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Nonlinear Fourier analysis of deep-water, random surface waves:  
theoretical formulation and experimental observations of rogue waves 

A. R. Osborne, M. Onorato, and M. Serio 

Dipartimento di Fisica Generale dell'Università, Via Pietro Giuria 1, Torino 10125, Italy 

Abstract. Unidirectional deep-water waves are studied theoretically and ex-
perimentally. Theoretically we apply the theory of the nonlinear Schroedinger 
equation (NLS) using the inverse scattering transform, a kind of generalized, 
nonlinear Fourier analysis. We discover from the theoretical study that there are 
essentially four kinds of physical effects that can lead to extreme waves: (1) the 
superposition of sine waves, (2) the Stokes wave nonlinearity, (3) the Benjamin-
Feir instability and (4) the wave/current interaction. In the context of nonlinear 
random wave trains, item (3) is of prime interest here and we discuss how the 
theory predicts the existence of unstable wave packets which constitute a second 
population of nonlinear waves, the first population being the weakly nonlinear 
superposition of sine waves (item (1)) together with the Stokes-wave correction 
(item (2)). The second population, unstable wave packets, which can rise up to 
more than twice the significant wave height, are a new nonlinear spectral com-
ponent in nonlinear random waves. Do second population waves actually exist 
in water waves? To answer this question we conducted a number of random 
wave experiments at Marintek, Trondheim, and assessed the results in terms of 
the NLS spectral theory. We find that the second population waves not only ex-
ist, but they can also, under the circumstances discussed herein, dominate the 
energetics of the wave train leading to a condition we call a “rogue sea.” Indeed, 
we also find in a companion paper (Onorato, Osborne, and Serio, 2005) that the 
extreme events associated with the Benjamin-Feir instability can also lead to a 
large enhancement in the tail of the Rayleigh distribution for crest and wave 
heights.

1.  Introduction 

This paper addresses a new approach for the Fourier 
analysis of nonlinear, deep-water wave trains. The 
method is intrinsically nonlinear and describes a nonlin-
ear Fourier spectrum for a random wave train which 
includes: 
 
(1) The superposition of weakly-nonlinear sine wave 

components. This small-amplitude limit of the the-
ory is just ordinary linear Fourier analysis. 

(2) The Stokes wave nonlinearity. 
(3) The nonlinear superposition of nonlinear, unstable 

wave packets and their space/time dynamics. This 
contribution arises from the Benjamin-Fier instabil-
ity. 

(4) The influence of the wave/current interaction on 

the nonlinear spectrum. 
 

Items (1), (2) and (4) are well known in the study of 
random wave trains and we do not discuss them in de-
tail herein, although many other authors in this proceed-
ings volume provide overviews and appropriate per-
spective: (Donelan and Magnusson, Forristall,  Graber,  
Haver, Henyey, Magnusson and Donelan,  Melville, 
Olagnon and Prevosto). While we refer to the traditional 
“linear superposition of sine waves” as first population 
waves, we also include in this category the small per-
turbations which give rise to the Stokes wave nonlinear-
ity (Tayfun, 1980; Forristall et al., 2000). Full nonlinear 
simulations have been considered by Yue and co-
authors (Wu et al., this volume). Nonlinear modulations 
are also considered herein by Dysthe, by Segur, and by 
Schober. Wave breaking, beyond the scope of the pre-
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sent work, is considered by Banner and by Donelan and 
Magnusson. Remote sensing aspects of rogue waves are 
considered by Lehner and by Rosenthal.  

The focus in the present paper is to address second 
population waves, i.e., unstable wave packets governed 
by the Benjamin-Feir instability. In the nonlinear 
Schroedinger (NLS) theoretical formulation discussed 
herein, the first and second population waves are differ-
ent kinds of spectral components, uniquely distinguish-
able from each other. In the historical context of the 
study of ocean waves, most time series  are dominated 
by first population waves, but for certain particular 
kinds of sea states one can also have a contribution from 
second population waves. Indeed for sea states that we 
refer to as rogue seas, the second population waves en-
ergetically dominate the first population waves in the 
nonlinear spectrum. In this case second population 
waves lead to an enhanced tail in the distribution of 
wave and crest heights (Onorato et al., this volume). 
Rogue seas are thus characterized by a number of ex-
treme waves greater than anticipated in a linear sea state 
with Rayleigh statistics. 

The NLS theoretical formulation covers all of the 
physical effects in the list above (1)-(4). Indeed the 
nonlinear spectral analysis of measured wave trains re-
duces to an ordinary linear Fourier series for suffi-
ciently small waves. On the other hand, for sufficiently 
large amplitude waves, a nonlinear threshold is reached 
when the second population waves begin to appear in 
the nonlinear Fourier spectrum. Once this threshold is 
surpassed in a growing sea state a rogue sea begins to 
build. 

It is commonly recognized that a leading causal fac-
tor for the increased modern observance of rogue 
waves, with respect to the historical past, is climate 
change. Indeed a recent appeal has been made in the 
shipping industry to include this fact for future ship de-
sign (ref). We note that the present theory is consistent 
with the assumption that rogue waves are climate in-
duced. This is because climate change has presumably 
resulted in enhanced significant wave heights over re-
cent years (Graveson, 2005). The threshold effect, in 
which stable first population waves are converted to 
second population unstable wave packets, could be par-
tially responsible for the increased statistical occurrence 
of freak waves in recent years. 

