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Abstract. Limiting forms of extreme internal solitary waves in the ocean are
discussed from a theoretical standpoint. Exact solutions are compared with
predictions of weakly nonlinear theory.

Introduction

Large amplitude internal solitary waves are frequently
observed in coastal regions of the world’s oceans where they
are generated by the interaction of the barotropic tide with
the shelf break. Waves with amplitude to depth ratios as
large as 0.3 have been observed in the South China Sea (Orr
and Mignery 2003) (70–m waves in 240 m depth) and off the
Oregon coast (Trevorrow 1998) (22 m in 71 m depth).San-
ton and Ostrovsky (1998) observed internal solitary waves
in a two-layer stratification off the Oregon coast which had
amplitudes of 25 m in water 147 m deep. The amplitude to
depth ratio is only about 0.17 in this case, however the wave
amplitude was about 3.5 times larger than the thickness of
the upper layer making them extremely nonlinear.

Internal solitary waves are important because they are
often large, very energetic events, and, particularly in the
coastal marine environment, they have a significant role in
particle transport, mixing and energy dissipation, as well as
affecting acoustic propagation. Understanding the impact
of large internal solitary waves is of key importance in the
coastal marine environment.

Here we review one approach for computing exact fully
nonlinear internal solitary waves. Limiting forms of internal
solitary waves are discussed. Next weakly nonlinear theory
for internal waves, of the KdV type, are discussed with an
emphasis on some of the shortcomings of this approach.

Exact internal solitary waves

A solitary wave is a wave of the formF (x − V t). That
is, it propagates at constant speed without changing shape.
For nonlinear dispersive waves, which is the case of interest
here, solitary waves have special shapes, the shape depend-
ing on the governing evolution equation and the wave ampli-
tude. We will only consider solitary waves withF (ξ) → 0
asξ → ±∞.

Fully nonlinear, dispersive internal solitary waves can be
computed by solving a nonlinear elliptic eigenvalue prob-
lem, the Dubreil-Jacotin-Long (DJL) equation, for the stream-
line displacementη(x, z) or for the streamfunction (Davis

and Acrivos 1967; Tung, Chan and Kubota 1982;Turking-
ton et al. 1991; Lamb and Wan 1998; Brown and Christie
1998;Stastna and Lamb 2002).

Given the buoyancy frequencyN (z) where

N2 = −gρ̄′(z)/ρ̄(z), (1)

and the background flow̄U (z) we need to solve

∇2η +
N2(z − η)

(
c− Ū (z − η)

)2 η

+
(

Ū ′(z − η)
c− Ū (z − η)

+
N2(z − η)

2g

)

×
(
η2

x + (1 − ηz)2 − 1
)

= 0,

(2)

subject to the boundary conditions

η = 0 at z = −H, 0 and η → 0 asx→ ±∞. (3)

The propagation speed of the wave,c, is an eigenvalue which
must be found as part of the solution.

The propagation speed of internal waves decreases as the
mode-number increases and as the wave-length decreases.
This makes it possible for internal solitary-like waves of
mode-n > 1 to be accompanied by a wave train comprised
of short, linear lower-mode dispersive waves with the same
phase speed as the leading solitary-like wave. This gener-
ally seems to be the case (Akylas and Grimshaw 1992). Be-
cause the group velocity is smaller than the phase speed the
dispersive wave train drains energy out of the solitary-like
wave, resulting in a gradual decrease in the amplitude of
the solitary-like wave. Thus exact internal solitary waves
of mode greater than one do not exist except possibly un-
der exceptional circumstances. One exception to this is for
a stratification which is symmetric about the mid-depth for
which symmetric mode-two solitary waves can be computed
by calculating a mode-one wave in the upper half of the wa-
ter column and reflecting the resulting wave about the mid-
depth. This is often done in so-called studies of ‘mode-two’
waves (e.g. Tung et al. 1982). In addition, if a free sur-
face is used, a dispersive wave train of short surface waves
will radiate energy, implying that an exact internal solitary
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Figure 1. Horizontal velocity profiles along the surface for a se-
quency of internal solitary waves. Upper panelρ̄ = 1 − a(1 +
tanh(z/10). Lower panel:ρ̄ = a + b exp z/15. The water depth
is 100 m anda andb are chosen so the nondimensional density at
the bottom is 1 and at the surface is 0.99.

