave-field does not
satisfy the nonlinear free-surface boundary conditions. In or-
der to minimize this effect, we follow Dommermuth (2000)
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to write the kinematic and dynamic boundary conditions on
the free-surface z = η(x, t) in the form:

ηt − Φz = −W (t)ηx · Φx ,

and

Φt + η = −W (t)
1
2
(Φx · Φx + Φ2

z) .

Here W (t) is a smooth function varying from 0 (at t = 0)
to 1 (for t ≥ Ta) (Dommermuth, 2000). In this study, we
use Ta = 10TP where TP is the peak period. Note that for
the results shown, the time t = 0 corresponds to the instant
when this transient process ends.

In this study, we consider a JONSWAP spectrum with a
cos2 θ directional spreading:

S(ω, θ) =
αg2

ω5
exp

[
−5

4
(

ω

ω0
)−4

]
γ

exp − (ω−ω0)2

2σ2ω2
0

2
π

cos2 θ ,

for −π
2

≤ θ < π
2

. We use the enhancement coefficient
γ=1.0, Phillips parameter α=0.0352 (corresponding to a sig-
nificant wave height HS=12 m), and ω0=0.5236 s−1 (cor-
responding to a peak period Tp=12 s and peak wavelength
λP =224 m). The coefficient σ = 0.07 for ω ≤ ω0 and 0.09
for ω > ω0. The effective wave steepness of this wave-field
is about 0.1.

In the HOS simulation, the time step is ∆t=0.375 s
(TP /∆t = 32), the simulated wavefield evolution time is
TSim=160TP , and the nonlinear interaction order is M = 3.
The simulations are performed on IBM SP4 HPC platform
with 256 processors used. The computational time of each
simulation is about 100 hours.

Data analysis

At each time step, the simulation obtains the wave eleva-
tion and velocity potential of the complete wave-field in both
physical and spectral spaces. Based on these data, we per-
form both statistic and deterministic analysis to understand
the occurrence and dynamics of rogue waves.

Spectrum evolution

For statistic analysis, we study the spectrum evolution of
the nonlinear wave-field. From HOS simulation, we can ob-
tain Amn at each time step by applying Fourier Transform to
the elevation data of the wave-field. Therefore the wavenum-
ber spectrum Sk(m, n) and frequency-direction spectrum
S(ωmn , θmn) can be obtained using relations (1) and (2) re-
spectively.

Because the discretized data points (ωmn, θmn) corre-
spond to a uniform grid in the wavenumber space but not in
the frequency-direction space, S(ωmn , θmn) cannot be used
directly to compute direction-integrated frequency spectrum
or frequency-integrated direction spectrum. Thus, we need

to transform the non-uniformlydiscretized frequency-direction
spectrum, S(ωmn , θmn), to a uniformly discretized one. For
this purpose, we discretize the frequency-direction domain
with grids defined by

ωi = i∆ω, i = 1, ..., Nω

and
θj = −π

2
+ j∆θ, j = 1, ..., Nθ

where Nω is the number of frequency bands, Nθ is the num-
ber of direction bands, ∆ω = ωmax/Nω, ∆θ = π/Nθ . Here
ωmax is the maximum frequency to be analyzed.

The value of the spectrum at each grid (ωi, θj) is then
obtained in terms of the non-uniformly-discretized spectrum
values around this point:

S(ωi, θj) =

∑
m,n S(ωmn , θmn)Rij,mn∑

m,n Rij,mn
.

Here the summation is defined to be over all values of m and
n satisfying

|ωmn − ωi|
∆ω

≤ 1
2

and
|θmn − θj |

∆θ
≤ 1

2
.

Rij,mn is the weighting function, which we choose to be the
inverse of the distance between (ωmn, θmn) and (ωi, θj):

Rij,mn =

[(
ωmn − ωi

∆ω

)2

+
(

θmn − θj

∆θ

)2
]−1/2

.

After S(ωi, θj) is obtained, the direction-integrated fre-
quency spectrum or frequency-integrated direction spectrum
are computed as:

S(ωi) =
Nθ∑
j=1

S(ωi, θj) ,

S(θj ) =
Nω∑
i=1

S(ωi, θj) ,

and the normalized direction spreading function is:

D(θj , ωi) = S(ωi, θj)/S(ωi) .

In this paper, we use (Nω, Nθ)=(140, 90) and ωmax =
1.4 s−1 for the spectrum evolution analysis.