The focus of the present paper is to “push” the 
nonlinear theory beyond this threshold using the Ben-
jamin-Feir parameter in order to study theoretically and 
experimentally random wave trains in which the second 
population waves dominate. Let us now look at some of 
the theoretical aspects of deep-water wave trains. 

How is it that a nonlinear Fourier approach can si-

multaneously contain all of the features discussed 
above? One begins by writing a linear wave equation 
for the envelope of a linear wave train: 

 
 ( ) 0t g x xxi Cψ ψ µψ+ + =                                          (1) 
 
where ( , )x tψ  is the complex envelope of the wave train, 

/ / 2o o o o oC d dk kω ω= =  is the group speed, ωo  is the car-
rier frequency, ko  is the wave number, 2

o ogkω =  is the 
deep-water dispersion relation and 

2 2 2(1/ 2) / /8o o o od dk kµ ω ω= = − . Eq. (1) is just about the 
simplest wave equation imaginable: It includes packets 
that have a group speed, Cg , and which linearly dis-
perse. The complex envelope function, ψ (x, t) , is re-
lated to the sea surface elevation, η(x, t) , by 
 

 1( , ) ( , ) . .
2

o oik x i tx t x t e c cωη ψ −⎡ ⎤= +⎣ ⎦                        (2) 

 
Because (1) and (2) are linear equations, the Fourier 

structure is trivial: The usual linear Fourier transform 
solves (1) for all (Cauchy) initial conditions! So, assum-
ing that (1) is true, then (a) modeling of wave trains is 
simple (the FFT algorithm suffices for computing the 
space/time evolution), (b) the Fourier analysis of oce-
anic data is also straightforward, and (c) the computa-
tion of Fourier and power spectra follows in a natural 
way. It is hard to imagine having a better theory than 
(1), (2). We have all the tools for understanding how 
linear waves behave in the oceanic environment. Of 
course (1) is narrow banded, but we can always improve 
this feature to arbitrary order by adding additional linear 
dispersive terms to the equation.  

For wind-wave modeling we ordinarily go a step far-
ther by introducing a kinetic equation, beginning with 
the Euler equations, which includes nonlinear three-, 
four- or five-wave interactions, and the results have re-
sulted in spectacular improvement in predictive capabil-
ity over the last few decades (Komen et al., 1994). 
However, wind wave models, being based on kinetic 
equations, filter out coherent effects in a nonlinear wave 
train, i.e. solitary waves, wave packet solitons and un-
stable packet modes (in the Benjamin-Feir sense as dis-
cussed herein) are not included, or are only partially in-
cluded in kinetic equations (Janssen, 2003; Cavaleri, 
this volume).  

Recently a number of authors have presented the case 
for understanding a number aspects of oceanic rogue 
wave dynamics through application of the Benjamin-
Feir instability (Osborne et al. 2000;  Onorato et al., 
this volume; Dysthe et al., this volume). The basic idea 
is that one can simply modify (1) to retain some of the 
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nonlinear effects not present in the linear approximation 
and in the kinetic equation formulations. A further step 
in enhanced understanding of these nonlinear effects is 
documented herein. 

To modify (1) for nonlinear effects we have carried 
out the simplest possible approach. We have added a 
simple cubic nonlinearity (Zakharov, 1967; Whitham, 
1974): 

    2( ) 0t g x xxi Cψ ψ µψ ν ψ ψ+ + + =                        (3) 

where ν = −ω oko
2 / 2 . This is the so-called nonlinear 

Schroedinger (NLS) equation, the simplest possible 
nonlinear wave equation for deep-water wave dynam-
ics. We realize that this is just a small step toward full 
understanding of nonlinear wave trains, but it is an im-
portant step, because as we shall see there is much to 
learn. 

Equation (3) has the list of surprising properties (1)-
(4) given above. These properties arise as a conse-
quence of the exact solution of (3) for periodic bound-
ary conditions using the inverse scattering transform. In 
the last half of the twentieth century a number of impor-
tant theoretical developments have been made with re-
gard to the understanding of nonlinear wave propaga-
tion (Ablowitz and Segur, 1981). Of particular relevance 
to the present work has been the discovery of large 
classes of nonlinear wave equations whose solutions 
may be computed without approximation using a new 
technique referred to as the inverse scattering transform 
(IST). IST may be viewed as a kind of nonlinear Fou-
rier analysis, valid for fully nonlinear wave motion, 
which has many of the nice features that render ordinary 
Fourier analysis such a useful tool for the time series 
analysis of oceanic waves. Practical implementation of 
IST has been made possible by a number of theoretical 
advances with regard to the case for periodic boundary 
conditions in which techniques are developed for the 
simple exploitation of the method from physical, 
mathematical and numerical points of view (see Os-
borne (1995, 2002) and cited references). The approach 
has been cast in terms of a kind of nonlinear Fourier 
analysis which, in the small amplitude limit, reduces to 
the ordinary, linear Fourier transform. This is only one 
of the reasons that the nonlinear Fourier approach may 
be viewed as a generalization of linear Fourier analysis. 