mode-one wave does not exist. While mode-one solitary-
like waves with a free surface are easily generated in the
laboratory, as are higher-mode internal solitary-like waves,
only mathematically exact mode-1 solitary waves can be cal-
culated and then only in the presence of a rigid lid.

In the following the Boussinesq approximation is made,
simplifying the eigenvalue problem to

∇2η +
N2(z − η)

(
c − Ū (z − η)

)2 η

+
(

Ū ′(z − η)
c− Ū (z − η)

)(
η2

x + (1 − ηz)2 − 1
)

= 0.

(4)

In the absence of a background current the only nonlinearity
is through the dependence ofN2 on z − η. If N is con-
stant (linear stratification under the Boussinesq approxima-
tion) the equation is linear and no solitary wave solutions
exist.

The solution method is based on the variational scheme
developed byTurkington et al. (1991) which was extended
to include background currents byStastna and Lamb (2002).
The solutionη(x, z) is the function which minimizes

K(η) =
∫ ∫

R

(Ū (z − η) − c)2

2c2
[
η2

x +(1−ηz)2 +1
]
dx dz,

(5)

Figure 2. Propagation speeds and maximum horizontal current for
solitary waves of increasing amplitude. Same density profiles as
for Figure 1.

subject to the constraint that

F (η) =
∫ ∫

R

η∫

0

(
ρ̄
(
z − η

)
− ρ̄
(
z − s

))
ds dx dz, (6)

takes on a specified value. HereF (η) is the scaled available
potential energy (APE) whileK(η) is the kinetic energy up
to a constant if̄U = 0 . Thus, the wave amplitude is fixed by
specifying the APE in the wave, a useful approach in com-
puting broad waves.

Waves that can be computed are limited in one of three
ways. First, as the APE is increased waves may flatten
and broaden as the wave amplitude (maximum isopycnal
displacement), propagation speedc and maximal horizontal
currentumax all approach asymptotic limits withumax < c.
The flow in the central portion of such waves becomes hor-
izontally uniform. This horizontally uniform flow is said to
be conjugate to the upstream flow so we call this limit the
conjugate flow limit. Observations of flat crested waves have
been reported by (see page 18 ofLafond (1959)).

A second possibility is that as the wave amplitude in-
creasesumax can reach and exceedc. Whenumax = c
the wave is at the breaking limit. While waves beyond the
breaking limit can be computed they have closed stream-
lines (i.e., a wave core, or vortex core) and the solution is
no longer unique. Waves with cores have been observed in
the lab (Manasseh et al. 1998;Grue et al. 2000), in the at-
mosphere (e.g.,Clarke et al. 1981;Cheung and Little 1990)
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and possibly in the ocean (Farmer, personal communication.
SeeMoum et al. 2004). Internal solitary waves with core
have been studied theoretically and numerically (Derzho and
Grimshaw 1997; Aigner et al. 1999; Lamb 2002, 2003;
Lamb and Wilkie 2004). Figure 1 shows some horizontal
velocity profiles along the upper boundaryu(x, 0) for a se-
quence of waves of increasing APE for an exponential den-
sity profile (maximumN at the surface) and for a hyperbolic
tangent density profile with a well defined pycnocline at a
depth of 30 m (total water depth 100 m). Figure 2 shows the
propagation speed and maximum currentumax as a function
of the scaled APE.

The third limiting mechanism is the onset of instability.
The numerical method used to solve (4) uses an iterative
solver which sometimes fails to converge. This appears to
be related to the onset of an instability as typically the loss
of convergence occurs when the minimum Richardson num-
ber in the pycnocline falls slightly below 0.25. This loss of
convergence occurs even when one gradually increases the
wave amplitude by computing a sequence of waves for in-
creasing values of the APE.

