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Abstract. Here we discuss some issues concerning the statistical properties of
ocean surface waves. We show that, using the approach of weak turbulence theory,
deviations from Gaussian statistics can be naturally included. In particular we
discuss the role of bound and free modes for the determination of the statistical
properties of the surface elevation. General formulas for skewness and kurtosis as
a function of the spectral wave action density are here derived.

Introduction

Recently it has been observed experimentally that large
amplitude waves can appear on the surface of the ocean.
There are different mechanisms that can lead to the forma-
tion of such events. For example, linear theory can be con-
sidered as a first candidate for explaining these waves: it can
happen that for some fortuitous occasion, two or more waves
of different lengths are in phase, leading to the well known
constructive interference mechanism (linear superposition of
Fourier modes). When the surface elevation is characterized
by a large number of linear waves with random phases, it is
possible to estimate the probability of measuring an extreme
event (say a wave of height larger than 2 times the signif-
icant wave height). This theoretical task has been accom-
plished about 50 years ago (Longuet-Higgins, 1952) and the
main result is that, if the surface elevation is Gaussian and
the process is narrow-banded, then wave heights and wave
crests are distributed according to the Rayleigh distribution
(corrections due to finite spectral band-width have also been
obtained).

First substantial corrections to this distribution can be ob-
tained if waves are considered weakly nonlinear, or more
precisely, if for each wave component (free modes), its
bound contributions are included. For the narrow-banded
case this is nothing but describing the surface elevation as a
Stokes expansion. The more general description of the sur-
face elevation, valid for any spectral band-width, was given
in a seminal paper byLonguet-Higgins, 1963. He was able to
derive the contributions to the surface elevation from bound
waves up to second order in wave steepness. The numeri-
cal implementation of the formulas reported in the paper by
Longuet-Higgins corresponds to what today is called a “sec-
ond order theory” (seeForristal, 2000); note that the theory
includes only bound modes and not free modes. The pres-
ence of those Stokes-like contributions gives the waves the
well known property of being positively skewed. Using the
second order theory, Tayfun in 1980 was able to include this
contribution in the distribution function of the wave crests.

More in particular, for unidirectional narrow-banded waves
in infinite water depth, with the hypothesis that free waves
are described by a Gaussian statistics, he derived a formula
for the distribution of wave crests (now known as the Tay-
fun distribution) which does bring substantial corrections to
the Rayleigh distribution, especially if the wave steepness is
large. It should be here stressed that the Tayfun second order
theory predicts a Rayleigh distribution for wave heights (this
is because second order contributions cancel out for wave
heights). The Tayfun distribution has been recently com-
pared successfully with interesting numerical experiments of
envelope equations (seeSocquet-Juglard et al., 2005). Para-
doxically, the distribution describes very well the data char-
acterized by large directional spreading but underestimates
wave crests in the long-crested case for which the distribu-
tion has been derived.

Only in the last few years it was realized that not only
bound modes can generate deviations from a Gaussian statis-
tics but also the dynamics of free waves should be consid-
ered in the determination of the statistical properties of the
surface elevation. More in particular, it was shown inOno-
rato et al., 2002 andJanssen, 2003 that the nonlinear inter-
actions of free modes can substantially alter the statistical
properties of the surface elevation. Note that in this case
the statistics of free modes (without the contribution from
bound modes) can be non Gaussian. It was also found that
the nonlinear interactions responsible for such a deviation
from gaussian statistics are associated with the modulational
instability mechanism (also known as the Benjamin-Feir in-
stability) which can be thought as a quasi-resonant 4 wave
interaction. Those concepts are the bases of the theory devel-
oped inJanssen, 2003, where a kinetic equation that includes
quasi-resonant interactions is derived. More than that, in the
same paper, an equation that relates the kurtosis (fourth mo-
ment of the surface elevation) to the spectral wave action
density is obtained. The theory includes only the contribu-
tion to the kurtosis from free modes.

The aim of the present paper is to describe a single the-
ory, based on the Hamiltonian formulation of surface grav-
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ity waves, that can take into account both the contribution
of bound and free waves. Before entering in the discussion
we will motivate the importance of including the free wave
dynamics in the theory by showing some experimental data
recorded during the Marintek experimentsOnorato et al.,
2004. Here we anticipate that the experimental data sug-
gest that in the particular condition of long crested waves
and large Benjamin-Feir Index, the second order theory is
inadequate to describe the distribution of wave crests. In the
last part of the paper we will sketch the derivation of the for-
mulas for the kurtosis and skewness which include both the
contribution from bound and free modes.