The remainder of the paper is organized as follows. 
Section 2 discusses linear Fourier analysis while Sec-
tion 3 discusses nonlinear Fourier analysis for the NLS 
equation. Section 4 discusses modulation theory for the 
NLS equation and provides a basis for a nonlinearity 
(Benjamin-Feir) parameter based on inverse scattering 
theory. Section 5 gives three examples of unstable wave 

packets. Characteristics of random wave trains sub-
jected to the BF instability are briefly reviewed in Sec-
tion 6. Section 7 discusses application of periodic in-
verse scattering theory to the analysis of random waves 
in the wave tank facility at Marintek, Trondheim, Nor-
way. 

2.  Linear Fourier analysis 

Fourier analysis allows the construction of linear 
wave trains, ( ),x tη , by a linear superposition of sine 
waves: 
 

 ( ) ( )
1

, cos
N

n n n n
n

x t C k x tη ω φ
=

= − +∑                       (4) 
 

In the present case there are N sine waves which are 
interpreted as "degrees of freedom" or "Fourier compo-
nents" in the wave train. In Eq. (4) the Cn  are the Fou-
rier amplitudes, the kn  are the wave numbers, the ωn  
are the frequencies and the φn  are the phases. The rela-
tionship between the frequencies, ωn , and the wave 
numbers, kn , is given by the dispersion relation, written 
symbolically: ωn = ωn(kn ) . The dispersion relation de-
fines the physics via the correspondences 
 

 i
t

ω∂ ↔ −
∂

,        i
x

∂ ↔
∂

 
 

For example the simple dispersion relation for deep wa-
ter wave trains is given by  
 

 2
gC k kω µ= +                                                      (5)

 

which has the associated envelope partial differential 
equation (1). The simplest periodic solution to (1) is a 
traveling sine wave  

( )( , ) coso o o ox t C k x tη ω φ= − +  
 
from which the general Fourier solution for N compo-
nents may be constructed by (4). The important point is 
that the amplitudes of the sine waves and their phases 
are constants of the motion, provided that the motion is 
linear. In oceanic applications one is often interested in 
the analysis of time series, i.e. measurements of the 
wave amplitude, (0, )tη , taken at a fixed spatial location 
over some convenient time interval; this implies setting 
x = 0  in (4). 

3.  Nonlinear Fourier analysis 

We proceed by writing the NLS equation in a form 
that is simpler for theoretical calculations  

22 0t xxiu u u u+ + =  (6) 
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This equation arises from (3) by a simple rescaling and 
translation: 

 
u = λψ ; x − Cgt → x ; t tµ →  (7) 

 

The Fourier structure of the nonlinear Schroedinger 
equation (6) is given by (Tracy and Chen, 1988). 

 
22( , | , )( , )

( , | , )
oiA t

o
x tu x t A e
x t

θ δ
θ δ

−

+= B
B

  (8) 
 
where the Riemann theta functions, θ (x, t | B,δ ± ) , are 
given by: 
 

θ (x, t) = ...
M2 =−∞

∞

∑
M1 =−∞

∞

∑

 (9) 

     
... exp i MnXn

n=1

N

∑ + 1
2

Mm
n=1

N

∑ Bmn Mn
m =1

N

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ M N =−∞

∞

∑
  

where 
Xn = knx −ωnt − δn

±  
 

The wave numbers, kn , frequencies, ωn , and phases, 
δn , are computed by the methods of algebraic geometry 
(see (Osborne, 2002) for a review and a list of refer-
ences). It should be noted that the theta functions (9) are 
just generalized Fourier series, where the spectral am-
plitudes correspond to a (Riemann) matrix, B , rather 
than to a vector, Cn , as in linear Fourier analysis (4). 
 To better understand the solutions of (3) using the 
nonlinear Fourier decomposition (9) we consider a 
number of simple examples in this paper. The first ex-
ample addresses the fact that the ratio of theta functions, 
θ (x, t | B,δ − ) / θ (x, t | B,δ + ) , is the complex modula-
tion envelope function. When there is no modulation, 
θ (x, t | B,δ − ) / θ (x, t | B,δ + ) = 1, we have 

 u(x, t) = Aoe2iAo
2t

 (10) 

This is the so-called plane wave solution of the NLS 
equation. It corresponds to an unmodulated carrier 
wave. 

To understand the nonlinear spectral solutions of 
NLS it is necessary to discuss the so-called spectral ei-
genvalue problem for the NLS equation, first found by 
Zakharov and Shabat (1972): 

 

      iφ1x + iu(x, 0)φ2 = λφ1   (11) 