Weakly nonlinear theory for long internal
waves

Most theoretical descriptions of internal solitary waves
are based on weakly nonlinear theory. In this approach the
wave is assumed to be long relative to a vertical length scale,
and of small amplitude. These imply that the waves are
weakly dispersive and weakly nonlinear. Possible vertical
length scales to which the wave length is compared could
be the thickness of the upper mixed layer, or the total depth.
The former leads to the Benjamin-Ono equation, the latter
to the Korteweg-de Vries equation. Fully nonlinear, weakly
dispersive evolution equations for internal waves have been
developed (Ostrovsky and Grue 2003; Craig et al. 2004),
however these are restricted to two-layer systems. These, to-
gether with the Benjamin-Ono equation, are not considered
here.

The governing equations, nondimensionalized using hor-
izontal and vertical length scalesL (typical wavelength)
andH (water depth), reference densityρo, time scaleN−1

o

whereNo is a typical value of the buoyancy frequency, and
horizontal velocity scaleU = HNo, are

ψzzt + U (z)ψzzx − U ′′(z)ψx − bx

= εJ(ψ, ψzz) − µ(ψxxt + U (z)ψxxx)
+ εµJ(ψ, ψxx),

(7)

bt + U (z)bx +N2(z)ψ(x)
= εJ(Ψ, bz).

(8)

HereεΨ andερ are the perturbation streamfunction and den-
sity fields andb = gρ. The derivation of the KdV equation

is based on an expansion ofΨ andb in powers of the two
small parametersε, the wave amplitude, andµ = (H/L)2.

A search for solutions of the form

ψ = ψ(0) + εψ(1,0) + µψ(0,1) + ε2ψ(2,0) + · · · , (9)

b = b(0) + εb(1,0) + µb(0,1) + ε2b(2,0) + · · · , (10)

for which each term is a separable function leads to a solu-
tion of the form

ψ = B(x, t)cφ(z) + εB2(x, t)c2φ(1,0)(z) + · · · , (11)

b

N2
= B(x, t)E(z) + εB2(x, t)E(1,0)(z) + · · · , (12)

ζ = B(x, t)Z(y) +B2(x, t)Z(1,0)(y) + · · · . (13)

whereζ(x, y, t) is the isopycnal displacement as a function
of a vertical Lagrangian coordinatey.

At leading order we have

L[φ] ≡ φ′′ +
(

N2

(c− U )2
+

U ′′

c− U

)
φ = 0, (14)

φ(−1) = φ(0) = 0, (15)

(16)

and
Z = E =

c

c − U
φ (17)

is a solution of

M[Z] ≡
[
(c − U )2Z′

]′
+ N2(z)Z = 0. (18)

These equations are eigenvalue problems for the separa-
tion constantc which is the linear long wave propagation
speed. The wave amplitude functionB(x, t) satisfies

Bt + cBx = 0, (19)

to leading order. Separability of the higher-order terms re-
quires that the evolution equation forB have higher-order
terms. To orderε andµ, we obtain Korteweg-de Vries equa-
tion (KdV)

Bt + cBx + εαBBx + µβBxxx = 0. (20)

The coefficientsα andβ are determined by solvability con-
ditions for the higher order vertical structure functions. For
example, theO(ε) vertical structure functions are deter-
mined by

L[φ(1,0)] =
α

c

(
φ′′

c− U
+

U ′′

(c− U )2
φ

)

+
3
2
N2 U ′

(c− U )4
φ2 +

( U ′′

c − U

)′ φ2

2(c − U )

+
(N2)′

(c − U )3
φ2,

(21)
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M[Z(1,0)] = α
[
(c − U )Z′

]′
+

3
2

[
(c− U )2Z′2

]′
, (22)

and

E(1,0) = Z(1,0) − ZZ′ − 1
2

(
N2
)′

N2
Z2. (23)

with homogeneous boundary conditions atz = −1, 0. Mul-
tiplying (21) byφ and integrating over the water column re-
sults in the left hand side being zero. Setting the right-hand
side to zero then determines the value ofα. Equivalently,
equation (22) could be used by multiplying both sides byZ
and integrating.

