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Abstract. The practicality of common wave breaking criteria is reviewed. Video 
recordings of the sea surface taken from aboard R/P FLIP are used to extract 
breaking wave properties. The key quantity is Λ(c)dc, the length of breaking 
crests per unit area propagating with speeds in the range (c, c+ dc). Independent 
of wave field development, Λ(c) is found to peak at intermediate wave scales 
and to drop off sharply at larger and smaller scales. For young waves, breakers 
occur at a wide range of scales corresponding to phase speeds of about 
0.1-1.0 cp,  but in developed seas breaking is hardly observed at scales corre-
sponding to phase speeds >0.5 cp. The phase speed of the most frequent breakers 
shifts from 0.4 cp to 0.2 cp as the wave field develops. The relative distribution 
of breaker scale increases the likelihood of rogue waves in developed seas com-
pared to young seas. The overall breaking rate correlates well with the fraction 
of steep waves. 

Introduction 

Regardless of a precise definition and an exact genera-
tion mechanism, rogue waves are seen as single large 
waves standing out of a wave record of suitable length of 
say several tens of minutes. Assuming the wave length of 
a rogue wave to be comparable to the dominant wave 
length implies rogue waves are therefore relatively steep 
waves. However, if their steepness exceeds a certain 
threshold one would expect a significant amount of wave 
breaking. Thus wave breaking and rogue waves are inti-
mately related. 

More generally, surface waves have been labeled as 
the gearbox between atmosphere and ocean (Ardhuin et 
al., 2005) and wave breaking plays an important role in 
many air-sea exchange processes. Breaking waves not 
only transfer energy, momentum, heat, and gases from 
the atmosphere to the ocean surface layer but also en-
hance aerosol generation and latent heat fluxes due to sea 
spray. Breaking waves also disperse pollutants and gen-
erate underwater sound. Furthermore, wave breaking 
affects wave development as it dominates the dissipation 
of wave energy and controls wave growth. 

To improve our understanding of wave-breaking re-
lated processes a twofold approach is necessary: i) de-
tailed process studies, e.g., energy dissipation, mixing, 
sound generation, etc., and ii) knowledge of the occur-
rence and scale of wave breaking. Here I will focus on 
the latter and review wave breaking conditions in open 
ocean environments.  

Wave breaking criteria 

A central question to many wave related issues is: 
what are the conditions required for waves to break? So 
far, no answer has been found that is solid on theoretical 
grounds, can be verified by observations, and is easily 
incorporated into wave models. 

There are three classes of direct wave breaking crite-
ria: the kinematics, geometry, and dynamics of waves.  

The kinematic criterion is the most fundamental defini-
tion of wave breaking, stating that the horizontal particle 
speed of the fluid at the crest exceeds the wave phase 
speed. For irrotational waves this leads to the geometric 
criterion that a wave at the point of breaking is a Stokes 
wave with a limiting crest angle of 120° and a maximum 
steepness (ak)max = π/7, where a and k are wave ampli-
tude and wave number, respectively. From a dynamical 
point of view waves break when the Lagrangian down-
ward acceleration −ηtt  of the fluid at the crest exceeds a 
portion of the gravitational acceleration g: −ηtt>αg, where 
α = 0.5 for the Stokes wave but α < 0.39 for the so-called 
almost steepest waves (Longuet-Higgins, 1985).  

Kinematic breaking criterion 

It is impractical to directly measure fluid particle 
speeds within wave crests. Indirect methods relating par-
ticle speed to surface elevation are invalid in the case of 
rotational waves. Hence, the kinematic wave-breaking 
criterion is not applied to wave data. 
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Geometric breaking criterion 

It would seem to be straightforward to monitor wave 
steepness. However, the steepness of individual waves 
cannot be defined uniquely in a broad band wave field. 
The challenge lies in defining an individual wave. Let 
us consider three different approaches to the analysis of 
a fixed point surface elevation time series ( )tη .  