  − iφ2 x + iu *(x, 0)φ1 = λφ2  

The values of the eigenvalues, λ , are crucial for de-
scribing the solutions (8) of NLS (6). The Cauchy initial 
condition, ( ,0)u x , is the potential function in (11). Here 
we assume periodic boundary conditions to determine 
solutions of (11). Indeed one works in the λ -plane, 
Figure 1. 
 The lambda plane is a complex plane for the eigen-
values of (11); they have real and imaginary parts, 
λ = λR + iλ I , corresponding to the real and imaginary 
axes in Figure 1. The simplest case is for the plane wave 
solution (10). This is the case of an unmodulated carrier 
wave of amplitude Ao . In the lambda plane (for which 
the spectrum is a perfect mirror image between the up-
per and lower half planes) the eigenvalues λ = ± iAo  on 
the imaginary axis correspond to the carrier wave, Ao . 
The modulations correspond to double points (pairs of 
eigenvalues) connected by spines (curves of spectrum 
connecting the double points). Two kinds of spectrum 
exist for NLS: (1) Stokes waves (for which the two ei-
genvalues of the double point are connected by a spine 
across the real axis) and (2) unstable wave packets (for 
which the two eigenvalues are connected by a spine 
contained entirely in the upper half plane (and also in 
the lower half plane by specular reflection). The Stokes 
waves have a Riemann matrix which is 1x1 (a scalar) 
while the unstable wave packets have a 2x2 matrix. 
 Unstable wave packets are characterized by double 
points in the upper and lower half planes. Their spec-
trum contains five numbers: {Ao ,ε ,θ,λRc,λ Ic} (see 
Figure 1). Here Ao  is the carrier amplitude, ε  is the 
half-distance between the double points, θ  is the angle 
of a straight line connecting the double points and the 
complex pair (λcR,λcI )  corresponds to the centroid of 
the double points in the lambda plane. Thus five pa-
rameters are required to describe a single unstable wave  
packet,  i.e.  the  nonlinear  interaction between the car-
rier and a long-wave unstable modulation. The unstable 
packet modes have very interesting physical behavior: 
They are packets which can, early in their evolution, 
correspond to a small modulation of the carrier and then 
later become large modulations which can reach up to 
several times the carrier amplitude. An important prop-
erty of an unstable packet mode is the maximum ampli-
tude it can reach during its evolution. This can be com-
puted by the simple formula (see Figure 3 for definition 
of variables): 

 
ηmax

Ao
= 2 λ I

Ao
+1  (12) 

 
We discuss this result in more detail in the next sec-

tion. 
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Figure 1. Lambda plane where the nonlinear Fourier spec-
trum for the NLS equation lives. 
 

In the light of this discussion of the lambda plane it is 
interesting to notice where historical wave tank experi-
ments reside in the lambda plane. Roughly, these corre-
spond to the small vertical box of eigenvalue pairs on or 
near the imaginary axis as shown in Figure 1; these cor-
respond to three of the five parameters being identically 
zero: {Ao ,0,0,0,λ Ic}. Indeed, based on this observa-
tion, most of the lambda plane has yet to be explored. In 
our view, many surprises await future exploration of the 
entire plane. 

We already know about Stokes wave solutions of the 
NLS equation, i.e. they correspond to the dnoidal wave 
solutions of the equation and are double points with 
spines crossing the real axis (Figure 1). To save space 
we move immediately to solutions of NLS that corre-
spond to unstable wave packets.  

4.  Modulation theory for the NLS equation 

Small amplitude modulation theory for the NLS 
equation predicts a number of interesting features about 
the nonlinear propagation of initially small amplitude 
sine wave modulations. One of the most important is 
shown in Figure 2 where a small amplitude modulation 
of a carrier wave is shown (both the real and the imagi-
nary parts of the carrier are given). At a later time this 
small modulation develops into an unstable wave packet 
as seen in Figure 3. In the present case the maximum 
amplitude is about 2.6 times the carrier height. 
 
Growth rate 

One of the important properties of an unstable wave 
packet is the growth rate: 

2

2 2
2 2

1
2 2 2 2o o o

o o o o

K Ki k a
k a k a

ω
⎛ ⎞ ⎛ ⎞

Ω = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

         (13) 

This is Yuen’s famous result when squared, but we leave 
this equation in the above form to emphasize the depend-
ence on the Benjamin-Feir parameter. The above equation 
is just the imaginary part of the modulation frequency and 
is graphed in Figure 4. 

 

 
 
Figure 2. Small amplitude initial modulation of a carrier 
wave. 

 

Figure 3. Small amplitude initial modulation of Figure 2 
has grown into an unstable wave packet. 
 
Another important property of unstable wave packets 
is the maximum amplitude of the packet with respect 
to the carrier amplitude: 
 

amax
ao

= 1 + 2 λI
ao

= 1 + 2 1 − K
2 2ko

2ao

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

          (14) 

This function is graphed in Figure 5. We see that the 
maximum growth rate of Figure 4 (dimensionless 
wave number 1) is associated with an unstable wave 
packet that reaches a height of ~2.414 times the car-
rier height. Smaller modulation wave numbers are 
necessary to get larger packet amplitudes (up to a 
maximum of 3 times the carrier height), although 
they will take longer to reach their maximum height 
because the growth rate is smaller (Figure 5). How-
ever the maximum height of 3 occurs only for infini-
tesimal wave number. 
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Figure 4. Instability diagram for small amplitude modula-
tions for the NLS equation.  

Figure 5. Maximum amplitude of an unstable wave packet 
as a function of dimensionless wave number. The maxi-
mum amplitude for the maximum growth rate (see Figure 
4) is shown; the maximum amplitude is ~2.414 (see exam-
ple in Figure 3). 
 