The equations forφ(1,0) andZ(1,0) are forced versions
of the equation forφ andZ. This implies that the solutions
include an arbitrary multiple of the leading-order structure
functions. If, for example, we defineZ(1,0)

∗ to be the unique
solution of (22) with first derivative equal to zero at the bot-
tom, the general solution of (22) has the form

Z(1,0) = Z
(1,0)
∗ + a10Z. (24)

The value ofa10 can be chosen so thatB(x, t) is, to first-
order inε, the amplitude of the isopycnal displacement, the
surface current, the bottom current, etc. Or one could choose
a10 so thatZ andZ1,0) are orthogonal. Similar comments
apply to theZ(0,1) term. The appropriate choice forB(x, t)
is, of course, an issue even at leading order. Assuming wave
amplitudes are nondimensionalized so thatmaxB(x, t) is
O(1), the physical interpretation ofB determines the value
of ε for any comparison with a given physical situation.
Whatever choice forB is made, the corresponding vertical
structure should be scaled to have a maximum magnitude of
1.

As is well known, solitary wave solutions of the KdV
equation exist of the form

B = asech2
(
x− V t

λ

)
, (25)

where

V − c =
4µβ
λ2

=
1
3
εaα. (26)

The coefficients of the KdV equation are

I α = 3
∫

(c − U )2Z′3 dy, (27)

I β =
∫

(c− U )2Z2 dy, (28)

where

I = 2
∫

(c− U )Z′2 dz. (29)

The dispersive coefficientβ is always positive whereas
the nonlinear coefficientα can have either sign. Because
β > 0, from (26) we see thatV > c and thatα and a

must have the same sign. Hence KdV solitary waves are
waves of elevation/depression whenα is positive/negative.
From (26) we can also see that as the waves get larger (a
increases) the waves become narrower (λ decreases). The
KdV equation does not impose a limit to possible wave am-
plitudes. There is an implicit bound imposed by the require-
ment that the terms in the asymptotic expansions (11)–(13)
are decreasing. Flat crested waves as depicted in Figure 1
are not possible within this theory.

For large waves, or for stratifications for whichα is very
small, it is necessary to include higher-order nonlinear ef-
fects by including terms ofO(ε2). This results in the Gard-
ner equation

Bt + cBx + εαBBx + ε2α1B
2Bx + µβBxxx = 0. (30)

The cubic nonlinear coefficientα1 is given by

I α1 = −3
∫ {

4
3
α(c− U )Z′Z1,0

y

− 3(c− U )2Z′2Z1,0
y + 2(c− U )2Z′4 (31)

+
1
3
α2Z′2 − 5

3
α(c− U )Z′3

}
dy.

Likeα, it can have either sign. Because of the non-uniqueness
of Z(1,0), the cubic coefficientα1 is not unique. It has the
general form

α1 = α∗
1 + a10α, (32)

whereα∗
1 is the value obtained whenZ(1,0) = Z

(1,0)
∗ . Vary-

ing the value ofa10 can change the sign ofα1 unlessα = 0,
in which caseα1. This means that in general there is no
unique equation. How best to choose the appropriate wave
amplitude and solution of the higher-order problems is still
an open problem and probably depends on the stratification
and background currents.

