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Abstract. We investigate rogue waves in the framework of the nonlinear
Schrödinger (NLS) equation and correlate the development of rogue waves in
oceanic sea states characterized by the JONSWAP spectrum with the proximity to
homoclinic solutions of the NLS equation. Using the inverse spectral theory of the
NLS equation, we introduce the “splitting distance”δ between two simple points
in the discrete Floquet spectrum of the associated AKNS problem, as a way of
determining the proximity in spectral space to instabilities and homoclinic data of
the NLS equation (Islas and Schober, 2005). In several hundred simulations of the
NLS equation, where the parameters and the phases in the JONSWAP initial data
are varied, we find that (i) rogue waves develop whenever the splitting distanceδ
is small and (ii) rogue waves do not occur when the splitting distanceδ is large.

Introduction

In the past several years there has been particular interest
in understanding the physical processes responsible for the
generation of rogue waves. According to Rayleigh’s distri-
bution of wave heights, an extremely unlikely wave event, a
rogue wave, is a high amplitude wave whose height exceeds
2.2 times the significant wave heightHs of the background
sea (Kharif and Pelinovsky, 2003). Rogue waves have been
observed in both shallow and deep water, with or without
the presence of strong currents. Several mechanisms have
been proposed to explain their formation subject to the spe-
cific physical conditions (e.g.,Olagnon and Athanassoulis
2000; Henderson et al., 1999; Trulsen and Dysthe, 1997;
Pelinovsky et al., 2001;Brown, 2001).

In the linear theory, the wave field is assumed to be the su-
perposition of a large number of small amplitude, monochro-
matic waves, with random, uniformly distributed frequen-
cies and phases. The occurrence of rogue waves can be due
to space-time caustics, dispersion phenomena, spatial focus-
ing, and wave-current interactions (Brown, 2001;Kharif and
Pelinovsky, 2003). However, upon analyzing satellite data
the European MAXWAVE project detected more extreme
waves than predicted by the standard linear theory (Lehner
et al., 2004).

One of the proposed mechanisms for the generation of
rogue waves in the open ocean is nonlinear self focusing due
to effects like the Benjamin Feir (BF) instability (e.g.,Hen-
derson et al., 1999;Calini and Schober, 2002;Kharif et al.,
2001; Onorato et al., 2001a; andPelinovsky et al., 2000).
The BF instability, where a uniform train of surface waves
is unstable to a weak amplitude modulation, is described to
leading order by the focusing nonlinear Schr¨odinger (NLS)

equation
iut + uxx + 2|u|2u = 0. (1)

The NLS equation has proven to be an excellent model
for initiating studies of rogue waves in deep water. A
linearized analysis of the NLS equation shows that low-
frequency modes may become unstable and that the num-
ber of unstable modes increases with the amplitude of the
carrier wave. The complete integrability of the NLS equa-
tion allows one to use B¨acklund transformations to compute
homoclinic solutions (Ercolani et al., 1990) and thus study
the nonlinear evolution of the instabilities. In the simplest
setting homoclinic orbits of the unstable Stokes solution of
the NLS equation have been used for modeling rogue waves
(Osborne et al.; 2000,Calini and Schober, 2002). Homo-
clinic solutions of the NLS equation with a complex space-
time structure, obtained with two or more unstable modes,
can be phase modulated so that the modes are excited simul-
taneously (optimal phase modulation), or nearly so. In this
case, the wave amplification is due to both the BF instabil-
ity and the additional phase modulation (see Fig. 1a) (Calini
and Schober, 2002).

The NLS equation is the leading order equation in a hier-
archy of envelope equations and is derived from the full wa-
ter wave equations under the assumption of a narrowO(ε)
banded spectrum. This bandwidth constraint limits the ap-
plicability of the NLS equation in 2D as it results in energy
leakage to high wave number modes. A more accurate de-
scription of water wave dynamics is provided by, for exam-
ple, the fourth-order modified Dysthe (MD) equation, de-
rived by assuming the bandwidth isO(

√
ε) and by retaining

higher order terms in the asymptotic expansion for the sur-
face wave displacement (Trulsen and Dysthe, 1996). The
MD equation is able to capture higher-order physical ef-
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Figure 1. Wave amplification due to amplitude and phase modula-
tion for the (a) NLS equation, and for the MD equation in the even
(b) and noneven (c) regimes.

fects such as asymmetric evolution of wave packets and side
bands and also limits the energy leakage to higher modes
that are obtained in 2D with the NLS equation (Trulsen and
Dysthe, 1996;Trulsen and Dysthe, 1997).