We can also compute the imaginary part of the IST ei-
genvalue by the simple relation (here, as with the exam-
ples above, we assume they lie on the imaginary axis):  

 
2

2
1

2 2
I

o o o

K
a k a
λ ⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

 

As before we see that when the eigenvalue is near, but 
below the carrier in the lambda plane the ratio 
λ I / ao ~1  and hence the modulation wave number 
must be small and the modulation wavelength must be 
long.  
 
Time interval for rogue wave to rise to its maximum 
 
 Another parameter that is very useful is the actual 
time to appearance of an unstable mode. Beginning 

with the initial small-amplitude modulation we see that 
this time scale can be computed by noting that:  
 εeγt ~ O(1)  
 
where ε  is the initial modulation amplitude and γ  is 
the imaginary part of the IST wave number (16):  

 
2

2 2
2 2

1
2 2 2 2o o o

o o o o

K Kk a
k a k a

γ ω
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      

 
This gives the time from the initial modulation to the 
maximum of an unstable mode:  
 T* ≈ lnε /γ   
 This is a very useful formula for determining how 
long it takes for a small amplitude modulation to de-
velop into a rogue wave.  
 
Dissipation 
 
 Likewise it is useful to determine if dissipation is im-
portant in wave propagation problems where rogue 
modes are present. Will a rogue mode come up before 
the waves are dissipated?  For example, for linear, dis-
sipated waves we have the approximation (Segur, this 
volume):  
 εeδt ~ O(1)  
 
so that the waves are dissipated in the time:  
 Tdiss ≈ ln ε / δ  
 
Rogue waves can be expected if T* << Tdiss , which is 
typically true in the ocean where T* ~ minutes  and 
Tdiss ~ tens of hours . 
 
Benjamin-Feir parameter 
 
 Periodic inverse scattering theory (Kotljarov and Its, 
1976; Tracy and Chen, 1988) tells us that unstable wave 
packets associated with small-amplitude modulations 
exist when ρaoL > nπ  where ρ = 2ko

2  and L > 2π /K  
where K is the modulation wave number, ao  is the car-
rier amplitude and ko  is the carrier wave number. Here 
n is an integer, n = 1,2... that counts the number of un-
stable wave packets in a wave train. This provides a 
useful definition of nonlinearity in terms of a kind of 
Benjamin-Feir parameter: 

 
22 2o o o

BF
a L k aI n

K
ρ

π
= = >  (15) 

Another useful form is obtained by noting that the num-
ber of carrier oscillations in a space series, Nx , below 
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the modulation envelope can be written 

 Nx = ko
K

= L
Lo

 

so that the BF parameter is then  

    IBF = 2 2 Nxkoao > n  
 
Thus the nonlinearity is increased by increasing the 
steepness, koao , and/or the number of carrier oscilla-
tions, Nx , under the modulation envelope in a space 
series.  

We see that IBF  is the same parameter that appears 
in the growth rate (16) and the maximum amplitude 
(17) of an unstable packet, which we now rewrite: 

   Ω = iωoko
2ao

2 IBF
2 −1
IBF

2   (16) 

   
amax
ao

= 1 + 2
IBF

2 −1
I BF

  (17) 

   (17) 
Two of the most useful results for estimating unstable 

wave packet behavior can be written in terms of the 
Benjamin-Feir parameter! 

It is also clear that an unstable wave packet (a 
nonlinear mode in the spectrum) has the imaginary part 
of the centroid of the associated double point that is also 
a function of the Benjamin-Feir parameter: 
 

 λ I = ao
IBF

2 −1
IBF

 

 
where the inverse is given by:  
 IBF = ao

ao
2 − λ I

2
 

 
Thus there is a unique relationship between the BF pa-
rameter and the spectrum of an unstable wave packet. 
 Note that the Benjamin-Feir parameter used herein, 
based upon inverse scattering theory, differs from that 
used in Janssen (2003) by an overall scale factor. The 
advantage of the definition used herein is that one ob-
tains an estimate of the number of unstable modes in a 
time series. 

5.  Analytical formulas for some unstable 
wave packets 

 A large number of examples of unstable wave pack-
ets are known (see for example (Osborne et al., 2000) 

and cited references). We consider three cases: (1) 
{Ao ,0,0,0, Ao / 2}, (2) {Ao , 0,0,0, Ao} and (3) 
{Ao ,0,0,0, 2 Ao}. The first case lies on the imaginary 
axis below the carrier, the second lies directly on the 
carrier and the third lies above the carrier in the lambda 
plane. The first case considered has the following solu-
tion to the NLS equation: 
 

2
2 2

2
2

( , )

cos[ 2 ]sech[2 ] 2tanh[2 ]
2 cos[ 2 ]sech[2 ]

oiA to o o
o

o o

u x t

A x A t i A tA e
A x A t

=

⎡ ⎤+
⎢ ⎥

−⎢ ⎥⎣ ⎦

(18) 

  
Figure 6. Modulus ( , )u x t  of unstable wave packet that 
lies below the carrier in the complex lambda plane with 
spectrum: { }0 0,0,0,0, / 2A A . 