Rogue wave identification

To study the occurrence and dynamics of rogue waves, we
first need to identify the rogue waves from the wave-field.
For this purpose, at any given time, we search the surface
elevation data of the nonlinear wave-field and find all local
crests or troughs x0. The meaningful trough or crest (useful
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Figure 1. Definition sketch of the local wave height, Hmax, and
the crest-trough distance, L, in an irregular wave-field.

for identifying rogue waves) is defined as the lowest/highest
point x with |x − x0| ≤ λp. We define the height between
this crest-trough pair to be Hmax; and the distance between
them, L, as shown in Figure 1. The normalized local wave
height, αh, and wave steepness, β are introduced as:

αh ≡ Hmax/HS; β ≡ πHmax/2L

The specific procedure to identify a rogue wave event is:

• For a given rogue wave searching criterion αh ≥
αc, search the wave-field and find all local crests or
troughs xj , which satisfies |η(xj)|/HS ≥ αc/2;

• For each xj , find its normalized local wave height
αhj;

• If αhj ≥ αc, xj and its corresponding crest or trough
form a rogue wave;

• For multiple rogue waves found within a distance of
λP /2, only the largest one is followed in this study.

Numerical results

Spectrum evolution

Figure 2 shows the time evolution of the direction-integrated
frequency spectrum, S(ω), of a typical nonlinear wave-field
obtained in this study. It is seen that the wave spectrum
changes rapidly at the initial stage of evolution and reaches
a quasi-steady state after t/TP ≥ 80 of evolution. A signifi-
cant amount of wave energy is lost for waves with frequency
larger than the peak frequency during this process while a
slight increase of energy for frequency just below the peak
frequency is seen. The variation of the spectrum with time
for t > 80TP is much slower than that for t ≤ 80TP . Figure
3 plots the variation of the total energy of the wave-field dur-
ing the evolution. The result indicates that the total energy
loss is about 21% (28%) after 80TP (160 TP ) of evolution,
compared to the initial wave-field.
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Figure 2. The evolution of direction-integrated frequency spec-
trum of a nonlinear wave-field. Plotted are the spectrum at time
t/TP =0 (——), 40 (——), 80(——), 120 (——), and 160 (——).
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Figure 3. The energy dissipation during nonlinear evolution of the
wave-field.
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Figure 4. The evolution of frequency-integrated direction spec-
trum of a nonlinear wave-field. Plotted are the spectrum at time
t/TP =0 (——), 40 (——), 80 (——), 120 (——), and 160
(——).

Figure 4 shows the time evolution of the frequency-
integrated direction spectrum, S(θ). It is similar to that
of the frequency spectrum except that a significant amount
of energy is dissipated for wave components with direction
within [−60◦, 60◦]. To see the dependency of the direction
spreading on frequency, we compare the normalized direc-
tion spreading function, D(θ, ω), at t/TP = 0 and 100. We
obtain that at t = 0, the direction spreading for all fre-
quency components agrees with the cos2 θ function; while
at t = 100TP , the direction spreading deviates significantly
from it for ω > 1.5ω0. In particular, the direction spreading
is broader, and for ω > 2ω0, two peaks are formed at ±60◦.
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Figure 5. Locations and their corresponding α h values of rogue
waves detected from the simulated wave-field for rogue wave cri-
terion αc = 2.2 at four different instants: t/TP =100 ( ), 120 ( ),
140 ( ), 160 ( ).

Rogue waves

We search the wave-field using a rogue wave criterion of
αc = 2.2 at four instants: t/TP = 100, 120, 140, and 160.
The number of rogue wave events detected is respectively 5,
3, 3, and 2. In Figure 5, the spatial distribution of these
rogue waves in the simulated ocean wave-field is shown.
The rogue waves detected at different instants are marked
with colored symbols. It shows that rogue waves can happen
anywhere in the wave-field. The local wave height, αh, of
each rogue wave is also shown. The largest rogue wave de-
tected here is αh=2.45. We also calculate local wave steep-
ness, β, for all these rogue waves. We obtain that 8 (out of
13) rogue waves have β in between 0.2 and 0.3; three have β
in between 0.3 and 0.4; and the other two have β in between
0.1 and 0.2.

Evolution of rogue waves

To study the local spatial and temporal characteristics of
rogue waves, we focus on one example of the rogue waves.
This wave occurs at t/TP = 100, xc = (8970,−11567)
m with αh = 2.43, where xc is the position of the rogue
wave crest. By following the evolution of the wavefield
around this rogue wave event from t/TP =95 to 105, we
find that the rogue wave event has a group-like behavior,
in which three large waves appear subsequently at differ-
ent locations along the wave propagation direction. The
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Figure 6. Free-surface elevation contours of the wave-field around
a large wave in one rogue wave event at t/T P = 98.1, xc =
(8720,−11592) m.

rogue wave detected at t/TP =100 is actually the third large
wave in this group. These three large waves appear in or-
der at t/TP =96.5, 98.1 and 100; their crests are respec-
tively at xc = (8570,−11567) m, (8720,−11592) m and
(8970,−11567) m. We see that the y coordinates of these
three crests are almost the same, indicating the rogue wave
propagates almost in the same direction as that of the domi-
nant wave. Based on the crest location and time of the first
and third large waves, the velocity of this rogue wave can be
estimated to be 0.51λP /TP , which is very close to the group
velocity of the dominant wave component.