“Noisy” rogue waves, i.e. rogue waves with a chaotic
background, are observed in numerical simulations of both
the full MD equation,

iut + uxx + 2|u|2u = ε
(
− i

2uxxx + 6i|u|2ux

−iu2u∗
x − 8uφ̄x + 5

16uxxxx + 7i
32uxxxxx

)
,

(2)

and under the restriction to spatially symmetric wave trains.
In a chaotic regime of homoclinic type, the solution can
evolve close to an optimal phase modulated homoclinic so-
lution for a rather general class of initial conditions, even
when the initial data have not been selected to generate a
phase modulation (Fig. 1b-c). The chaotic dynamics due to
BF instability and higher order nonlinear effects allow for
enhanced focusing to occur due to chaotically generated op-
timal phase modulations (Calini and Schober, 2002).

Viewing the MD equation as a perturbation of the NLS
equation, a Mel’nikov analysis shows that homoclinic or-
bits of the Stokes wave persist for the MD equation in the
even regime (Calini and Schober, 2002). Significantly, the
Melnikov analysis also predicts the same distinguishing spa-
tial features of the perturbed dynamics as those observed in
the numerical experiments. The homoclinic orbit (or rogue
wave) selected by the Melnikov analysis isO(ε) close to the
optimal phase modulated NLS homoclinic solution (Fig. 1a)
and is observed in the numerical simulations (Fig. 1b).

This persistence result places the notion that homoclinic

solutions of the NLS equation are significant in modeling
rogue waves on a firmer mathematical footing and led us to
conjecture that one approach to predicting rogue waves in
realistic oceanic states would be to determine the proximity
of a sea state to homoclinic data of the NLS equation.

Developing sea states are described by the Joint North
Sea Wave Project (JONSWAP) power spectrum (e.g.,Ochi,
1998). In numerical simulations of the NLS equation (Ono-
rato et al., 2001a) examined the generation of extreme waves
for typical random oceanic sea states characterized by the
JONSWAP power spectrum. It was found that rogue waves
occur more often for large values of the Phillips parameter
α and the enhancement coefficientγ in the JONSWAP spec-
trum. Even so, they observed that large values ofα andγ do
not guarantee the development of extreme waves.

Two of our results that we want to emphasize in this paper
are (i) the dependence of rogue wave events on the phases in
the “random phase” reconstruction of the surface elevation
(see eqn. (5)) and (ii) the usefulness of the nonlinear spectral
decomposition in providing a simple criterium, in terms of
the proximity to homoclinic solutions, for predicting the oc-
currence and strength of rogue waves (seeIslas and Schober,
2005). We find that the phase information is as important
as the amplitude and peakedness of the wave (governed by
α andγ) when determining the occurrence of rogue waves.
Random oceanic sea states characterized by JONSWAP data
are not small perturbations of Stokes wave solutions. As a
consequence, it is difficult to investigate the generation of
rogue waves in more realistic sea states using a linear sta-
bility analysis (as in the Benjamin-Feir instability). Our ap-
proach uses the inverse spectral theory of the NLS equation
to examine a nonlinear mode decomposition of JONSWAP
type initial data. We introduce a spectral quantity, the “split-
ting distance”δ between two simple points in the discrete
Floquet spectrum of the associated AKNS problem, as a way
of determining the proximity in spectral space to instabilities
and homoclinic solutions of the NLS equation.