The Gardner equation has solitary wave solutions of the
form

B =
a

b+ (1 − b) cosh2 θ
=

asech2θ

1 − b+ bsech2θ
, (33)

where

θ =
x− V t

λ
(34)

with

V − c =
4µβ
λ2

=
εa

3

(
α+

1
2
α1εa

)
(35)

and
b = − α1εa

2α+ α1εa
. (36)

The requirement thatB be finite restrictsb to be less than 1.
In addition, becauseβ > 0, we must have

α1εa(εa+ 2α/α1) ≥ 0. (37)
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Figure 3. Schematic showing possible solitary wave solutions of
the Gardner equation. The dashed lines indicate minimum wave
amplitudes. Arrows indicate possible transitions of shoaling waves

There are four cases, depending on the signs ofα andα1.
These are illustrated in Figure (3) (idea from R. Grimshaw,
E. Pelinovsky & T. Talipova). Ifα1 < 0 , as the wave ampli-
tude increases the wave amplitude increases at first and then
the waves broaden as a limiting wave amplitude, given by

εalim = −2
α

α1
, (38)

is reached. The sign of the wave is determine by the sign of
α.

If, on the other hand,α1 > 0 then waves of elevation
and depression are both possible, irrespective of the sign
of α. For one of the sets of waves, namely waves of el-
evation/depression for negative/positiveα there is a mini-
mum wave amplitude which is also given by (38). In these
cases, solitary waves exist only if the waves are large enough
that the cubic nonlinearity dominates the quadratic nonlin-
ear term. Whenα1 > 0, there is no bound to the amplitudes
of the waves, other than that implicitly imposed by the re-
quirement that the asmptotic expansions (11)–(13) are well
ordered.

The qualitative features of the limiting amplitudes can be
seen by rewriting the Gardner equation as

Bt +
(
c + εαB + ε2α1B

2
)
Bx + µβBxxx = 0. (39)

If α1 < 0 then the coefficient ofBx, which is a nonlinear
wave speed, becomes less thanc regardless of the sign ofα
suggesting a limiting amplitude. Ifα1 > 0 then the coeffi-
cient ofBx is always larger thanc if αB > 0, suggesting
waves of all amplitudes exist, and ifαB < 0 the coeffi-
cient ofBx is large thanc if B is sufficiently large. Note
that naively requiring that the coefficient ofBx is zero at
the limiting amplitudes predicts a limiting amplitude equal
to half that given by (38).
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Figure 4. Exact ISW of depression in a continuous three-layer
stratification. Black lines are density contours, blue/green are pos-
itive/negative horizontal velocity contours.

In the remaining sections we assumeε = µ = 1 with a
suitable redefinition of the amplitudea andλ, or a rescaling
of B andx.

Examples without background currents

Consider a couple of example stratifications. The first
is a two layer fluid with upper and lower layer depthsh1

andh2. This is a model for a stratification with a single
thin pycnocline separating two homogeneouslayers. For this
stratification

c2 =
g′h1h2

h1 + h2
, (40)

β = c
h1h2

6
(41)

α =
3c
2
h1 − h2

h1h2
, (42)

α1 = − 3c
8h2

1h
1
2

(
h2

1 + h2
2 + 6h1h2

)
. (43)

Here, the solution is fixed by fixingB to be the interface
displacement. Note thatα1 is always negative, so only cases
III and IV (Figure 3) are possible. The limiting amplitude of
solitary waves is

alim = − α

α1
= 4

(1 − 2h2)(1 − h2)h2

1 + 4h2 − 4h2
2

(44)

assumingh1 + h2 = 1. The limiting amplitude of exact
fully nonlinear waves can be computed (Amick and Turner
1986; Lamb 2000). A comparison of the two predictions
is shown in Figure 4. The weakly nonlinear prediction is
a good approximation only if the limiting amplitude is less
than approximately a quarter of the total depth.

The second model stratification considered is one for
which α1 can be positive. The simplest such stratification
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Figure 5. Limiting wave amplitudes predicted by Gardner equation
and by fully nonlinear theory.
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Figure 6. Exact ISW of elevation in a continuous three-layer strat-
ification. Contour lines as in Figure 5.

is a 3-layer symmetric stratification with upper and lower
layers of equal thicknessh and the same density jump at
each interface. Then, by symmetryα = 0 for mode-1 waves
which means thatα1 is uniquely determined.Talipova et
al. (1999) found that the cubic nonlinear coefficient is

α1 = − 3c
4h2

(
13 − 9H

2h

)
, (45)

which is positive if

h < 9H/26 = 0.346H. (46)

Becauseα = 0, this implies that there are no ISWs if
h > 9H/26 but that ISWs of either sign, with no minimum
or maximum amplitude, can exist ifh < 9H/26, i.e., if the
two interfaces are sufficiently close to the upper and lower
boundary.