(i) Zero-crossing analysis: A wave might be de-
fined as the period Tbr between two successive in-
stances of ηt =0, ηtt > 0, i.e. the period between two 
local wave troughs, and the wave height Hbr which is 
defined as the difference between the surface eleva-
tions at the crest and the leading trough (Figure 1). 
The wave amplitude is a = Hbr/2  . The linear disper-
sion relation yields the wave number 
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and ak  defines the local wave steepness. However, if 
shorter waves are riding on longer waves this method 
splits the underlying long wave and yields unrealisti-
cally large steepness values, as it underestimates brT  
(Figure 1b). To rectify this bias, Banner et al. (2002) 
applied a riding wave removal scheme which progres-
sively detects and removes riding waves through itera-
tive processing starting with the highest frequency re-
solved. The occurrence and characteristic dimensions of 
riding waves are retained in a file and a wave is then 
removed from the elevation series by replacing it with a 
cubic polynomial spliced to the underlying longer wave 
form. Subsequently, the association between breaking 
events and recorded waves is based on minimizing the 
relative lag between the time of the breaking event and 
the time of the nearest local crest, while also satisfying 
a local steepness threshold.  

(ii) Hilbert analysis: The Hilbert transform of a signal 
( )X t  is defined as: 
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Due to a possible singularity at 't t= , the integral has 
to be taken as a Cauchy principal value P. The Hilbert 
transform defines the local amplitude 

 

       ( )1/ 22 2( ) ( )loca X t H t= + ,  (2) 

 
and frequency  
 

      loc tω φ= ,  (3) 
 
where ( )1tan ( ) / ( )H t X tφ −= . (Note, if ( ) cos( )X t tω=  
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Figure 1. Surface elevation time series illustrating indi-
vidual wave definition by zero-crossing analysis. Hbr, Tbr 
are the height and period of the detected individual wave. 
a) No riding wave. b) A riding wave splits the underlying 
long wave. 

 
 it follows ( ) sin( )H t tω=  and ( )t tφ ω= ). However, the 
classical Hilbert analysis is most meaningful for nar-
row-banded signals. Broad-banded signals, like sur-
face elevation records, have to be divided into a finite 
number of intrinsic mode functions (IMF), by way of 
the empirical mode decomposition (EMD), before the 
Hilbert analysis can be applied (Huang et al., 1998). 
An IMF is defined as a function fulfilling the condi-
tion that the number of zero-crossings and the num-
ber of local maxima differ by not more than one. The 
IMFs are generated in an iterative way as the differ-
ence between the signal and the mean of a spline fit-
ting through all local maxima and a spline fitting 
through all local minima. This sifting process is re-
peated until the IMF conditions are met. The so ob-
tained IMF is subtracted from the time series and the 
iteration continues with the residual signal until only 
a monotonic signal remains. Typically, surface height 
records yield decomposition into (10)N O=  IMFs. 
Then, the surface elevation time series may be repre-
sented as a Hilbert expansion  
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where ( )ja t , ( )j tφ , ( ) /j jt d dtω φ=  are amplitude, phase 
and frequency of the IMFs, respectively. The instanta-
neous amplitude of the signal is   
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and the instantaneous frequency is ( )k tω , where k cor-
responds to the dominant IMF at time t: 

( ) max( ( ), 1... )k ja t a t j N= = . Thus, 2 /kA gω  defines 
the steepness of the instantaneous dominant wave. Note 
that we chose the total amplitude A(t) rather than the 
amplitude of the dominant IMF ( )ka t . At a single point 
all IMFs contribute to the surface height but the domi-
nant wavelength is not affected by high frequency 
IMFs. However, at the crest location of locally domi-
nant waves the difference between A(t) and ( )ka t  is not 
very significant. 