Data from Marintek compared with the
Second Order Theory

Here we will consider some experimental data recorded
at Marintek in one of the largest wave tank in the world.
The length of the tank is270 m and its width is10.5 m.
The conditions at the wave maker were provided by a Jon-
swap spectrum with random phases. One accepts this fact
and then lets the phases (and amplitudes) evolve according
to the nonlinear dynamics. Different runs were performed
(seeOnorato et al., 2004). Here we will consider just the
probability density function of wave crests for the run char-
acterized by a strong nonlinearity (steepness calculated as
ε = Hskp/2 was about 0.15, withHs the significant wave
height andkp the wave-number of the peak of the spectrum,
computed using the linear dispersion relation from the peak
frequency). Experimental data are compared with numeri-
cal data from a standard second order theory (the coupling
coefficient has been taken from Forristal 2000) and with the
Tayfun distribution.

In Figure 1 we show a comparison between the exper-
imental wave crest distribution recorded at the first probe,
a few wave lengths from the wave maker, and the second
order theory. First of all, it should be mentioned that for
the present conditions the Tayfun theory is in good agree-
ment with second order theory; the experimental data are
not so far from the mentioned distributions. This is not a
surprise because data have been built as a linear superposi-
tion of Fourier modes and the generation of bound modes is
practically instantaneous with respect to the Benjamin-Feir
space scales. The situation is different after the waves have
evolved along the tank according to their nonlinear dynam-
ics. As can be seen in Figure 2, the Tayfun distribution
(and the second order theory) completely underestimate the
experimental data. This result is quite significant because
it clearly tells us that there are some statistically stationary
conditions in which the second order theory is completely in-
adequate to describe the probability density function of real
water waves.

Apparently there is no reason for the second order theory

Figure 1. Wave crest distribution: experimental data, measured
at 2.8 wavelengths from the wave maker, are compared with data
from Tayfun and second order theory.

Figure 2. Wave crest distribution: experimental data, recorded at
17.1 wavelengths from the wave maker, are compared with data
from Tayfun and second order theory.

to fail to reproduce the experimental data; data (steepness
and spectral shape considered) do not violate any of the as-
sumption for deriving the second order theory. In the second
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order theory the surface elevation is considered as a linear
superposition of non interacting free modes to which bound
modes have been added. The main problem in the approach
is that, as it is well known from Hasselmann-Zakharov the-
ory (Hasselmann, 1962, Zakharov and Filonenko, 1967),
free waves also interact. In the next section we will con-
sider a general theory which considers both the contribution
from bound modes and free modes.

Skewness and kurtosis: Contribution from
bound and free waves

The goal of this section is to derive formulas for the skew-
ness and the kurtosis as a function of the spectral wave action
density. The starting point for the derivation of the theory is
the Hamiltonian description of surface gravity waves (see
Zakharov, 1968 and 1999 ). The theory described below is
general and can be applied to any weakly nonlinear disper-
sive system. Here we will start with the following Hamilto-
nian, truncated to four-wave interactions:
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The notation is taken fromKrasitskii, 1994 (for example,
ai = a(ki), U

(1)
0,1,2 = U (1)(k0,k1,k2)). The coupling co-

efficients and their properties are reported in the just men-
tioned paper (the reader unfamiliar with the present Hamil-
tonian description of surface gravity waves who is willing
to understand details of what follows is strongly advised
to read the paperKrasitskii, 1994). Note that we have for
brevity omitted three more integrals which contain non res-
onant four-wave interactions. Up to our desired accuracy,
those terms do not contribute to the skewness and to the kur-
tosis, therefore can be safely neglected. The surface eleva-
tion η(k) and the velocity potentialψ(k) are related to the
wave action variablea(k) in the following way (note that the
dependence on time has been omitted for brevity):

η(k) =

√
k

2ω(k)
(a(k) + a∗(−k)) (2)

ψ(k) = −i
√
ω(k)
2k

(a(k) − a∗(−k)). (3)

It is well known that three waves resonant interactions are
forbidden for surface gravity waves, therefore it is always
possible to introduce new canonical variablesb and b∗ for

which the Hamiltonian does not show explicitly those inter-
actions. The standard way of doing this consists in consider-
ing the canonical transformation, expressed as the following
infinite series:

a0 = b0+
∫
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The canonical transformation allows one to separate directly
the bound modes from the free modes: modesb(k) are free
modes which have their own dynamics and the surface el-
evation (which contains free and bound modes) can be re-
covered directly by using equations (2) and (4). Indeed, it is
easy to show that in the narrow-banded approximation equa-
tions (2) and (4) reduce to the Stokes expansion, i.e. a carrier
wave plus its bound harmonics.

