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Abstract. We investigate rogue waves in the framework of the nonlinear
Schiodinger (NLS) equation and correlate the development of rogue waves in
oceanic sea states characterized by the JONSWAP spectrum with the proximity to
homoclinic solutions of the NLS equation. Using the inverse spectral theory of the
NLS equation, we introduce the “splitting distaneebetween two simple points

in the discrete Floquet spectrum of the associated AKNS problem, as a way of
determining the proximity in spectral space to instabilities and homoclinic data of
the NLS equationl@as and Schober, 2005). In several hundred simulations of the
NLS equation, where the parameters and the phases in the JONSWAP initial data
are varied, we find that (i) rogue waves develop whenever the splitting distance

is small and (ii) rogue waves do not occur when the splitting distansdarge.

I ntroduction equation
g+ Ugp + 2|u|u = 0. (1)

In the past several years there has been particular interest The NLS equation has proven to be an excellent model
in understanding the physical processes responsible for theyr initiating studies of rogue waves in deep water. A
generation of rogue waves. According to Rayleigh’s distri- linearized analysis of the NLS equation shows that low-
bution of wave heights, an extremely unlikely wave event, afrequency modes may become unstable and that the num-
rogue wave, is a high amplitude wave whose height exceedger of unstable modes increases with the amplitude of the
2.2 times the significant wave height, of the background  carrier wave. The complete integrability of the NLS equa-
sea Kharif and Pelinovsky, 2003). Rogue waves have been tjon allows one to use &Xklund transformations to compute
observed in both shallow and deep water, with or withouthomoclinic solutions&rcolani et al., 1990) and thus study
the presence of strong currents. Several mechanisms hayfie nonlinear evolution of the instabilities. In the simplest
been proposed to explain their formation subject to the spesetting homoclinic orbits of the unstable Stokes solution of
cific physical conditions (e.gQlagnon and Athanassoulis  the NLS equation have been used for modeling rogue waves
2000; Henderson et al., 1999; Trulsen and Dysthe, 1997;  (Osborne et al.; 2000, Calini and Schober, 2002). Homo-
Pelinovsky et al., 2001;Brown, 2001). clinic solutions of the NLS equation with a complex space-

In the linear theory, the wave field is assumed to be the sutime structure, obtained with two or more unstable modes,
perposition of a large number of small amplitude, monochro-can be phase modulated so that the modes are excited simul-
matic waves, with random, uniformly distributed frequen- taneously (optimal phase modulation), or nearly so. In this
cies and phases. The occurrence of rogue waves can be dgase, the wave amplification is due to both the BF instabil-
to space-time caustics, dispersion phenomena, spatial focugty and the additional phase modulation (see Fig. Califi
ing, and wave-current interactiorBrown, 2001;Kharif and and Schober, 2002).
Pelinovsky, 2003). However, upon analyzing satellite data  The NLS equation is the leading order equation in a hier-
the European MAXWAVE project detected more extreme archy of envelope equations and is derived from the full wa-
waves than predicted by the standard linear thebghfer  ter wave equations under the assumption of a nar¢iw)
etal., 2004). banded spectrum. This bandwidth constraint limits the ap-

One of the proposed mechanisms for the generation oplicability of the NLS equation in 2D as it results in energy
rogue waves in the open ocean is nonlinear self focusing dutkeakage to high wave number modes. A more accurate de-
to effects like the Benjamin Feir (BF) instability (e.élen- scription of water wave dynamics is provided by, for exam-
derson et al., 1999;Calini and Schober, 2002;Kharif et al., ple, the fourth-order modified Dysthe (MD) equation, de-
2001; Onorato et al., 2001a; andPelinovsky et al., 2000).  rived by assuming the bandwidth@(,/¢) and by retaining
The BF instability, where a uniform train of surface waves higher order terms in the asymptotic expansion for the sur-
is unstable to a weak amplitude modulation, is described tdace wave displacemenfiulsen and Dysthe, 1996). The
leading order by the focusing nonlinear Setiriger (NLS)  MD equation is able to capture higher-order physical ef-
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solutions of the NLS equation are significant in modeling
rogue waves on a firmer mathematical footing and led us to
conjecture that one approach to predicting rogue waves in
realistic oceanic states would be to determine the proximity
of a sea state to homoclinic data of the NLS equation.