Our main results are these: (1) JONSWAP data can be
quite near data for homoclinic orbits of complicatedN -
phase solutions. For fixed values ofα andγ in the JON-
SWAP spectrum, as the phases in the initial data are ran-
domly varied, the proximityδ to homoclinic data varies. (2)
In several hundred simulations of the NLS equation, where
the parameters and the phases in the JONSWAP initial data
are varied, we find that (i) rogue waves develop whenever the
splitting distanceδ is small and (ii) rogue waves do not oc-
cur when the splitting distanceδ is large (Islas and Schober,
2005). This is the first time that this quantitative approach
has been used in processing water wave data and that homo-
clinic solutions have been correlated with rogue waves for
random sea states.
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JONSWAP initial data

To examine the generation of rogue waves in a random
sea state, we consider initial free surface elevation data of
the form

η(x, 0) =
N∑

n=1

Cn cos(knx − φn),

whereCn is the amplitude of thenth component with wave
numberkn = (n − 1)k, k = 2π/L, and random phaseφn,
uniformly distributed on the interval(0, 2π). The spectral
amplitudes,Cn =

√
2Sn/L, are obtained from the JON-

SWAP spectrum (Onorato et al., 2001b):

S(f) =
α

f5
exp

[
−5

4

(
f0

f

)4
]

γr , (3)

r = exp

[
−1

2

(
f − f0

σ0f0

)2
]

. (4)

Heref0 is the dominant frequency, determined by the wind
speed at a specified height above the sea surface, andσ0 =
0.07 (0.9) for f ≤ f0 (f > f0). As the parameterγ is in-
creased, the spectrum becomes narrower about the dominant
peak. The parameterα is related to the amplitude and energy
content of the wavefield. Based on an “Ursell number”, the
ratio of the nonlinear and dispersive terms of the NLS equa-
tion (1) in dimensional form, the NLS equation is considered
to be applicable for2 < γ < 8 and0.008 < α < 0.02 (Ono-
rato et al., 2001a).

The surface elevationη is related tou, the solution of
the NLS equation, byη = Re

{
iueikx

}
/
√

2k. Using the
Hilbert transform ofη and its associated analytical signal,
the initial condition foru can be modeled as the random
wave process

u(x, 0) = −i

N∑

n=1

Cn exp [i (kn−1x − φn)] . (5)

We examine a nonlinear spectral decomposition of the
JONSWAP initial data, which takes into account the phase
informationφn. This decomposition is based upon the in-
verse scattering theory of the NLS equation, a procedure for
solving the initial value problem analogous to Fourier meth-
ods for linear problems. We find that we are able to predict
the occurrence of rogue waves in terms of the proximityδ
to distinguished points of the discrete spectrum. We briefly
recall elements of the nonlinear spectral theory of the NLS
equation.

Floquet spectral theory

The integrability of the NLS equation (1) is related to the
following pair of linear systems (the so-called Lax pair)

L(x)φ =
(

D+ −u
u∗ D−

)(
φ1

φ2

)
= 0, L(t)φ = 0, (6)

whereD± = ∂/∂x ± iλ, λ is the spectral parameter andφ
is the eigenfunction (Ablowitz and Segur, 1981). These sys-
tems have a common nontrivial solutionφ(x, t; λ), provided
the potentialu(x, t) satisfies the NLS equation.L(t) is not
specified explicitly as it is not implemented in our analysis.

The first step in solving the NLS using the inverse scat-
tering theory is to determine the spectrum

σ(u) =
{
λ ∈ C | L(x)φ = 0, |φ| bounded∀x

}

of the associated linear operatorL(x), which is analogous
to calculating the Fourier coefficients in Fourier theory. For
periodic boundary conditions,u(x + L, t) = u(x, t), the
spectrum ofu is expressed in terms of the transfer matrix
M (x + L; u, λ) across a period, whereM (x; u, λ) is a fun-
damental solution matrix of the Lax pair (6). Introducing
the Floquet discriminant∆(u, λ) = Trace[M (x + L; u, λ)],
one obtains (Ablowitz and Segur, 1981)

σ(u) = {λ ∈ C | ∆(u, λ) ∈ IR, |∆(u, λ)| ≤ 2} . (7)

The distinguished points of the periodic/antiperiodic spec-
trum, where∆(λ, u) = ±2, are

(a) simple points{λs
j | d∆/dλ 6= 0} and

(b) double points{λd
j | d∆/dλ = 0, d2∆/dλ2 6= 0}.