(iii) Wavelet analysis: The analysis seeks segments of 
the time series which resemble a short, predefined 
wavelet. By choosing a suitable form of the wavelet, 
small wave groups are detected and the associated wave 
steepness may be calculated. The wavelet transform of a 
signal ( )X t  is 

  1/ 2( , ) ( ) t qW p q p X t dt
p

ψ− ⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∫ , (6)  

where the function ( )ψ ξ  is the wavelet. Particularly 
well suited for wave slope analysis is the Morlet wave-
let  

 ( )2
0( ) exp( / )exp ( / ) / 2iK q p q pψ ξ = − −  (7) 

where the constant 0K  determines the number of oscil-
lation of the wavelet. In the case of the Morlet wavelet, 
the local peak, at a given 0q , of the wavelet transform 

0 0( , )W p q , where 0p  represent the scale of the wave 
and 0q  the location of the wave crest, is directly pro-
portional to the average steepness of the group detected 
by the wavelet transform 0 0( ) ( , )wlak CW p q= . The pro-
portionality factor C  has to be determined from the 
wavelet analysis of simple known sinusoid test cases 
(Scott et al., 2005). 

Dynamic breaking criterion 

The dynamic wave breaking criterion is the most 
amenable to oceanic observations. In fact, the primary 

measurement of wave rider buoys is acceleration and 
only its double integration yields the surface elevation. 
Thus, in principle, wave riders may be used to detect 
wave breaking. Major limitations are the crest avoid-
ance of the buoy and sensor tilt which results in a reduc-
tion of the gravitational acceleration along the sensor 
axis and therefore an apparent upward acceleration. 
Also, there is uncertainty about the acceleration thresh-
old associated with wave breaking. Some observations 
give g/2 as expected (e.g. Snyder et al., 1983) but other 
observations show wave breaking at accelerations less 
than g/2 (e.g. Holthujsen and Herbers, 1986). 

Indirect breaking criteria 

A fourth class of wave breaking definitions is based on 
the post-breaking signature, most commonly the visual 
signal of air entrainment (whitecapping) (e.g. Melville 
and Matusov, 2002). Somewhat more objective meas-
urements, but dependent on an unknown threshold, are 
sub-surface conductivity changes (Gemmrich and 
Farmer, 1999) or underwater sound (Ding and Farmer, 
1994). Microscale breakers do not entrain air but may be 
detected, with infrared imagers, as surface skin disruption 
(e.g.,  Jessup, et al., 1997).  

Wave breaking probability 

Traditionally, the frequency of wave breaking brkP  has 
been defined as the total number of breaking crests pass-
ing a fixed point per unit time. Alternatively, the breaking 
probability per dominant wave is:  

  2 brk
brk

p

PP π
ω

= ,   (8) 

 
where pω  is the dominant wave frequency. At first 
glance, the breaking frequency correlates with wind 
speed (more frequent breaking at increased wind speed) 
and to a somewhat lesser extend with wave age (reduc-
tion in wave breaking as the wave age increases). How-
ever, at best these correlations hold for individual storm 
events and different observations at similar wind speed 
or wave age report vastly different breaking probabili-
ties. For a short review see Gemmrich and Farmer 
(1999) where the authors also report a significant posi-
tive correlation between breaking probability and the 
energy input from the atmosphere into the wave field, 
normalized by the wind energy input into a developed 
sea.  

It is well known even to the casual observer that wave 
breaking occurs at a wide range of scales. This breaking 
scale is of great importance to all physical processes as-



126   GEMMRICH 

sociated with wave breaking. For example, a small scale 
breaker dissipates less energy than a breaking dominant 
wave. Therefore, we are interested in breaking probabili-
ties of different wave scales,  

 
( , )( )
( , )

brk

all

N c c cP c
N c c c

+ ∆
=

+ ∆
, (9) 

 
where brkN  is the number of breaking wave crests 
propagating with velocities in the range (c,c+∆c)  pass-
ing a fixed point and allN  is the total number of wave 
crests propagating with velocities in the range (c,c+∆c) 
passing a fixed point. Banner et al. (2002) found ( )P c  
to correlate well with the local wave saturation   

    5 2( ) ( ) /(2 )f S gσ ω ω ω= , (10) 
  
where S(ω)  is the power spectrum of the surface eleva-
tion. The breaking probability increased roughly linearly 
with wave saturation.  