Developing sea states are described by the Joint North
Sea Wave Project (JONSWAP) power spectrum (edghi,
1998). In numerical simulations of the NLS equati@nf-
rato et al., 2001a) examined the generation of extreme waves
for typical random oceanic sea states characterized by the
JONSWAP power spectrum. It was found that rogue waves
occur more often for large values of the Phillips parameter
« and the enhancement coefficienin the JONSWAP spec-
trum. Even so, they observed that large values ahd~ do
not guarantee the development of extreme waves.

Two of our results that we want to emphasize in this paper
b " are (i) the dependence of rogue wave events on the phasesin
(b) © the “random phase” reconstruction of the surface elevation

Figure 1. Wave amplification due to amplitude and phase modula- (see eqn. (5)) and (ii) the usefulness of the nonlinear spectral

tion for the (a) NLS equation, and for the MD equation in the evend€COMPpOsition in providing a simple criterium, in terms of
(b) and noneven (c) regimes. the proximity to homoclinic solutions, for predicting the oc-

currence and strength of rogue waves (ks and Schober,
2005). We find that the phase information is as important
fects such as asymmetric evolution of wave packets and sidgs the amplitude and peakedness of the wave (governed by
bands and also limits the energy leakage to higher modes, and~) when determining the occurrence of rogue waves.
that are obtained in 2D with the NLS equatidmflsenand ~ Random oceanic sea states characterized by JONSWAP data
Dysthe, 1996;Trulsen and Dysthe, 1997). are not small perturbations of Stokes wave solutions. As a
“Noisy” rogue waves, i.e. rogue waves with a chaotic consequence, it is difficult to investigate the generation of
background, are observed in numerical simulations of botlrogue waves in more realistic sea states using a linear sta-

the full MD equation, bility analysis (as in the Benjamin-Feir instability). Our ap-
_ proach uses the inverse spectral theory of the NLS equation
iy + g + 2[ul*u = € (= Sugza + 6ilul*u, (2) 1o examine a nonlinear mode decomposition of JONSWAP
—iuuy — Sup, + %umm + g—;ummm) ) type initial data. We introduce a spectral quantity, the “split-

o ] ) . ting distance”s between two simple points in the discrete
and under the restriction to spatially symmetric wave tra'”S'Fquuet spectrum of the associated AKNS problem, as away

In a chaotic regime O_f homoclinic type, the solutlo_n_can of determining the proximity in spectral space to instabilities
evolve close to an optimal phase modulated homoclinic 034 homoclinic solutions of the NLS equation.

lution for a rather general class of initial conditions, even . i

when the initial data have not been selected to generate auii)eu;;naiarlndzzlﬁsr if&ggﬁﬁié ((%Zb‘i]t(s)l\(l)?\::vgrz cliii;a: é(;f n be
phase modulation (Fig. 1b-c). The chaotic dynamics due toqhase solutions. For fixed values afand~ in tlze JON-
BF instability and higher order nonlinear effects allow for b ' v

. . SWAP spectrum, as the phases in the initial data are ran-
enhanced focusing to occur due to chaotically generated op- ) e o .

timal phase modulationsglini and Schober, 2002) domly varied, the proximity) to homoclinic data varies. (2)

' ) In several hundred simulations of the NLS equation, where

Viewing the MD equation as a perturbation of the NLS o narameters and the phases in the JONSWAP initial data

equation, a Mel'nikov analysis shows that homoclinic or- 5¢ yaried, we find that (i) rogue waves develop whenever the
bits of the Stokes wave persist for the MD equation in thesplitting distance is small and (ii) rogue waves do not oc-

even regime Calini and Schober, 2002). Significantly, the ¢\, \yhen the splitting distanekeis large {slas and Schober,

Melnikov analysis also predicts the same distinguishing Spa2005). This is the first time that this quantitative approach

tial features of the perturbed dynamics as those observed ifg heen used in processing water wave data and that homo-
the numerical experiments. The homoclinic orbit (or rogueinic solutions have been correlated with rogue waves for
wave) selected by the Melnikov analysis¥e) close tothe  4,qdom sea states.

optimal phase modulated NLS homaoclinic solution (Fig. 1a)
and is observed in the numerical simulations (Fig. 1b).