The qualitative predictions of the Gardner equation are
qualitatively borne out by calculations of exact fully nonlin-
ear waves, other than the lack of a limiting amplitude when

α1 > 0. For example, consider the stratification

ρ̄(z) = 1− 0.005 tanh
(
z + 15

5

)
− 0.003 tanh

(
z + 90

5

)
.

(47)
where−100 ≤ z ≤ 0. This continuous three-layer strati-
fication has waves of depression which become flat-crested
(i.e., conjugate flow limited) as shown in Figure 5, along
with waves of elevation (Figure 6).

Next, consider a two-parameter family of continuous
stratification, which approximate three-layer stratifications,
given by

ρ̄(z) = 1 − 0.005

(
tanh

z − z1
0.0556

+ tanh
z − z2
0.0556

)
. (48)

for −1 < z < 0. Whenz1 + z2 = −1 we recover a con-
tinuous approximation of the symmetric stratification con-
sidered byTalipova et al. (1997). A summary of the results
of some calculations of fully nonlinear ISWs is presented
in Figure 7. Here the grey shaded region indicates(z1, z2)
values for whichα > 0. In this regions KdV theory pre-
dicts waves of elevation only. In the white regionsα < 0
in which case ISWs of depression are predicted. Along the
diagonalz1 = z2 the two pycnoclines coincide. This cor-
responds to a two-layer fluid. When the pycnoclines are in
the upper/lower half of the water column ISWs are waves of
depression/elevation.

Along the other diagonal,z1 + z2 = −1, the stratifica-
tion is symmetric and the quadratic nonlinear coefficient is
equal to zero. There are two other zero contours. To un-
derstand their existence consider the vertical linez1 = 0.
As −z2 increases from zero ISWs waves are waves of de-
pression at first until the lower pycnocline moves into the
lower half of the water column. The ISWs become waves
of elevation when−z2 > 0.5 because the lower pycnocline
dominates. The upper pycnocline, which is centred at the top
boundary, is not dynamically significant because its vertical
displacements are constrained to be small by the presence of
the boundary. As the upper pynocline moves down (−z1
increases) the lower pycnocline must move further down
to maintain waves of elevation. The zero contour passing
through(−z1,−z2) = (0, 0.5) terminates at(0.5, 1.0). For
a three layer fluid it can be shown that the intersection with
the contourz1 + z2 = −1 is atz1 = 0.3, i.e., ath = 0.3H
whereh = −z1 = 1 + z2 is the thickness of the upper and
lower layers. Note that the figure must by symmetric about
z1 + z2 = −1.

Computations of exact ISWs showed that waves of either
polarity are possible only above theα = 0 contour join-
ing (−z1,−z2) = (0, 0.5) to (−z1,−z2) = (0.5, 1) or be-
low the α = 0 contour joining(−z1,−z2) = (0.5, 0) to
(−z1,−z2) = (1, 0.5). Thus, waves of either polarity along
z1 + z2 = −1 are only possibly ifh = z1 < 0.3 instead of
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Figure 7. Exact ISW solutions for a continuous three-layer stratifi-
cation. Black contour lines are contours of constantα, the shaded
grey regions are regions whereα > 0 while the white regions have
α < 0. The open triangles: waves of elevation exist with a mini-
mum amplitude greater than zero. Solid squares: waves of eleva-
tion with no minimum amplitude. Green contours are contours of
minimum wave amplitudes equal to 0.02–0.2 in steps of 0.02.
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Figure 8. Background stratification and velocity.