Given the slope spectrum 2 ( )k S dω ω,∫  it readily fol-
lows that the mean wave slope ms  within the fractional 
bandwidth ln( ) /d dω ω ω=  is a function of the wave 
saturation:  
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Thus, the wave saturation is a measure of the wave 
steepness within a spectral band, reflecting the nonlinear-
ity of the waves. Normalization of the wave saturation by 
the directional spreading of the wave spectrum revealed a 
common normalized saturation threshold for the onset of 
wave breaking at all wave scales examined (in the range 
ωp ≤ ω ≤ 2.5 ωp). This suggests that the wave breaking 
probability of dominant as well as the wave breaking 
probability of shorter waves is associated primarily with 
a threshold behavior linked to the nonlinear wave group 
hydrodynamics.  

Multiscale breaking rate  

Defining multiscale breaking probabilities by equation 
(1) requires the knowledge of the total number allN  of 
wave crests of a certain scale passing a fixed point. How-
ever, this measurement is commonly not available. A 
more practical measure was introduced by Phillips 
(1985). Realizing that the scale of a breaking wave may 
be defined by the length of the breaking crest and its 
propagation speed, he defined Λ(c), the spectral density 
of breaking wave crest length per unit area and velocities 
in the range (c,c+∆c). So far, observations of Λ(c) are 

limited (Phillips et al., 2001; Melville and Matusov, 2002). 
Inherent in any multiscale breaking analysis is the ba-

sic assumption that wave breaking is a narrow-banded 
process. Contingent on that assumption, the passage rate 
of breaking crests propagating at speed c  past a fixed 
point is cΛ(c). As breaking crests propagate they turn 
over a fraction of the sea surface. The fractional surface 
turnover rate per unit time is    
  ( )R c c dc= Λ∫   (12) 
 
which can also be interpreted as the breaking frequency 
at a fixed point brkP R=  (Phillips, 1985). 

Of further relevance of the quantity Λ(c) is the fact 
that its fourth and fifth moment can be related to the dy-
namics of wave breaking. Towed hydrofoil experiments 
(Duncan, 1981) established the rate of energy loss per 
unit length of breaking crest to be proportional to c5, 
where c is the crest propagation speed. Therefore, the 
wave energy dissipation due to the breaking of waves of 
scale corresponding to phase speed c  is  
  1 5( ) ( )c dc b g c c dcε ρ −= Λ  (13) 
 
where b  is an unknown, nondimensional proportional-
ity factor, assumed to be constant (Phillips, 1985). 
The total energy dissipation is  
  1 5 ( )E b g c c dcρ −= Λ∫  (14)
 
and the momentum flux from the waves to currents   
  1 4 ( )M b g c c dcρ −= Λ∫ . (15)

Observations 

The FAIRS (Fluxes, Air-Sea Interaction and Remote 
Sensing) experiment took place in September-October 
2000, roughly 150 km off Monterey, California from 
aboard the research platform FLIP. Two downward look-
ing black and white video cameras were mounted on the 
starboard boom to supplement subsurface turbulence 
measurements (Gemmrich and Farmer, 2004). The video 
recordings were digitized and whitecap information, in 
particular ( )cΛ , extracted. The video footprints of 
roughly 9×12 m and 15×20 m and 0.02 m resolution re-
solved all small- scale whitecaps but did not always cap-
ture the full breaking crest length of dominant breakers.  

In our analysis, whitecap properties are based on the 
differences between successive video frames. This 
method filters out all stationary objects, including sun 
glitter and non-actively breaking whitecaps. The remain-
ing objects are analyzed with the MATLAB image proc-
essing toolbox to extract the axis length and centroid of 
each object. Tracking the translocation of the centroid 
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yields the apparent breaking wave speed ĉ  as well as its 
propagation direction θ . Smaller breaking waves are 
likely advected by the orbital motion of underlying larger 
waves orbu . This Doppler shift is removed, based on the 
modified dispersion relation   