This persistence result places the notion that homaoclinic
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JONSWAP initial data Floquet spectral theory

To examine the generation of rogue waves in a random The_ integ_rabili_ty of the NLS equation (1) is related_to the
sea state, we consider initial free surface elevation data ofollowing pair of linear systems (the so-called Lax pair)

the form D p
x _ —Uu 1 _ _
L >¢—( o D ) ( @)—0’ £Ys =0, (6)

N
n(w,0) = Z Cn cos(knt — dn), whereD. = 9/0x 4 i), X is the spectral parameter and
n=t is the eigenfunctionAblowitz and Segur, 1981). These sys-
tems have a common nontrivial solutigix, t; \), provided
whereC), is the amplitude of theth component with wave  the potentialu(z, t) satisfies the NLS equatiorz®) is not
numberk,, = (n — 1)k, k = 2r/L, and random phase,,  specified explicitly as it is not implemented in our analysis.
uniformly distributed on the intervgl, 27). The spectral The first step in solving the NLS using the inverse scat-

amplitudes,C,, = /25,,/L, are obtained from the JON- tering theory is to determine the spectrum
SWAP spectrum@norato et al., 2001b):

o(u) = {\ e C| LH¢ =0, |¢| boundedvz}

5 .fO ! r
S = P l_l (7) ] T @) of the associated linear operat6f*), which is analogous
5 to calculating the Fourier coefficients in Fourier theory. For
r = exp l_l (f - fo) ] ' (4)  periodic boundary conditionsy(z + L,t) = u(z,t), the
2\ oofo spectrum ofu is expressed in terms of the transfer matrix

M (z + L;u, \) across a period, wher®/ (x; u, A) is a fun-

Here f, is the dominant frequency, determined by the wind damental solution matrix of the Lax pair (6). Introducing

speed at a specified height above the sea surfaceyand the Floqu_et dlscnmmams(u, A) = Trace[M (v + L; u, A)),
0.07 (0.9) for f < fo (f > fo). As the parametey is in- one obtainsAblowitzand Segur, 1981)
creased, the spectrum becomes narrower about the dominant
peak. The parameteris related to the amplitude and energy
content of the wavefield. Based on an “Ursell number”, thery,q gistinguished points of the periodic/antiperiodic spec-
ratio of the nonlinear and dispersive terms of the NLS equatym, whereA(\, u) = +2, are
tion (1) in dimensional form, the NLS equation is considered (a) simple points A% | dA/d\ # 0} and
to be applicable fo2 < v < 8 and0.008 < a < 0.02 (Ono- (b) double points{)\J”.l [ dAJdA = 0, d2A /)2 £ 0}

5 , .

rato etal., 2001a). o ) The Floguet discriminant function& («, A) is invariant un-
The surface elevation is relgteigItOU, the solution of  yer the NLS flow and encodes the infinite family of constants
the NLS equation, by) = Re{iuc’*"} /v/2k. Using the  of motion of the NLS (parametrized by the).

Hilbert transform ofy and its associated analytical signal, The Floguet spectrum (7) of a generic NLS potential con-

the initial condition foru can be modeled as the random _. : . "

WAVE process sists of the entlre real axis plus _addmon_al curves (cglled
bands) of continuous spectrum which terminate at the simple
pointsA7. N-phase solutions are those with a finite number

ou)={NeC|A(u,\) € R, |[Au,\)| <2}. (7)

X . of bands of continuous spectrum. Double points arise when
u(,0)=—i» Cpexpli(kn-17—¢a)].  (5)  two simple points have coalesced and their location is im-
n=1
portant.