The Floquet discriminant functional∆(u, λ) is invariant un-
der the NLS flow and encodes the infinite family of constants
of motion of the NLS (parametrized by theλs

j).

The Floquet spectrum (7) of a generic NLS potential con-
sists of the entire real axis plus additional curves (called
bands) of continuous spectrum which terminate at the simple
pointsλs

j . N -phase solutions are those with a finite number
of bands of continuous spectrum. Double points arise when
two simple points have coalesced and their location is im-
portant.

Using the direct spectral transform, any initial condition
or solution of the NLS can be represented in terms of a set of
nonlinear modes. The spatial structure and dynamical stabil-
ity of these modes is determined by the order and location of
the correspondingλj as follows (Ercolani et al., 1990): (a)
Simple points correspond to stable active degrees of free-
dom. (b) Double points label all additional potentially active
degrees of freedom. Real double points correspond to stable
inactive (zero amplitude) modes. Complex double points are
associated with all the unstable active modes and label the
corresponding homoclinic orbits.
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planeλ−

Figure 2. Spectrum of an unstableN -phase solution.

Formulas for theN -phase solutions,Θ(θ1, ..., θN), are
obtained explicitly in terms of the simple spectrum. The
phases evolve according toθj = κjx + Ωjt + θ0

j , κj =
2πnj/L, whereκj andΩj are determined byλs

j (since the
spectrum is invariantκj andΩj are constants). For a given
N -phase solution, the isospectral set (all NLS solutions with
the same spectrum) comprises anN -dimensional torus char-
acterized by the phasesθj . If the spectrum contains complex
double points, then theN -phase solution may be unstable.
The instabilities correspond to orbits homoclinic to theN -
phase torus.

Figure 2 shows the spectrum of a typical unstableN -
phase solution. There areN bands of spectrum determined
by the2N simple pointsλs

j . The2M complex double points
λd

j indicate that the solution is unstable and that there is a ho-
moclinic orbit. The simple periodic eigenvalues are labeled
by circles and the double points are labeled by crosses. Un-
der perturbations complex double points typically split into
two simple points,λ±, thus opening a gap in the band of
spectrum. An example of spectrum for a nearby semi-stable
N -phase solution where the complex double point is split
O(ε) is given in Fig. 3(a).

We denote the distance between these two simple points
by δ(λ+, λ−) = |λ+ − λ−| and refer to it as the splitting
distance. We useδ to measure the proximity in the spec-
tral plane to homoclinic data, i.e. to complex double points
and their corresponding instabilities. Since the NLS spec-
trum is symmetric with respect to the real axis and real dou-
ble points correspond to inactive modes, in subsequent plots
only the spectrum in the upper half complexλ-plane will be
displayed.

Criterium for predicting rogue waves:
proximity to homoclinic data

In the numerical simulations the NLS equation is in-
tegrated using a pseudo-spectral scheme with256 Fourier
modes in space and a fourth order Runge-Kutta discretiza-
tion in time (∆t = 10−3). The nonlinear mode content of
the data is numerically computed using the direct spectral
transform described above, i.e. the system of ODEs (6) is
numerically solved to obtain the discriminant∆. The zeros
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Figure 4. (a) Nonlinear spectrum and (b) evolution ofUmax for
JONSWAP data (γ = 4 andα = 0.016) that is far from homoclinic
data. Dashed curve corresponds to 2.2Hs.

of ∆ ± 2 are then determined with a root solver based on
Muller’s method (Ercolani et al., 1990). The spectrum is
computed with an accuracy ofO(10−6), whereas the spec-
tral quantities we are interested in range fromO(10−2) to
O(10−1).

We begin by determining the spectrum of JONSWAP ini-
tial data given by (5) for various combinations ofα = 0.008,
0.012, 0.016, 0.02, andγ = 1, 2, 4, 6, 8. For each such pair
(γ, α), we performed fifty simulations, each with a different
set of randomly generated phases. As expected, the basic
spectral configuration and the number of excited modes de-
pended on the energy and the enhancement coefficientα and
γ. However, the extent of the dependence of the spectrum
upon the phases in the initial data was surprising.