 intobs orbkuω ω= +    (16) 
with orb ku Aω= , and the true wave propagation speed c , 
corresponding to the intrinsic frequency intω , is ob-
tained. We base speed estimates c on the average propa-
gation speed within 0.3 s of detection and length esti-
mates on the average object length calculated from all 
image frames. Thus, each whitecap is assigned one 
speed c, one crest length Λ  and one propagation direc-
tion θ . Note, this is different to the method reported by 
Melville and Matusov (2002) which is based on decom-
posing the boundary of each whitecap into a number of 
elements each of a scale of approximately 0.5 m. Using 
PIV they estimated the length and the velocity relative 
to the whitecap centroid for each element. Elements 
with a positive, forward relative velocity are considered 
to be actively breaking. All actively breaking elements 
entered the ( )cΛ  statistics, with a single whitecap con-
tributing to various different speeds. 

Wave field information utilized in this report is based 
on single point acoustic range finder data, kindly pro-
vided by Dr. Jessup (APL, Seattle) 

Occurrence and scale of wave breaking 

Here we report on four data sets recorded under various 
wind forcing and wave field conditions (Figure 2). Data 
set 1 represents a growing sea, sets 2 and 3 nearly fully 
developed seas, and set 4 a growing sea in the presence 
of significant swell. 
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Figure 2. Significant wave height Hs (top panel) and wind 
stress τ during FAIRS. Numbers 1-4 indicate the timing of 
the data sets presented in this study. 

Breaking scale 

Wave breaking occurs over a wide range of scales 
(Figure 3). However, the breaking scales cover different 
ranges of the wave spectrum, depending on wave devel-
opment. In the young sea case, phase speeds of breaking 
waves span from approximately 1/10 of the dominant 
phase speed (i.e. with a wavelength corresponding to 
1/100 of the dominant wavelength) up to the dominant 
waves. On the other end, in a fully developed sea we ob-
served hardly any breaking at scales corresponding to 
phase speeds larger than about cp. As the wave age in-
creases the distribution of breaking scales narrows sig-
nificantly and the peak of the breaker phase speed distri-
bution shifts from about 0.4cp to  0.2cp.  
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Figure 3. Distributions of the scale of breaking waves 
cbrk/cp  for four data sets indicated in Fig. 2; cbrk ,cp are the 
phase speeds of breaking waves and dominant waves, re-
spectively. 

In terms of directional distribution we do not see any 
significant differences between the four data sets. The 
Gaussian distributions center around the mean wind di-
rection and have a standard deviation of approximately 
30º (not shown).  

Generally, the breaking crest length of individual 
events increases with wave scale. Therefore, the total 
breaking crest length per unit area and propagation speed, 
Λ(c), shows a slightly different behaviour than the break-
ing occurrence rates given in Figure 3. For all four data 
segments, Λ(c) peaks at intermediate wave scales corre-
sponding to c/cp ≈ 0.3 (Figure 4).  

Phillips’ (1985) concept of a spectral equilibrium 
range assumes for intermediate wave scales a balance 
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between energy input, non-linear energy transfer and 
energy dissipation. In this equilibrium range the wave 
height spectrum scales as   
       4( )S ω ω−∝ .   (17) 
 
Therefore, the form of the energy input   
       ( ) ( )inE g Sω β ω=    (18) 
 
and the wave growth factor   
       2( / )wu cβ ω∝  (Plant, 1982),  (19) 
 
where uw is some measure of the wind speed, translates 
into a c-1 dependence of the spectral wind energy input 
in c-space, 1( )inE c c−∝ . The equilibrium concept re-
quires the same c-dependence of the spectral dissipation 
and therefore, based on (13), it follows that 

6( )c c−Λ ∝ .  

0 0.5 1
10

−6

10
−5

10
−4

10
−3

c/c
p

Λ
(c

) 
[m

−
2 s]

 
Figure 4. Breaking crest length as function of normalized 
crest propagation speed / pc c , i.e. the normalized phase 
speed of breaking waves. The symbols (●, ,*,+) correspond 
to data sets (1,2,3,4), respectively. 