0.346 as predicted by Talipovaet al. (1997). The theoreti-
cally predicted critical value ofh is about 15% too large.
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Figure 9. Exact internal solitary wave. Black lines are density con-
tours, blue/green are positive/negative horizontal velocity contours.

Effect of Background Shear

Finally, we briefly consider a single example to illustrate
the effects of a background velocity shear. The background
density stratification and current are

ρ̄(z) = 1 − 0.005 tanh
z + 85

5
− 0.00012 tanh

z + 10
5

,

(49)

U (z) = 0.3

(
1 + tanh

z + 10
5

)
, (50)

for −100 ≤ z ≤ 0, and are shown in Figure 8. The strongest
stratification is near the bottom and, in the absense of a back-
ground current only ISWs of elevation exist. The presence of
the background current with near surface shear enables the
existence of ISWs of depression as shown in Figure 9. Note
that the background shear has the same sign as the surface
shear induced by a wave of depression.

A shoaling wave

To illustrate the formation of a wave train with waves of
both polarities we consider a shoaling wave in a continuous
three-layer stratification

ρ̄(z) = 1 − 0.005 tanh
(
z + 5

2

)
− 0.01 tanh

(
z + 30

4

)
,

(51)
which has been nondimensionalized by the density density
at the surface. The water depth is

d(x) = 100− 30(1 + tanh(x/200)). (52)

Both pycnoclines have the same maximumN the lower one
is twice as thick and has double the density change across it.
In the deep water (depth 100 m) both pycnoclines are in the
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Figure 10. Density contours of a shoaling wave passing through
a turning point in a three layer stratification. Waves are at times
t=1600 s, 2400 s, and 3200 s. Only part of the computational do-
main is shown.

upper half of the water column and only solitary waves of
depression exist. In the shallow water (depth 40 m) waves
of either polarity are present. The lower pycnocline is now
below the mid-depth and it dominates the upper one in the
sense that it makes the quadratic nonlinear coefficientα to
be positive. While propagating from deep to shallow water
the wave passes through a turning point, defined as the lo-
cation at whichα = 0. In terms of Figure 3, the transition
is from region III to region I, although here we deal with
fully nonlinear waves and not with solutions of the Gardner
equation.

A nonlinear, nonhydrostatic model (Lamb 2002) was ini-
tialized with a single solitary wave of depression with an
amplitude of 5.86 m centred atx = −3000. Figure 10
shows contour plots of the density field at three different
times as the wave shoals. The initial wave passes through
a turning point and is almost completely destroyed. Only
a small solitary wave of depression survives, followed by a
train of solitary waves of elevation which are emerging from
a large mode-two like feature which formed at the back of
the initial shoaling wave. At later times the number of soli-
tary waves of elevation a solitary increases as more emerge
from this feature. The solitary waves of elevation propa-
gate more rapidly than the wave of depression. The trans-
formation of a single wave of depression to a train of much
narrower waves of elevation upon passage through a turning
point is predicted by variable-coefficient KdV models (e.g.,
Talipova et al. 1997).

Conclusions

Extreme internal solitary waves have been discussed in
an ideal setting. The use of numerical methods to com-
pute exact, fully nonlinear waves has revealed much about
the properties of large waves, yet the surface has only been
scratched. Much remains to be learned about large internal
solitary waves in more complicated stratifications and in the
presence of background currents.

It should be borne in mind that many large internal solitary-
like waves observed in the ocean may not be well approx-
imated by these idealized, exact internal solitary waves.
Most, large solitary-like waves are generated by tidal flow
over topographic features such as sills and the shelf break.
As the internal waves generated at these locations radiate
away it takes time for internal solitary waves to emerge. The
waves that do emerge will generally be propagating through
a spatially varying environment and hence will be continu-
ally adjusting to their local conditions. These make it pos-
sible, particularly in the case of shoaling waves, for internal
solitary-like waves to be much larger than exact fully non-
linear solitary waves can be.
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