Figure 6 shows, as an example, the surface elevation con-
tour of the wavefield around the second large wave, which is
also the largest one, with αh=2.66. Only a small part (∼ 1.8
km × 1.8 km) of the total computational domain is shown.
Figure 7 shows the time history of the elevation at the crest
location of this wave. It is seen that the local wave height is
much larger when the rogue wave passes, compared to other
times. The period of this local large wave is almost identical
to TP . It is also observed that the crest and trough of this
wave are strongly asymmetric with the distance of the crest
from the mean water line almost doubling that of the trough.
Figure 8 shows instantaneous wave profiles along the cross-
cuts of this wave in the x and y directions. The features
of large local wave height and strong asymmetry of crest
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Figure 7. The time history of the free-surface elevation at x =
(8720,−11592) m before and after the rogue wave event.
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Figure 8. Local crosscuts of a large wave in one rogue wave event
at xc = (8720,−11592) m, t/T = 98.1. (a) Crosscut along the
x direction at y=-11592 m; (b) Crosscut along the y direction at
x=8720 m.

and trough are again observed. The wavelength of the rouge
wave in the transverse direction (figure 8b) is about twice
that in the longitudinal direction (Figure 8a). This nearly
long-crest shape is consistent with the description of rogue
waves as “a wall of water” reported in field observation.

Energy flux analysis

To assist the understanding of the mechanism of rogue
wave generation, we study the energy density evolution of
the wave-field around the rogue wave event shown above.
The total energy density at point x is given by

E = EK + EP

where the potential and kinetic energy densities are respec-
tively given by

EP (x, t) =
1
2
gη2(x, t),

and

EK(x, t) =
∫ η(x,t)

−∞

1
2
| � φ(x, z, t)|2 dz .

We consider a control volume with x ∈ [8408, 9075] m and
y ∈ [−11679,−11454] m. This is a region with a length of
3λP and a width of λP , which includes all three large wave
locations in the rogue wave event we discussed above.

The result indicates that the total energy in this control
volume starts to increase significantly from t/TP = 95,
reaches a maximum value at t/TP = 99.2, and then de-
creases back to a relatively small value at t/TP = 101.5.
This process lasts 6.5TP , which is exactly the duration in
which the rogue wave develops. This persistence duration,
∼ 80 s, is similar to that reported in the field observation.
This suggests that energy focusing plays an important role
in rogue wave formation.

To understand where the energy in focusing comes from,
the energy fluxes across four boundaries of this control vol-
ume are calculated as a function of time. The result indicates
that the energy focusing and de-focusing during the forma-
tion of rogue waves are mainly along the dominant propa-
gation direction of the wave field. This again confirms the
locally two-dimensional feature of rogue waves observed in
the field.

To further understand the local kinematics of rogue waves,
we calculate the growth rate of maximum energy density in
the rogue wave group (Song and Banner 2002). Although
the growth rate obtained is much larger than the threshold
value for wave breaking suggested by Song and Banner, the
rogue wave in our simulation does not break. The possible
reason for this disagreement may be due to the effects of
broadband and three-dimensionality of the wave-field. Fur-
ther investigation on this is underway.

Conclusions

Direct simulations of large-scale three-dimensional non-
linear wave-field evolution are employed to investigate the
occurrence and dynamics of rogue waves. Sample prelimi-
nary simulation results for wave-fields (initially) generated
from JONSWAP spectra with cos2 θ directional spreading
are presented. A number of rogue wave events are obtained
during the nonlinear evolution of the wave-fields. The local
temporal and spatial characteristics of a representative rogue
wave event is studied in detail. The nearly two-dimensional
(long-crested) features of rogue waves are confirmed by ex-
amining the wave profiles and the evolution of energy den-
sity and energy flux during rogue wave development.
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In order to study the dependency of rogue wave statistics
on physical parameters, we perform a series of computations
using initial wave-fields characterized with varying parame-
ters of the wave-field such as wave height, direction spread-
ing, and frequency distribution of the wave spectrum. In
addition to the mechanism associated with modulation insta-
bility, we are studying the effects of quartet/quintet resonant
wave-wave interactions on rogue wave formation based on
longer time evolutions of three-dimensional nonlinear wave-
fields. The results of these studies will be reported else-
where.
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