 
At scales larger than the peak of the observed  Λ(c) 

distribution, Λ(c) indeed falls off approximately as 6c− , 
consistent with the equilibrium range concept. (Although 
this does not show clearly in Figure 4 it is seen in a graph 
of Λ(c) versus c as will be described in a forthcoming 
paper). However, according to (13) the low Λ(c) values 
at small scales imply reduced dissipation, and thus the 
equilibrium concept requires reduced energy input and/or 
increased non-linear transport to larger wave scales com-
pared to the current formulation of spectral wave models. 

It should be noted that the inferences made about the 
slope of Λ(c) are based on the assumption that the pro-
portionality factor b  in (13) is scale independent, as 
found in the somewhat unrelated hydrofoil experiment by 
Duncan (1981). Moreover, the value of b  is very uncer-
tain with reported values applicable to the ocean ranging 
from 410b −≈  (Phillips et al., 2001) to 210b −≈  (Mel-
ville and Matusov, 2002) and assumed to be scale inde-
pendent.  

Total breaking rate 

The overall breaking rate R , given by (12), is equiva-
lent to the fractional surface area turnover rate, and thus 
an important quantity for air-sea exchange processes. It 
also provides insight to what conditions are favourable to 
wave breaking. Banner et al. (2002) found the breaking 
rate at specific scales to depend on some measure of the 
mean steepness. Here we explore possible correlations 
between the total breaking rate and wave steepness.  

In this context it is interesting to note that in wave tank 
experiments the wave groupiness, believed to play an 
important role in the generation of rogue waves, also de-
termines the limiting steepness max( )ak  of these extreme 
waves (Wu and Yao, 2004). Assuming that larger wave 
amplitudes, i.e. steeper waves, are prevented due to wave 
breaking implies that the steepness threshold of the geo-
metric wave breaking criterion is equal to max( )ak .  

Wu and Yao (2004) report a very strong inverse de-
pendence of the maximum attainable wave steepness 

max( )ak  on the non-dimensional wave group bandwidth  

  2 0
2

1

1m m
m

ν = −  (20) 

where ( )
3/ 2
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p

p

i
im S d

ω

ω

ω ω ω= ∫  is the ith moment of the 

power spectrum S(ω) (Longuet-Higgins, 1984). For long 
groups ( 0ν → , i.e. narrow peaked spectrum) max( )ak  is 
close to the Stokes limit π/7, whereas for 0.2ν =  
(shorter groups, broader spectrum) the authors found a 
sharply reduced value max( ) 0.2ak .  
If wave breaking is the limiting process, one would ex-
pect that in cases of small max( )ak  wave breaking is 
more frequent than in cases with a larger limiting steep-
ness, yielding a positive correlation between wave 
breaking and bandwidth. No well defined relation be-
tween breaking rate and bandwidth emerges from our 
data, which might, however, partially be due to the lim-
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ited range of bandwidth in our observations (Figure 5a). 
It is very likely that processes associated with the direc-
tional wave field (e.g. directional focusing) are impor-
tant for wave breaking and the excellent correlation be-
tween max( )ak and ν  observed in the controlled 2-
dimensional wave tank environment might also not be 
as strong under open ocean conditions. 

The fact that the limiting steepness max( )ak  of extreme 
waves varies widely also suggests that the critical wave 
steepness that will lead to wave breaking does not have a 
fixed value. Nevertheless, one expects a wave field with 
a significant fraction of ‘steep’ waves to exhibit more 
breaking than a wave field with fewer ‘steep’ waves. To 
test this assumption we calculate the steepness 2 /kA gω  
for each individual wave crest and determine the fraction 
P of wave crests with steepness above a given threshold. 
The breaking rate increases approximately linearly with 
the fraction of steep waves (Figure 5b). It turns out that 
this scaling is not very sensitive to the threshold steep-
ness values if chosen in the range 0.3 – 0.45, though ab-
solute values of P change.  
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Figure 5. Breaking rate R (equation 12) versus nondimen-
sional bandwidth ν  (equation 20) (top) and fraction of 
wave crests with wave steepness larger than π/7 (bottom).    