Using the direct spectral transform, any initial condition

We examine a nonlinear spectral decomposition of theor solution of the NLS can be represented in terms of a set of
JONSWAP initial data, which takes into account the phasenonlinear modes. The spatial structure and dynamical stabil-
information ¢,,. This decomposition is based upon the in- ity of these modes is determined by the order and location of
verse scattering theory of the NLS equation, a procedure fothe corresponding; as follows Ercolani et al., 1990): (a)
solving the initial value problem analogous to Fourier meth-Simple points correspond to stable active degrees of free-
ods for linear problems. We find that we are able to predictdom. (b) Double points label all additional potentially active
the occurrence of rogue waves in terms of the proximiity degrees of freedom. Real double points correspond to stable
to distinguished points of the discrete spectrum. We brieflyinactive (zero amplitude) modes. Complex double points are
recall elements of the nonlinear spectral theory of the NLSassociated with all the unstable active modes and label the
equation. corresponding homoclinic orbits.
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Figure 3. (a) Nonlinear spectrum and (b) evolution bf,,, for
JONSWAP datay{ = 4 anda = 0.016) that is near homoclinic

Figure2. Spectrum of an unstabl¥-phase solution. data. Dashed curve corresponds tof2.2

Formulas for theN-phase solutions® (61, ...,0y), are od
obtained explicitly in terms of the simple spectrum. The -
phases evolve according § = sz + Q;t + 92, Kj = 04 o

2mn; /L, wherer; and(; are determined by (since the 03 ¢ ‘
spectrum is invariant; and(2; are constants). For a given 02 - i :
N-phase solution, the isospectral set (all NLS solutions with ~ ** \

the same spectrum) comprisesirdimensional torus char- !
acterized by the phasés. If the spectrum contains complex
double points, then th&’-phase solution may be unstable.
The instabilities correspond to orbits homaoclinic to tNe
phase torus.

Figure 2 shows the spectrum of a typical unstable
phase solution. There ar€ bands of spectrum determined of A + 2 are then determined with a root solver based on
by the2 N simple points\?. The2) complex double points  Muller's method Ercolani et al., 1990). The spectrum is
)\j-l indicate that the solution is unstable and that there is a hoeomputed with an accuracy @(10~%), whereas the spec-
moclinic orbit. The simple periodic eigenvalues are labeledtral quantities we are interested in range frém10-2) to
by circles and the double points are labeled by crosses. Un®(10~1).
der perturbations complex double points typically split into e begin by determining the spectrum of JONSWAP ini-
two simple points A+, thus opening a gap in the band of tjg| data given by (5) for various combinations@f= 0.008,
spectrum. An example of spectrum for a nearby semi-stable) 012, 0.016, 0.02, and= 1,2, 4,6, 8. For each such pair
N-phase solution where the complex double point is split(y, ), we performed fifty simulations, each with a different
O(e) is giveniin Fig. 3(a). set of randomly generated phases. As expected, the basic

We denote the distance between these two simple pointspectral configuration and the number of excited modes de-
by 6(A+, A=) = |A+ — A_| and refer to it as the splitting pended on the energy and the enhancement coeffigiantl
distance. We usé to measure the proximity in the spec- . However, the extent of the dependence of the spectrum
tral plane to homoclinic data, i.e. to complex double pointsupon the phases in the initial data was surprising.

and t_heir corres_pon_ding instabilities. Since_the NLS spec- As a typical example of the results, Figs. 2(a) and 3(a)
trum is symmetric with respect to the real axis and real doushow the numerically computed nonlinear spectrum of JON-
ble points correspond to inactive modes, in subsequent plot§wAP initial data wheny = 4 anda = 0.016 for two dif-

only the spectrum in the upper half compl®plane will be  ferent realizations of the random phases. We find that JON-

AR

Figure 4. (a) Nonlinear spectrum and (b) evolution bf,,,, for
JONSWAP data = 4 anda = 0.016) that is far from homoclinic
data. Dashed curve corresponds tofZ.2

displayed. SWAP data correspond to “semi-stabl&™-phase solutions,
i.e. we interpret the data as perturbationg\bfphase solu-

Criterium for predicting rogue waves: tions with one or more unstable modes (compare Fig. 2(a)

proximity to homoclinic data with the spectrum of an unstablé-phase solution in Fig.