Before entering into the details, here we mention that we
will make large use of the so calledquasi-gaussian approx-
imation, i.e. the goal is to express the higher order correla-
tors as a function of the second order correlator,< b1b

∗
2 >=

N1δ1−2, with N = N (k) the wave action density spectrum
(< ... > indicate ensemble averages). In this approximation
the fourth and six order correlators for the free waves can be
written as follows (see for exampleJanssen, 2003)

< b1b2b
∗
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(5)
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(6)

D1,2,3,4 is the cumulant, irreducible part of the fourth or-
der correlator (for the sixth order correlator it has been ne-
glected). Note that, for a gaussian processD1,2,3,4 is exactly
zero. Therefore, in order to describe departures from gaus-
sian behavior we consider an evolution equation forD1,2,3,4.
This can be accomplished starting with the evolution equa-
tion for the free waves (the Zakharov equation) and develop-
ing evolution equations for the second and fourth moment of
a(k). the equation forD1,2,3,4 can be solved supposing that
the wave action density spectrum changes on a slow time
scale and that at timet = 0 the waves are Gaussian (the
cumulant is exactly zero). Details can be found inJanssen,
2003. The result is the following equation forD1,2,3,4:

D1,2,3,4 =2T1,2,3,4δ1+2−3−4G(∆ω, t)
N1N2(N3 +N4) − (N1 +N2)N3N4

(7)

T1,2,3,4 is the coupling coefficient for the Zakharov equation
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andG(∆ω, t) is given by:

G(∆ω, t) =
1 −Cos(∆ωt)

∆ω
+ i

Sin(∆ωt)
∆ω

(8)

with ∆ω = ω1 + ω2 −ω3 −ω4. We now consider the statis-
tical properties of the weakly nonlinear system described by
the Hamiltonian in (1). We consider the third order moment
< η(x)3 >; using the definition of the Fourier transform and
equation (2) we obtain:
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√
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8g3
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Note thatL1,2,3 is symmetric under the transposition of all
subscripts. We now use the canonical transformation (4) and
insert it in (9) to obtain:
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where the kernelS1,2,3,4 is given in (Onorato, 2005) where
also intermediate steps in the derivation are reported. Here
we just mention thatS1,2,3,4 is a function ofA(1), A(2) and
A(3) in the canonical transformation. Now using equations
(5) and (7) we can write the skewness as:
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The final result is that the skewness can be written as the
sum of two contributions: the first one includes only bound
modes and the second one depends both on bound and free
modes.

We now consider the kurtosis. Using a similar approach
used to derive equation (12), we write the kurtosis in the
following way:
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The kernelK1,2,3,4,5,6, given inOnorato, 2005, is a func-
tion ofA(1), A(2), A(3). Note that at the same order, higher
order terms that we have omitted in the canonical transfor-
mation should enter (those terms are reported inOnorato,
2005). We now apply the quasi-gaussian approximation and
use equations (5) and (6) for the fourth and sixth order cor-
relator to obtain:

< η(x)4 >= 3 < η(x)2 >2 +

+ 16
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This is the final formula for the kurtosis expressed as a
sum of 3 contributions: the first one corresponds to a pure
gaussian system, the second one is the contribution from
free modes and the last one is the contribution from bound
modes. Equations (12) and (16) are valid for long and short
crested waves. It is interesting to note that in the limit of
long-crested waves and in the narrow-banded approximation
the integral including free modes becomes proportional to
the square of the Benjamin-Feir Index (seeJanssen, 2003 for
details) while the integral including bound modes become
proportional to the steepness squared.

As a conclusion we may state that the main contribution
of the paper is the derivation of equations (12) and (16).
Those equations, obtained using the Hamiltonian formula-
tion of surface gravity waves, can be viewed as a general-
ization and unification of the theory developed by Longuet-
Higgins in 1963 on bound modes and the theory developed
by Janssen in 2003 on free modes.
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