Conclusions 

Wave breaking criteria based on geometric, kinematic 
or dynamic properties of individual waves are not easily 
applicable to oceanic observations, mainly due to uncer-
tainties in identifying individual waves and unknown 
threshold values. Most accessible is the post-breaking 
criterion of whitecap generation. Phillips (1985) equilib-
rium range theory includes a statistical description of 
wave breaking, its kinematics and dynamics. The re-
quired key quantity ( )cΛ , where ( )c dcΛ  is the length 
of breaking crests per unit area propagating with speeds 
in the range ( , )c c dc+ , may be extracted from video 
imagery of the sea surface. ( )cΛ  peaks at intermediate 
wave scales and for larger scale it is approximately pro-
portional to c-6 which is consistent with the current form 
of spectral wave models. However, the steep decline of 

( )cΛ  at small scales implies reduced energy input 
and/or more rapid non-linear transfer in order to satisfy 
the equilibrium assumption. However, the uncertainty in 
the proportionality factor b , relating the breaking crest 
length to energy dissipation, further complicates this is-
sue. Independent co-located measurements of energy 
dissipation and breaking crest lengths ( )cΛ  are required 
to determine whether the proportionality factor b  is in-
deed independent of c . 

In a young wave field, breaking that generates white-
caps occurs at a wide range of scales corresponding to 
breaking wave phase speeds from about 0.1 – 1.0 cp. The 
most frequent breakers occur at scales corresponding to 
cbrk ≈ 0.4 cp. In developed seas the distribution of breaker 
speeds narrows, with almost all breaking wave speeds  
cbrk <  0.5 cp, and the peak of the distribution shifts to 0.2 
cp.  

As wave breaking is the main limiting factor of wave 
growth, the breaker scale distribution is also expected to 
impact processes like rogue wave generation. Breaking of 
waves close to the dominant wave scales would severely 
limit the generation of rogue waves. Thus, the lack of 
breaking of large scale waves in older seas implies a 
much greater likelihood of rogue wave occurrence in 
developed seas than in young seas. 

In wave tanks the wave-group bandwidth seems to be 
a very good indicator of limiting extreme wave steepness, 
with reduced attainable steepness as the wave spectral 
bandwidth increases (Wu and Yao, 2004). It is not en-
tirely clear whether the limiting extreme wave steepness 
is equivalent to the critical steepness that leads to break-
ing. If this was the case, the breaking rate would be a 
strong increasing function of wave spectral bandwidth, 
which is not supported in our open ocean data set. Since 
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rogue wave generation is mainly linked to large scale 
waves, a better correlation might be expected between 
bandwidth and the breaking rate of larger scale waves. 
Unfortunately, our data sample of dominant wave break-
ing is too limited to allow for meaningful statistics.  

On the other hand, the total breaking rate of all scales 
is clearly related to the fraction of waves exceeding a 
certain steepness threshold. This result is nearly inde-
pendent of the steepness threshold, if chosen in the range 
0.3 < ak < 0.45. 

Most records of rogue waves under natural conditions 
do not include any information on the occurrence and 
strength of their breaking. Therefore, it is not known 
whether wave breaking indeed limits the actual extreme 
wave. The following two limiting rationales exist: (i) 
Rogue waves grow until wave breaking cuts off any fur-
ther increase in height. For example, this situation occurs 
when waves propagate into a strong divergent surface 
current. (ii) On the other hand, a rogue wave generated 
by some kind of focusing mechanism might not actually 
reach the point of breaking with its height being limited 
by the conditions of the underlying focusing wave trains.  

Our results indicate that wave breaking affects the 
overall wave field, and therefore at least indirectly the 
probability of rogue wave generation. A systematic study 
of rogue wave steepness and spectral wave bandwidth 
could shed some light on the question if the height of 
extreme waves is limited by wave breaking or by the 
generation mechanisms. This is also important from a 
practical point of view as a breaking rogue wave could 
potentially cause more damage than a non-breaking wave 
of the same dimension.  
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