 
The imaginary part of the eigenvalue is 0 / 2I iAλ = −  
and the maximum packet amplitude is then given by  
 ηmax

Ao
= 2 λ I

Ao
+1 ≅ 2.414  

This case is typical of previous studies of the Benjamin-
Feir instability, i.e., a small-amplitude modulation in the 
far past evolves into an extreme wave event in the pre-
sent. As seen in Figure 6 the small modulation is not 
easily visible at early times, it appears to be a broad flat 
plane over all x at small t. Then exponential growth is 
seen to lead to a finite amplitude of ~2.41 times the car-
rier amplitude and then the wave decreases in amplitude 
as the modulation effectively disappears for large times. 
This solution to NLS (13) is periodic in x and decays 
exponentially for large past and future times; it can be 
viewed as a single nonlinear mode (a single Fourier 
component) of NLS with a 2×2 period matrix. 
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The second case (which lies directly on the carrier) is 
shown in Figure 7. It has the exact solution (see Os-
borne et al., 2000) and references therein) given by 
 

 
2

4 2 2 2

4(1 4 )( , ) 1
1 16 4

o
o

o o

iA tu x t A
A t A x

⎡ ⎤+= −⎢ ⎥+ +⎣ ⎦
  (19) 

 

Here the imaginary part of the eigenvalue is λ I = iAo  
and thus the maximum wave height is given by: 
 

  ηmax
Ao

= 2 λ I
Ao

+1 = 3.0   

 
Figure 7. Modulus ( , )u x t  of unstable wave packet that 
lies on the carrier in the complex lambda plane with spec-
trum: {Ao, 0,0, 0, Ao}. 
 
 

From (14) we see that this solution to NLS is character-
ized by an algebraic decay for large x and t. In the spirit 
of the periodic inverse scattering transform (14) is a 
nonlinear Fourier component in the theory. 
 The third case (above the carrier) is shown in Figure 
8. 
 
u(x, t) =

Ao 1 +
2 cos[4 2 Ao

2t] + i 2 sin[4 2Ao
2 t]( )

cos[4 2 Ao
2t]+ 2 cosh[2 Aox ]

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ e

2iAo
2t  

(20) 
The eigenvalue is given by λ I = i 2 Ao  so that the 
maximum height has the value  
 max 2 1 3.828I

A A
η λ= + ≅  

 

This case lies above the carrier and is no longer a small 
amplitude modulation for times far in the past. Indeed 
the solution is periodic in t and exponentially decaying 
in x. Note that for small time in Figure 8 the spatial 
variation in the solution is a large amplitude modula-
tion. This behavior is characteristic of spectral compo-
nents with centroid above the carrier in the lambda 
plane (Osborne, 2002).  
 At this point it seems clear that there are an infinite 
number of solutions of the NLS equation each corre-
sponding to particular values for the parameters in the 
spectrum {Ao, ε,θ, λRc , λIc} . This is also true of the lin-
ear Fourier spectrum where there is a four-parameter 
family for amplitude A, wave number k, frequency ω  
and phase φ  for each sine wave component: {A, k, ω, φ} . 
However, for the IST solution of the NLS equation the 
basis functions and the space/time dynamics are much 
less boring than simple sine waves, as verified in part 
by Figures 6-8. 
 

 
 

Figure 8. Modulus ( , )u x t  of unstable wave packet that 
lies above the carrier in the complex lambda plane with 
spectrum: { ,0,0,0, 2 }o oA A . 

6.  Characteristics of random wave trains us-
ing IST 

 Random wave trains from the point of view of the 
inverse scattering transform arise when the phases δn

±  
in (9) are taken to be uniformly distributed random 
numbers. Each set of dual phases δn

±  leads to a single 
realization for a surface wave train governed by the 
nonlinear Fourier representation (8). What are some of 
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the properties of wave trains governed by this formula-
tion? We now discuss a few. 
 We focus on a time series of length T, significant 
wave height Hs = 4σ  (σ  is the standard deviation of 
the time series) and fo  is the peak spectral frequency. 
Use the fact that / 2 /o ok k f f∆ = ∆  (where ∆f =1/T , 
∆k ≡ K ) and the Benjamin-Feir parameter becomes:  

 Carrier wave steepness2 ~
/ Spectral bandwidth

o o
BF

o

k aI n
f f

= >
∆

 

or in terms of the number of carrier oscillations under 
the modulation, Nt : 

 max 2
0

2 2 1
2

IH Ha
λ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

2
      (Number carrier oscillations)(steepness)

BF t o oI N k a n= >  

where the number of carrier oscillations in a time series 
is half that in a space series: 

 
Nt = fo

∆f
= T

To
= 1

2
Nx

 
It is common to take the characteristic wave steep-

ness in a random wave train in the form: 

koao = 2π 2

g
HsTo

−2 = 2π 2

g
Hs fo

2

 
where we have used ao = 2σ . This definition is con-
venient because for a sine wave of amplitude a we have 
σ = 2a /2  and hence an estimate of the carrier ampli-
tude gives the obvious result ao = 2σ = a . We are left 
with an estimate of the Benjamin-Feir parameter for a 
random wave train: 

 
IBF = 2π 2

g
Hs fo

3

∆f
> n

       (21) 

 This provides a convenient way to estimate the num-
ber of unstable wave packets in a time series. It should 
be remembered that this is just a rough count of the 
number of unstable wave packets. Only the precise in-
verse scattering transform calculation will provide the 
optimal estimate. Figure 9 shows some of the important 
aspects of a time series (or space series) and its spec-
trum. This example is a JONSWAP power spectrum 
with γ = 6 . It is easy to see why enhancing γ  increases 
the Benjamin-Feir parameter and therefore increases the 
number of unstable packets in a wave train. This occurs 
because enhancing γ  increases the steepness and de-
creases the bandwidth of the spectrum. 