1). In Fig. 2(a) the splitting distanc& A\, A_) ~ 0.07,

In the numerical simulations the NLS equation is in- while in Fig. 3(a)d(Ay, A~) =~ 0.2. Thus the JONSWAP
tegrated using a pseudo-spectral scheme ®fth Fourier  data can be quite “near” homoclinic data as in Fig. 2(a) or
modes in space and a fourth order Runge-Kutta discretiza*far” from homoclinic data as in Fig. 3(a), depending on the
tion in time (At = 10~3). The nonlinear mode content of values of the phases, in the initial data. For all the ex-
the data is numerically computed using the direct spectrahmined values ofx and~ we find that, whem and~ are
transform described above, i.e. the system of ODEs (6) idixed, as the phases in the JONSWAP data vary, the spectral
numerically solved to obtain the discriminafit The zeros distances of typical JONSWAP data from homoclinic data
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rogue wave occurring is extremely small.
LTI This behavior is robust. Asw and~ are varied, the
sl :‘:, Z o strength of the maximum wave and the occurrence of rogue
g °o 158 o8, 20 % waves are well predicted by the proximity to homoclinic so-
B d ?Q"iii S E . lutions. The individual plots of the strength \&for partic-
2 G 3R I b ular pairs(vy, ) are qualitatively the same as in Figure 4 as
B N B can be seen by the highlighted case= 4, = 0.012).
° These results provide strong evidence of the relevance of
1% 02 0.4 homoclinic solutions of the NLS equation in investigating
Splitting distance

rogue wave phenomena for more realistic oceanic conditions
Figure 5. Strength of Unas/Hs vs. the splitting distance and iglentifie; the nonlinea_r spectral decomposition as a sim-
S(hg, A). ple diagnostic tool for predicting the occurrence and strength
of rogue waves. Finally we note that the nonlinear spectral
analysis is not limited to JONSWAP data and can be imple-
mented for general theoretical or field data in order to predict

varies. the occurrence and strength of rogue waves.
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SWAP parameters and~, in simulations of the NLS equa- Acknowledgments. This work was partially supported by

tion (1) we find that extreme waves develop for JONSWAP NSF Grant No. NSF-DMS0204714.
initial data that is “near” NLS homoclinic data, whereas the
JONSWAP datathat is “far” from NLS hom_ocllnlc data typi- References
cally does not generate extreme waves. Figures 2(b) and 3(b)
show the corresponding evolution of the maximum surfaceAblowitz, M. and H. SegurSolitons and the Inverse Scattering
elevation,U,,..., obtained with the NLS equationU,,,,.. Transform, SIAM, 1981.
is given by the solid curve and as a referen2@Hs (the Brown, M., Space-time surface gravity wave caustics: structurally
threshold for a rogue wave) is given by the dashed curve. Stable extreme wave eventdave Motion, Elsevier, 117-143,
Hg is the significant wave height and is calculated as fourCaIini A and C. SchobePhvs. Lett. A 298. 335. 2002
times the standard deviation O.f the wave amp!ltude. IzlgureErcolzlini, N., M. G. Fores,t,yand D. W Mc’Laug,hIin. Geometry of
2(b) shows that when the nonlinear spectrum is near homo- the Modulational Instability Part Il H linic Orbits for th

. L Yy Par . Aomoclinic Orpits Tor the
clinic data,Unq. exceeds.2H s (arogue wave develops al  pgjogic sine-Gordon EquatioRhysica D, 43, 349-384, 1990.
aboutt = 40). Figure 3(b) shows that when the nonlinear yengerson, K.L., D.H. Peregrine, and J.W. Dold, Unsteady wa-
spectrum is far from homoclinic dat&l,.. is significantly ter wave modulations: fully nonlinear solutions and comparison
below2.2Hs and a rogue wave does not develop. In this  with the nonlinear Schidinger equatiorvave Motion, 29, 341,
way, we correlate the occurrence of rogue waves character- 1999.
ized by JONSWAP spectrum with the proximity to homo- Islas, A., and C. Schober, Predicting rogue waves in random
clinic solutions of the NLS equation. oceanic sea stateBhys. Fluids, 17, 2005.