As a typical example of the results, Figs. 2(a) and 3(a)
show the numerically computed nonlinear spectrum of JON-
SWAP initial data whenγ = 4 andα = 0.016 for two dif-
ferent realizations of the random phases. We find that JON-
SWAP data correspond to “semi-stable”N -phase solutions,
i.e. we interpret the data as perturbations ofN -phase solu-
tions with one or more unstable modes (compare Fig. 2(a)
with the spectrum of an unstableN -phase solution in Fig.
1). In Fig. 2(a) the splitting distanceδ(λ+, λ−) ≈ 0.07,
while in Fig. 3(a)δ(λ+, λ−) ≈ 0.2. Thus the JONSWAP
data can be quite “near” homoclinic data as in Fig. 2(a) or
“far” from homoclinic data as in Fig. 3(a), depending on the
values of the phasesφn in the initial data. For all the ex-
amined values ofα andγ we find that, whenα andγ are
fixed, as the phases in the JONSWAP data vary, the spectral
distanceδ of typical JONSWAP data from homoclinic data
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varies.

Most importantly, irrespective of the values of the JON-
SWAP parametersα andγ, in simulations of the NLS equa-
tion (1) we find that extreme waves develop for JONSWAP
initial data that is “near” NLS homoclinic data, whereas the
JONSWAP data that is “far” from NLS homoclinic data typi-
cally does not generate extreme waves. Figures 2(b) and 3(b)
show the corresponding evolution of the maximum surface
elevation,Umax, obtained with the NLS equation.Umax

is given by the solid curve and as a reference,2.2HS (the
threshold for a rogue wave) is given by the dashed curve.
HS is the significant wave height and is calculated as four
times the standard deviation of the wave amplitude. Figure
2(b) shows that when the nonlinear spectrum is near homo-
clinic data,Umax exceeds2.2HS (a rogue wave develops at
aboutt = 40). Figure 3(b) shows that when the nonlinear
spectrum is far from homoclinic data,Umax is significantly
below 2.2HS and a rogue wave does not develop. In this
way, we correlate the occurrence of rogue waves character-
ized by JONSWAP spectrum with the proximity to homo-
clinic solutions of the NLS equation.

The results of hundreds of simulations of the NLS equa-
tion consistently show that proximity to homoclinic data is
a crucial indicator of rogue wave events. For example, Fig-
ure 4 shows the synthesis of 200 random simulations of the
NLS equation for JONSWAP initial data for different(γ, α)
pairs (withγ = 2, 4, 6, 8, andα = 0.012, 0.016). For each
such pair(γ, α), we performed 25 simulations, each with
a different set of randomly generated phases. Each circle
represents the strength of the maximum wave (Umax/HS)
attained during one simulation as a function of the split-
ting distanceδ(λ+, λ−). The results for the particular pair
(γ = 4, α = 0.012) is represented with an asterisk. A
horizontal line atUmax/HS = 2.2 indicates the reference
strength for rogue wave formation. We identify two critical
valuesδ1 = 0.08 andδ2 = 0.22 that clearly show that (a) if
δ < δ1 (near homoclinic data) rogue waves will occur; (b)
if δ1 < δ < δ2, the likelihood of obtaining rogue waves de-
creases asδ increases and, (c) ifδ > δ2 the likelihood of a

rogue wave occurring is extremely small.

This behavior is robust. Asα and γ are varied, the
strength of the maximum wave and the occurrence of rogue
waves are well predicted by the proximity to homoclinic so-
lutions. The individual plots of the strength vs.δ for partic-
ular pairs(γ, α) are qualitatively the same as in Figure 4 as
can be seen by the highlighted case(γ = 4, α = 0.012).
These results provide strong evidence of the relevance of
homoclinic solutions of the NLS equation in investigating
rogue wave phenomena for more realistic oceanic conditions
and identifies the nonlinear spectral decomposition as a sim-
ple diagnostic tool for predicting the occurrence and strength
of rogue waves. Finally we note that the nonlinear spectral
analysis is not limited to JONSWAP data and can be imple-
mented for general theoretical or field data in order to predict
the occurrence and strength of rogue waves.
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