How high can unstable wave packets become with 

respect to significant wave height? Using ao = 2σ , 
Hs = 4σ  and (17) we find: 

 
Figure 9a. A JONSWAP power spectrum with enhance-
ment parameter γ = 6 . Shown are the necessary parameters 
for computing the Benjamin-Feir nonlinearity parameter: 
IBF = (2π 2 /g)Hs fo

3 /∆f . 
 

 
Figure 9b. A JONSWAP wave number power spectrum 
with enhancement parameter γ = 6 . Shown is the band of 
wave numbers, ko ± ∆K , about the peak wave number, ko , 
for which instable wave packets can occur. The half-width 
of this band is related to the BF parameter by: 

22BF o sK I k k H n k∆ = ∆ = > ∆ . Here n∆k  means that 2n∆k  
wave number intervals about the peak are unstable. Here 
IBF = 2ko

2Hs /∆k > n . 

 max
2 2 1

2
I

s
o

H H
a
λ⎛ ⎞
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⎝ ⎠

 

For example,  
 

How high can unstable wave packets become with 
respect to significant wave height? Using ao = 2σ , 
Hs = 4σ  and (17) we find: 
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Hmax = 2
2

2 λI
ao

+ 1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Hs  

For example. for λ I = ao / 2  we have 

max 1.704 sH H= , for λ I = ao  we get Hmax = 2.121Hs  
and for λ I = 2ao  then max 2.707 sH H= . These may 
be compared to an often-assumed “definition” of a 
rogue wave: Hmax > 2Hs . 

 

Figure 9c. A JONSWAP frequency power spectrum with 
enhancement parameter γ = 6 . Shown is the band of fre-
quencies, fo ± ∆F , about the peak frequency, fo , for 
which instable wave packets can occur. The half-width of 
this band is related to the BF parameter by: 
∆F = IBF∆f = 2π 2Hs fo

3 /g > n∆f . Here n∆f  means that 
2n∆f  wave number intervals about the peak are unstable. 
Here IBF = 2π 2Hs fo

3 / g∆f > n . 

7.  Trondheim wave tank experiments 

 We have conducted a number of deep-water, random 
wave experiments in the facility at Marintek in Trond-
heim, Norway. The tank is 10 m × 10 m × 270 m. We 
conducted the experiments discussed herein using stan-
dard software for wave generation using random Fou-
rier phases and the JONSWAP power spectrum: 

 
( )( )

4* 2* *5 12 * exp /4 2
4 5( )

(2 )

d
d o d

f
f f ffgP f e

f

σα γ
π

⎛ ⎞ ⎡ ⎤⎜ ⎟− − −⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦=  

For present purposes we varied only the parameter γ , 
the others remained their standard values. Nineteen 
probes were place along the tank and time series of one 
half hour were recorded at a rate of 40 Hz. A typical ex-
periment is shown in Figure 10, where we used γ = 6 . 

The lowest time series in Figure 10 corresponds to 
the input JONSWAP spectrum after it had traveled for 

10 m (Probe 1). Probe 8, which is herein fully analyzed 
for unstable wave packet behavior, is 70 m from the 
wave maker (count probe numbers upwards skipping 
the horizontal straight line above Probe 1). 
 The time series considered herein are shown in Fig-
ures 11 and 12; they have 4096 points and their tempo-
ral period is 102.4 s. For reference we put several prop-
erties of the wave train directly on Figures 11 and 12. 
The time series in Figure 11 is at Probe 1, where the 
properties of the waves are still quite like those ex-
pected of the JONSWAP spectrum. On the other hand 
Figure 12 shows the same part of the wave dynamics 
(found by shifting along the time axis using the linear 
group speed) at Probe 8, 70 meters from the wave 
maker. It is clear that the character of the wave train at 
Probe 8 is quite different from that at Probe 1. The 
packets at Probe 1 are broad and low, while the packets 
at probe 8 are narrow and high. This is the effect of the 
Benjamin-Feir instability on the nonlinear dynamics of 
a random wave train. Figure 10 offers hours of enter-
tainment for those interested in learning how this insta-
bility affects random wave trains. 

We show the linear Fourier transform of the Probe 8 
time series in Figure 13. Also shown are the bounds of 
the band pass filter used to remove the Stokes contribu-
tion to the wave dynamics. This is a necessary step, be-
cause the NLS equation does not contain directly the 
Stokes effect, which is instead included only in Eq. (2). 