The results of hundreds of simulations of the NLS equa-<": C. E. Pelinovsky, T. Talipova, and A. Slunyaev, Focusing

tion consistently show that proximity to homoclinic data is (1)f78?1n7l|3r)1e2a(;(;/;ave groups in deep watéuv. Phys. JETP, 73,

a crucial indicator of rogge wave events. F(_)r example, l:ig'Kharif, C. and E. Pelinovsky, Physical mechanisms of the rogue
ure 4 shows the synthesis of 200 random simulations of the ave phenomenorEurop. J. Mech. B-Fluid, 22, 603-634,

NLS equation for JONSWAP initial data for differefit, o) 2003,

pairs (withy = 2,4, 6,8, anda = 0.012,0.016). For each  Lehner, S., H. @iither, and W. Rosenthal, Extreme wave statistics
such pair(v, «), we performed 25 simulations, each with  from radar data set®roceedings of the IGARSS, 2004.

a different set of randomly generated phases. Each circl®chi, M. K., Ocean Waves: The Stochastic Approacambridge
represents the strength of the maximum wabig, (.. / Hs) University Press, 1998.

attained during one simulation as a function of the split-Olagnon, M., and G. A. Athanassoulis, eds., Rogue waves 2000,

ting distanceS(\,, \_). The results for the particular pair _ !fremer, Actes de Collogues 32, 400 pp., 2001. _
(v = 4,0 = 0.012) is represented with an asterisk. A Onorato, M., A. Osborne, M. Serio, and S. Bertone, Freak Waves in

horizontal line all,g. /Hs — 2.2 indicates the reference Random Oceanic Sea Stat&%ys. Rev. Lett., 86, 5831, 2001a.

. . . .. Onorato, M., A. Osborne, M. Serio and T. Damiani, Occurrence of
strength for rogue wave formation. We identify two critical oo \Waves from Envelope Equations in Random Ocean Sim-

valuess; = 0.08 andd, = 0.22 that clearly show that (a) if ulations,Rogue Waves 2000 (Olagnon and Athanassoulis, eds.),
d < 61 (near homoclinic data) rogue waves will occur; (b)  fremer, 2001b.

if 1 < d < d2, the likelihood of obtaining rogue waves de- Osborne, A., M. Onorato, and M Serio, The nonlinear dynamics of
creases a8 increases and, (c) f > J, the likelihood of a rogue waves and holes in deep-water gravity wave traébhgs.



64

Lett. A, 275, 386, 2000.

Pelinovsky, E., T. Talipova, and C. Kharif, Nonlinear dispersive
mechanism of the freak wave formation in shallow waRéys-
icaD, 147, 83, 2000.

Pelinovsky, E., C. Kharif, T. Talipova, and A. Slunyaev, Nonlin-
ear wave focusing as a mechanism of the freak wave generation
in the oceanRogue Waves 2000 (Olagnon and Athanassoulis,
eds.), Ifremer, 2001.

Trulsen, K. and K. Dysthe, A modified nonlinear Schrédinger equa-
tion for broader bandwidth gravity waves on deep watsye
Moation, 24, 281-289, 1996.

Trulsen, K. and K. Dysthe, Frequency downshiftin three-dimensional
wave trains in a deep basid,Fluid Mech., 352, 359-373, 1997.

This preprint was prepared with AGU'STEX macros v4, with the ex-
tension package ‘AGWY*’ by P. W. Daly, version 1.6a from 1999/05/21.

SCHOBER