The filtered wave train is shown in Figure 14, along 
with the modulus of the envelope of the wave train, 
which has been computed using the Hilbert transform. 
The standard deviation σ  of the wave train and the am-
plitude of the carrier wave ao = 2σ  are shown in the 
figure. 
 In Figure 15 we show the results of the inverse 
scattering transform computation on the time series of 
Figure 14. We discuss briefly how to interpret this in-
teresting nonlinear spectrum. Note that the horizontal 
frequency axis is centered at the peak of the spectrum 
where the frequency is taken to be zero. There are two 
kinds of IST spectrum. The first kind of spectrum has 
simple sine waves (or at most low amplitude Stokes 
wave components) that are shown connecting to the fre-
quency axis by a line, a “spine”. These are the low lying 
components to the right and left of the spectrum and one 
can think of them as being like ordinary linear Fourier 
components. The other kind of spectrum is totally new 
and consists of unstable wave packets. These consist of 
double points connected by a spine. When the double 
points are degenerate no spine can be seen because the 
two points lie almost on top of each other. In other cases 
the spines can be seen clearly connecting the double 
points. In any event any isolated cross, or two crosses 
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connected by a spine are unstable packet modes. 
Crosses connected to the frequency axis by a spine are 
quasi-linear modes (like linear Fourier components). 
Thus all of the crosses in Figure 15 in the upper part of 
the picture  are  unstable  packets;  there are 13 of them, 

the larger of which are candidates for extreme waves at 
some point during their nonlinear evolution. 
 
←Figure 10. A 200-sec section of a random wave experi-
ment conducted at Marintek. We used the value γ = 6  for 
the JONSWAP power spectrum. 
  

  
Figure 11. A 4096 point time series from Probe 1 at 10 m 
from the wave maker. 
 

  
Figure 12. A 4096 point time series from Probe 8 at 70 m 
from the wave maker. Three extreme waves have ampli-
tudes that are greater than three standard deviations. Two 
of the waves are greater than twice the significant wave 
height. 
 
 To properly interpret the IST spectrum of Figure 15 
we compare to the linear Fourier spectrum on the same 
scale, see Figure 16. All of the modes are stable and 
consist of sine waves. How can the nonlinear spectrum 
in Figure 15 have so many unstable wave packets? Be-
cause, simply put, they have robbed energy from the 
linear Fourier modes. 

We finally compare the heights of the largest ob-
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served packets in the time series of Figure 12 with in-
verse scattering theory using Figure 15 and Eq. (12). 
The results are shown in Figure 17. The theory of Eq. 
(12) is shown as a solid line. The wave heights meas-
ured from Figure 14 (which has been filtered for the 
Stokes effect) are shown as solid squares. The wave 
heights measured from Figure 12 (no filtering for the 
Stokes effect) are shown as open squares. One does not 
expect perfect agreement between theory and experi-
ment because the measurements at Probe 8 give the 
packet heights only at one spatial location. Since the 
packets are unstable their amplitudes are undergoing 
considerable space/time dynamics and we cannot expect 
that they will all be at their maximum heights at any 
spatial location. The results of Figure 17 show the ob-
served wave heights to fall below their maximum theo-
retical heights, an expected result. 
 

  
Figure 13. Fourier transform of time series at Probe 8 in 
Figure 12. The location of the band pass filter that removes 
the Stokes contribution is also shown.  
 

  
Figure 14. Application of the Hilbert transform to the time 
series at Probe 8 in Figure to determine the modulus of the 
envelope of the wave train. This step also includes the fil-
tering operation discussed in Figure 13. 

 Figure 15. Inverse scattering transform spectrum of the 
time series at Probe 8 in Figure 12. Eigenvalue pairs that 
are in the upper part of the graph correspond to large un-
stable wave packets. The carrier height is at 0.0566 m. 
  

 
  
Figure 16. Linear Fourier spectrum of the time series at 
Probe 8 in Figure 12. The scale is the same as the IST 
spectrum in Figure 15, so that comparison of the two can 
be made. The bounds of the linear estimate of unstable 
modes are indicated by the vertical lines. 
 

It is interesting to note that the Benjamin-Feir pa-
rameter, as computed  by  Eq.  (21), is IBF = 9.79 . This 
result is based upon linearized modulation theory and 
should be compared to the number of unstable packets 
in Figure 15, namely, 13. Complete inverse scattering 
theory contains the full NLS spectrum, including large 
amplitude modulations. In the present case the number 
of fully nonlinear modes is 13, larger than the 9 modes 
estimated by the BF parameter.  
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Figure 17. The largest packet heights predicted by theory 
(solid line) to the actual packet heights measured from 
Figures 12 (with Stokes contribution) and 13 (Stokes con-
tribution filtered out). 

8.  Summary and discussion 

 We have used the periodic inverse scattering transform 
to study   the   nonlinear dynamics of deep-water wave 
trains, both theoretically and experimentally. Experimen-
tally we have used IST as a time series analysis tool to en-
hance our understanding of measured wave trains in the 
wave tank facility at Marintek, Trondheim, Norway. We 
have discussed how deep water wave trains have two kinds 
of spectrum, namely, a near linear component and a sepa-
rate component of unstable wave packets. These packets 
are discrete components of the IST spectrum, they have 
their own nonlinear space/time dynamics and also nonline-
arly interact with one another and the near-linear back-
ground sea state.  
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